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Rational Surfaces

-1

-0.5

0

0.5

1

x

-1

-0.5

0

0.5

1

y

-1

-0.5

0

0.5

1

z

-1

-0.5

0

0.5

1

x

-1

-0.5

0

0.5

1

y

-1

-0.5

0

0.5

1

645



646 CHAPTER 23. RATIONAL SURFACES

23.1 Rational Surfaces and Multiprojective Maps

In this chapter, rational surfaces are investigated. We begin by exploring the possibility of defining rational
surfaces in terms of polar forms. As in the case of rational curves, polar forms are actually multilinear, and
rational surfaces are defined in terms of multiprojective maps. A rational surface is defined by fractions of
polynomials Fi(u, v) in two variables u, v. If we first homogenize the polynomials Fi(u, v) with respect to
the total degree m (replacing u by u/z and v by v/z) and then polarize with respect to (u, v, z) as a whole,
we can view a rational surface as a map

F : P̃ → Ẽ

(where P = A2 is the affine plane) induced by some symmetric multilinear map

f : (P̂)m → Ê

such that
F ([u, v, z]) = P(f)((u, v, z), . . . , (u, v, z)︸ ︷︷ ︸

m

),

for all homogeneous coordinates (u, v, z) ∈ R3. We call such surfaces rational total degree surfaces , or
triangular rational surfaces . On the other hand, if we first homogenize the polynomials Fi(u, v) with respect
to u and the maximum degree p in u (replacing u by u/t1) and second with respect to v and the maximum
degree q in v (replacing v by v/t2), and then polarize separately w.r.t. (u, t1) and (v, t2), we can view a
rational surface as a map

F : Ã× Ã → Ẽ

induced by some multilinear map
f : (Â)p × (Â)q → Ê

which is symmetric in its first p arguments and in its last q arguments, and such that

F ([u, t1], [v, t2]) = P(f)((u, t1), . . . , (u, t1)︸ ︷︷ ︸
p

, (v, t2), . . . , (v, t2)︸ ︷︷ ︸
q

),

for all homogeneous coordinates (u, t1), (v, t2) ∈ R2. We call such surfaces rational surfaces of bidegree 〈p, q〉,
or rectangular rational surfaces . However, unlike the affine case where A×A is isomorphic to the affine plane
P = A2, the Cartesian product Ã× Ã = RP1 ×RP1 is not a projective space, and thus, it is not isomorphic
to the projective plane P̃ = RP2. For instance, topologically, the points at infinity in RP1 ×RP1 correspond
to two intersecting circles, but the points at infinity in RP2 correspond to a single circle. As a consequence,
triangular rational surfaces and rectangular rational surfaces are two distinct classes. This difference can be
observed in terms of base points, i.e., when

f((u, v, z), . . . , (u, v, z)︸ ︷︷ ︸
m

) = 0

or
f((u, t1), . . . , (u, t1)︸ ︷︷ ︸

p

, (v, t2), . . . , (v, t2)︸ ︷︷ ︸
q

) = 0.

For example, a torus viewed as a triangular rational surface may have base points, although it does not as
a rectangular rational surface. Similarly, a sphere may have base points viewed as a rectangular rational
surface, although it does not as a triangular rational surface.

As in the case of rational curves, we define rectangular and triangular rational surfaces in BR-form. This
allows us to handle rational surfaces in terms of control points in the hat space Ê obtained from E . We give
formulae for expressing triangular and rectangular rational surfaces in terms of Bernstein polynomials. We
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also show how the two versions of the de Casteljau algorithm for polynomial surfaces (triangular version and
rectangular version) can be easily adapted to rational surfaces, as well as the subdivision methods.

Our treatment of rational surfaces will parallel rather closely the treatment of rational curves of chapter
22. We begin by defining rational surfaces in a traditional manner, and then, we show how this definition
can be advantageously recast in terms of symmetric multiprojective maps. Keep in mind that rational
surfaces really live in the projective completion Ẽ of the affine space E . This is the reason why homogeneous
polynomials are involved.

We assume that some fixed affine frame (O, (i1, i2)) for the affine plane P is chosen, typically, the canonical

affine frame for P , where O = (0, 0), i1 =

(
1
0

)
, and i2 =

(
0
1

)
, unless specified otherwise. We will assume

that the homogenization P̂ of the affine plane P is identified with the direct sum R2 ⊕ RO. Then, every
element of P̂ is of the form (u, v, z) ∈ R3. Let E be some affine space of finite dimension n ≥ 3, and let
(Ω1, (e1, . . . , en)) be an affine frame for E .

A rational surface of degree m in an affine space E of dimension n is specified by n fractions, say

x1(u, v) =
F1(u, v)

Fn+1(u, v)
, x2(u, v) =

F2(u, v)

Fn+1(u, v)
, . . . , xn(u, v) =

Fn(u, v)

Fn+1(u, v)
,

where F1(X,Y ), . . . , Fn+1(X,Y ) are polynomials of degree at most m. In order to deal with the case where
the denominator Fn+1(X,Y ) is null, we view the rational surface as the projection of the polynomial surface
defined by the polynomials F1(X,Y ), . . . , Fn+1(X,Y ). To make this rigorous, we can view the rational
surface either as a map F : P̃ → Ẽ , or as a map F : Ã× Ã → Ẽ . In the first case, we need to homogenize the
polynomials F1(X,Y ), . . . , Fn+1(X,Y ) as polynomials of the same total degree (replacing X by X/Z and
Y by Y/Z) so that after polarizing w.r.t. (X,Y, Z), we get a (symmetric) multilinear map which induces a
(symmetric) multiprojective map. In the second case, we homogenize first in X with respect to the maximum
degree p in X (replacing X by X/T1) and second in Y with respect to the maximum degree q in Y (replacing
Y by Y/T2), so that after polarizing separately w.r.t. (X,T1) and (Y, T2), we get a multilinear map symmetric
in its first p arguments and in its last q arguments which also induces a multiprojective map. Following the
first approach leads to the following definition.

Definition 23.1.1 A rational surface of total degree m is a function F : P̂ → Ê , such that, for all (u, v, z) ∈
R3, we have

F (u, v, z) = F1(u, v, z)e1 +̂ · · · +̂ Fn(u, v, z)en +̂ Fn+1(u, v, z)〈Ω1, 1〉,

where F1(X,Y, Z), . . . , Fn+1(X,Y, Z) are homogeneous polynomials in R[X,Y, Z], each of total degree m.

! It is important to require that all of the polynomials F1(X,Y, Z), . . . , Fn+1(X,Y, Z) are homogeneous
and of the same total degree m. Otherwise, we would not be able to polarize these polynomials and

obtain a symmetric multilinear map (as opposed to a multiaffine map).

For example, the following homogeneous polynomials define a (unit) sphere:

F1(X,Y, Z) = 2XZ

F2(X,Y, Z) = 2Y Z

F3(X,Y, Z) = X2 + Y 2 − Z2

F4(X,Y, Z) = X2 + Y 2 + Z2.

Note that we recover a standard parameterization of the sphere, by setting Z = 1. But in general, it is
also possible to get points at infinity in the projective space Ẽ , or points corresponding to points at infinity
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in P̂. For example, for (X,Y, Z) = (a, b, 0), we get the point of homogeneous coordinates (0, 0, 1, 1), the
North pole. Also, note that the North pole is obtained for infinitely many parameter values (a, b, 0).

Following the second approach for homogenizing and polarizing leads to the following definition. First, let
us say that a multilinear map f : (Â)p × (Â)q → Ê is 〈p, q〉-symmetric if it symmetric in its first p arguments
and in its last q arguments.

Definition 23.1.2 A rational surface of bidegree 〈p, q〉 is a function F : Â × Â → Ê , such that, for all
(u, t1), (v, t2) ∈ R2, we have

F ((u, t1), (v, t2)) = F1(u, t1, v, t2)e1 +̂ · · · +̂ Fn(u, t1, v, t2)en +̂ Fn+1(u, t1, v, t2)〈Ω1, 1〉,

where F1(U, T1, V, T2), . . . , Fn+1(U, T1, V, T2) are polynomials in R[U, T1, V, T2], each homogeneous of degree
p in U, T1, and homogeneous of degree q in V, T2 (in particular, each Fi(U, T1, V, T2) is homogeneous and of
total degree p+ q).

For example, the following polynomials define a (unit) sphere:

F1(U, T1, V, T2) = 2UT1T
2
2

F2(U, T1, V, T2) = 2T 2
1 V T2

F3(U, T1, V, T2) = U2T 2
2 + V 2T 2

1 − T 2
1 T

2
2

F4(U, T1, V, T2) = U2T 2
2 + V 2T 2

1 + T 2
1 T

2
2 .

Observe that there is a base point for T1 = T2 = 0.

Using a Lemma in Gallier [70], (see Lemma 27.2.1), for each homogeneous polynomial Fi(X,Y, Z) of
total degree m, there is a unique symmetric multilinear map fi: (R3)m → R, such that

Fi(u, v, z) = fi((u, v, z), . . . , (u, v, z)︸ ︷︷ ︸
m

),

for all (u, v, z) ∈ R3, and together, these n+ 1 maps define a symmetric multilinear map

f : (P̂)m → Ê ,

such that
F (u, v, z) = f((u, v, z), . . . , (u, v, z)︸ ︷︷ ︸

m

),

for all (u, v, z) ∈ R3. But then, we get a symmetric multiprojective map

P(f): (P̃)m → Ẽ ,

and we define the projective rational surface

F̃ : P̃ → Ẽ ,

such that
F̃ ([u, v, z]) = P(f)([u, v, z], . . . , [u, v, z]︸ ︷︷ ︸

m

)

for all (u, v, z) ∈ R3, where we view (u, v, z) as homogeneous coordinates of a point in P̃ , that is, where
(u, v, z) )= (0, 0, 0).
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Definition 23.1.3 Given an affine space E of dimension ≥ 3, a projective rational surface F of degree m
or triangular rational surface of degree m is a (partial) projective map F : P̃ → Ẽ , such that there is some
symmetric multilinear map f : (P̂)m → Ê , with

F ([u, v, z]) = P(f)([u, v, z], . . . , [u, v, z]︸ ︷︷ ︸
m

),

for all [u, v, z] ∈ P̃ (i.e., all homogeneous coordinates (u, v, z) ∈ R3). The symmetric multilinear map f is
also called a polar form of F . The trace of F is the subset F (P̃) of the projective completion Ẽ of the affine
space E .

Since P̃ = RP2, a triangular rational surface F of degree m is a rational map F :RP2 → Ẽ defined as the
diagonal of a symmetric multiprojective map P(f): (RP2)m → Ẽ .

From the discussion just before definition 23.1.3, we note that every rational surface F as in definition
23.1.1 defines a triangular rational surface F̃ of degree m.

The converse is also true when E is of finite dimension. Let G be a projective rational surface defined
by the symmetric multilinear map g: (P̂)m → Ê . Given an affine frame (Ω1, (e1, . . . , en)) for E , and the
corresponding basis (e1, . . . , en, 〈Ω1, 1〉) for Ê , a Lemma in Gallier [70] (see Lemma 27.1.5) shows that a
symmetric multilinear map g: (P̂)m → Ê defines a homogeneous polynomial map F of degree m in three
variables, with coefficients in Ê . Expressing these coefficients over the basis (e1, . . . , en, 〈Ω1, 1〉), we see
that the polynomial map F is defined by some homogeneous polynomials F1(X,Y, Z), . . . , Fn+1(X,Y, Z) in
R[X,Y, Z], each of total degree m, such that, for all (u, v, z) ∈ R3, we have

F (u, v, z) = F1(u, v, z)e1 +̂ · · · +̂ Fn(u, v, z)en +̂ Fn+1(u, v, z)〈Ω1, 1〉.

Thus F is a rational surface, and clearly, F̃ = G. Therefore, when E is of finite dimension, definition 23.1.3
and definition 23.1.1 define the same class of rational surfaces. Definition 23.1.3 will be preferred, since it
leads to a treatment of rational surfaces in terms of control points rather similar to the treatment of Bézier
surfaces (it also works for any dimension, even infinite).

Remarks : (1) Contrary to the case of rational curves, it is not always possible to extend the definition of a
rational surface by continuity when (u, v, z) is a common zero of the polynomials F1(X,Y, Z), . . . , Fn+1(X,Y ,
Z). Consider the rational surface defined such that

F1(X,Y, Z) = Y Z

F2(X,Y, Z) = X2 + 2XZ

F3(X,Y, Z) = XZ

F4(X,Y, Z) = XZ + Y Z.

Since (0, 0, 1) is a common zero of F1, F2, F3, F4, the surface F is undefined at (0, 0, 1). In non-homogeneous
coordinates, F is defined by

x(u, v) =
v

u+ v

y(u, v) =
u2 + 2u

u+ v

z(u, v) =
u

u+ v
.

If v = λu, for λ )= 0, when the point (u, v) approaches the origin in P , the point (x(u, v), y(u, v), z(u, v))
converges to the point (

λ

1 + λ
,

2

1 + λ
,

1

1 + λ

)
,
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which depends on λ. Therefore, it is impossible to define F (0, 0, 1) by continuity. However, methods of
algebraic geometry can be used (“blowing-up”).

(2) The set of points for which the curve F is undefined is the zero locus of the homogeneous polynomials
F1(X,Y, Z), . . . , Fn+1(X,Y, Z), and thus, it is an algebraic curve in the (real) projective plane P̃.

Given a rectangular rational surface of bidegree 〈p, q〉, using a Lemma in Gallier [70] (see Lemma 27.2.1),
for each polynomial Fi(U, T1, V, T2) homogeneous of degree p in U, T1 and homogeneous of degree q in V, T2,
there is a unique 〈p, q〉-symmetric multilinear map fi: (R2)p × (R2)q → R, such that

Fi((u, t1), (v, t2)) = fi((u, t1), . . . , (u, t1)︸ ︷︷ ︸
p

, (v, t2), . . . , (v, t2)︸ ︷︷ ︸
q

),

for all (u, t1), (v, t2) ∈ R2, and together, these n+ 1 maps define a 〈p, q〉-symmetric multilinear map

f : (Â)p × (Â)q → Ê ,

such that
F ((u, t1), (v, t2)) = f((u, t1), . . . , (u, t1)︸ ︷︷ ︸

p

, (v, t2), . . . , (v, t2)︸ ︷︷ ︸
q

),

for all (u, t1), (v, t2) ∈ R2. But then, we get a multiprojective map

F : Ã× Ã → Ẽ

induced by some 〈p, q〉-symmetric multilinear map

f : (Â)p × (Â)q → Ê ,

and such that
F ([u, t1], [v, t2]) = P(f)((u, t1), . . . , (u, t1)︸ ︷︷ ︸

p

, (v, t2), . . . , (v, t2)︸ ︷︷ ︸
q

),

for (u, t1), (v, t2) ∈ R2, where we view (u, t1), (v, t2) as homogeneous coordinates of a point in Ã, that is,
where (u, t1) )= (0, 0) and (v, t2) )= (0, 0).

Definition 23.1.4 Given an affine space E of dimension ≥ 3, a projective rational surface F of bidegree
〈p, q〉 or rectangular rational surface of bidegree 〈p, q〉 is a (partial) projective map F : Ã× Ã → Ẽ , such that
there is some 〈p, q〉-symmetric multilinear map

f : (Â)p × (Â)q → Ê

with
F ([u, t1], [v, t2]) = P(f)((u, t1), . . . , (u, t1)︸ ︷︷ ︸

p

, (v, t2), . . . , (v, t2)︸ ︷︷ ︸
q

),

for all [u, t1], [v, t2] ∈ Ã (i.e., all homogeneous coordinates (u, t1), (v, t2) ∈ R2). The multilinear map f is also

called a polar form of F . The trace of F is the subset F (Ã× Ã) of the projective completion Ẽ of the affine
space E .

Since Ã = RP1, a rectangular rational surface F of degree 〈p, q〉 is a birational map F :RP1 × RP1 → Ẽ
defined as the diagonal of a 〈p, q〉-symmetric multiprojective map P(f): (RP1)p × (RP1)q → Ẽ .

It is a simple exercise to show that every rational surface F as in definition 23.1.2 defines a rectangular
rational surface F̃ of bidegree 〈p, q〉, and that the converse is true when E has finite dimension.
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If F : P̃ → Ẽ is a triangular rational surface defined by some symmetric multilinear map f : (P̂)m → Ê ,
with

F ([u, v, z]) = P(f)([u, v, z], . . . , [u, v, z]︸ ︷︷ ︸
m

),

for all [u, v, z] ∈ P̃, by lemma 21.3.2, the restriction g:Pm → Ê of f : (P̂)m → Ê to Pm, is a multiaffine
map such that P(f) = ΠΩ ◦ g̃. The multiaffine map g:Pm → Ê defines a polynomial surface G:P → Ê ,
and the multilinear map ĝ: (P̂)m → ̂̂E induces a triangular rational surface G̃: P̃ → ˜̂E , and P(f) = ΠΩ ◦ g̃
shows that the triangular rational surface F is the projection under ΠΩ of the triangular rational surface G̃,
which itself, can be considered as the projective completion of the polynomial surface G. This suggests the
following definition.

Definition 23.1.5 For a polynomial surface F :P → E defined by the polar form f :Pm → E , the symmetric
multilinear map f̂ : (P̂)m → Ê induces a triangular rational surface F̃ : P̃ → Ẽ , called the projective completion
of the polynomial surface F .

Clearly the restriction of the surface F̃ to P agrees with the polynomial surface F . The projective
completion F̃ of F can still be considered as a polynomial surface, except that it is also defined for the
points at infinity in P̃.

As in the triangular case, if F : Ã × Ã → Ẽ is a rectangular rational surface defined by some 〈p, q〉-
symmetric multilinear map f : (Â)p × (Â)q → Ê , by lemma 21.3.2, the restriction g:Ap × Aq → Ê of f to
Ap × Aq is a 〈p, q〉-symmetric multiaffine map such that P(f) = ΠΩ ◦ g̃. The 〈p, q〉-symmetric multiaffine
map g:Ap ×Aq → Ê defines a bipolynomial surface G:A×A → Ê , and the 〈p, q〉-symmetric multilinear map

ĝ: (Â)p × (Â)q → Ê induces a rectangular rational surface G̃: Ã× Ã → ˜̂E , and P(f) = ΠΩ ◦ g̃ shows that the
rectangular rational surface F is the projection under ΠΩ of the rectangular rational surface G̃, which itself,
can be considered as the projective completion of the bipolynomial surface G. This suggests the following
definition.

Definition 23.1.6 For a bipolynomial surface F :A×A → E defined by the polar form f :Ap×Aq → E , the
〈p, q〉-symmetric multilinear map f̂ : (Â)p × (Â)q → Ê induces a rectangular rational surface F̃ : Ã × Ã → Ẽ ,
called the projective completion of the bipolynomial surface F .

Clearly the restriction of the surface F̃ to A×A agrees with the bipolynomial surface F . The projective
completion F̃ of F can still be considered as a polynomial surface, except that it is also defined for the points
at infinity in Ã× Ã.

Now, given a triangular rational surface F with polar form f : (P̂)m → Ê , the discussion just before
definition 23.1.5 shows that F is completely determined by the polynomial surfaceG of polar form g:Pm → Ê ,
the restriction of f : (P̂)m → Ê to Pm, and the projection ΠΩ. Similarly, given a rectangular rational surface
F with polar form f : (Â)p× (Â)q → Ê , the discussion just before definition 23.1.6 shows that F is completely

determined by the bipolynomial surface G of polar form g:Ap×Aq → Ê , the restriction of f : (Â)p×(Â)q → Ê
to Ap × Aq, and the projection ΠΩ. This leads to the definition of triangular and rectangular BR-surfaces.

23.2 Triangular and Rectangular BR-Surfaces

We begin with the definition of triangular BR-surfaces.

Definition 23.2.1 Given any affine space E of dimension n ≥ 3, a triangular rational surface in Bézier form
of degree m, or triangular BR-surface, is a map F : P̃ → Ẽ such that there is a polynomial surface G:P → Ê
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of degree m defined by a triangular control net N = (θi, j, k)(i,j,k)∈∆m
in Ê and such that if g:Pm → Ê is the

(unique) symmetric polar form of G, then

F (a) =

{
Π(G(a)) if a ∈ P , not a point at infinity;
ΠΩ([ĝ((u, v, 0), . . . , (u, v, 0))]≈) when a = (u, v, 0) ∈ P̃ − P .

The trace of F is the subset F (P̃) of the projective completion Ẽ of the affine space E .

Note that in practice, we can assume that F is only defined on P .

The following lemma shows that when E is of finite dimension, the class of triangular rational surfaces
and the class of triangular BR-surfaces are identical.

Lemma 23.2.2 Let E be any affine space of finite dimension. Every triangular rational surface F : P̃ → Ẽ
with polar form f : (P̂)m → Ê is the image under ΠΩ of the projective completion G̃: P̃ → ˜̂E of the polynomial
surface G:P → Ê associated with the restriction g:Pm → Ê of f to Pm. Conversely, given a polynomial

surface G:P → Ê with polar form g:Pm → Ê, the image under ΠΩ of the projective completion G̃: P̃ → ˜̂E of
G is a triangular rational surface. As a consequence, the class of triangular rational surfaces and the class
of triangular BR-surfaces are identical, when E is of finite dimension.

Proof . The proof follows from lemma 21.3.2 and lemma 21.3.2. Details are left as an exercise.

Next, we define rectangular BR-surfaces.

Definition 23.2.3 Given any affine space E of dimension n ≥ 3, a rectangular rational surface in Bézier
form of bidegree 〈p, q〉, or rectangular BR-surface, is a map F : Ã× Ã → Ẽ such that there is a bipolynomial
surface G:A×A → Ê of bidegree 〈p, q〉 defined by a rectangular control net N = (θi, j)0≤i≤p, 0≤j≤q in Ê and

such that if g:Ap × Aq → Ê is the (unique) 〈p, q〉-symmetric polar form of G, then

F (a, b) =

{
Π(G(a, b)) if a, b ∈ A, a, b )= ∞;
ΠΩ([ĝ((u, t1), . . . , (u, t1), (v, t2), . . . , (v, t2))]≈) if a = (u, t1), b = (v, t2),

and t1 = 0 or t2 = 0.

The trace of F is the subset F (Ã× Ã) of the projective completion Ẽ of the affine space E .

Again, in practice, we can assume that F is only defined on A× A.

The following lemma shows that when E is of finite dimension, the class of rectangular rational surfaces
and the class of rectangular BR-surfaces are identical.

Lemma 23.2.4 Let E be any affine space of finite dimension. Every rectangular rational surface F : Ã×Ã →
Ẽ with polar form f : (Â)p × (Â)q → Ê is the image under ΠΩ of the projective completion G̃: Ã × Ã → ˜̂E
of the bipolynomial surface G:A × A → Ê associated with the restriction g:Ap × Aq → Ê of f to Ap × Aq.
Conversely, given a bipolynomial surface G:A × A → Ê with polar form g:Ap × Aq → Ê, the image under

ΠΩ of the projective completion G̃: Ã× Ã → ˜̂E of G is a rectangular rational surface. As a consequence, the
class of rectangular rational surfaces and the class of rectangular BR-surfaces are identical, when E is of
finite dimension.

Proof . The proof follows from lemma 21.3.2 and lemma 21.3.2. Details are left as an exercise.

If a triangular rational surface F : P̃ → Ẽ is determined by some homogeneous polynomials F1(X,Y, Z), . . .,
Fn+1(X,Y, Z) in R[X,Y, Z], each of total degree m, the polynomial surface G:P → Ê associated with the
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restriction g:Pm → Ê of the polar form f : (P̂)m → Ê of F to Pm is simply determined by the polynomials
F1(X,Y, 1), . . . , Fn+1(X,Y, 1) in R[X,Y ], obtained by setting Z = 1. If we homogenize these polynomials
(assuming total degree m) we get the polynomials F1(X,Y, Z), . . ., Fn+1(X,Y, Z) back. Similarly, if a rectan-
gular rational surface F : Ã× Ã → Ẽ is determined by polynomials F1(X,T1, Y, T2), . . . , Fn+1(X,T1, Y, T2) in
R[X,T1, Y, T2], each homogeneous of degree p in X,T1 and homogeneous of degree q in Y, T2, the polynomial
surface G:A × A → Ê associated with the restriction g:Ap × Aq → Ê of the polar form f : (Â)p × (Â)q → Ê
of F is simply determined by the polynomials F1(X, 1, Y, 1), . . . , Fn+1(X, 1, Y, 1) in R[X,Y ], obtained by
setting T1 = T2 = 1. If we homogenize these polynomials separately w.r.t. X and Y (assuming maximum
degree p in X and q in Y ) we get the polynomials F1(X,T1, Y, T2), . . . , Fn+1(X,T1, X, T2) back.

Thus, in practice, when defining rational surfaces (triangular or rectangular), it is enough to specify
n+1 polynomials F1(X,Y ), . . . , Fn+1(X,Y ) in R[X,Y ]. Such polynomials can be viewed as either defining a
bipolynomial surface G:A×A → Ê or as defining a polynomial surface G:P → Ê . In both cases, the surface
G can be specified in terms of control points in Ê . In the first case, it is a bipolynomial surface of degree
〈p, q〉 defined by a rectangular control net N = (θi, j)0≤i≤p, 0≤j≤q, and in the second case, it is a triangular
surface of degree m defined by a triangular control net N = (θi, j, k)(i,j,k)∈∆m

.

The control points θ ∈ Ê are either weighted points of the form 〈a, w〉, where w )= 0 is called the weight of

a ∈ E , or control vectors u ∈ −→E . To determine the control points of the surface G given by n+1 polynomials,
we compute the polar form g of G, either as a 〈p, q〉-symmetric affine map, or as a symmetric m-affine map.
As in the case of curves, we have to remember that the coordinates of these control points will be with
respect to the basis (e1, . . . , en, 〈Ω1, 1〉) of Ê , where (Ω1, (e1, . . . , en)) is the affine frame for E . Thus, for
every θ = 〈a,λ〉 ∈ Ê , to find the coordinates of the point a ∈ E , if θ has coordinates (x1, . . . , xn,λ) over
(e1, . . . , en, 〈Ω1, 1〉), then a ∈ E has coordinates

(x1

λ
, . . . ,

xn

λ

)
,

over (Ω1, (e1, . . . , en)), as explained in lemma 4.2.1. Let us give some examples.

Example 1. Consider the sphere given by the polynomials

G1(X,Y ) = 2X

G2(X,Y ) = 2Y

G3(X,Y ) = X2 + Y 2 − 1

G4(X,Y ) = X2 + Y 2 + 1.

If we want to view the sphere as a bipolynomial surface of degree 〈2, 2〉, we polarize the above polynomials
separately in X and Y , obtaining:

g1(x1, x2, y1, y2) = x1 + x2

g2(x1, x2, y1, y2) = y1 + y2

g3(x1, x2, y1, y2) = x1x2 + y1y2 − 1

g4(x1, x2, y1, y2) = x1x2 + y1y2 + 1.

With respect to the affine frame (0, 1) of A, we obtain the following nine control points in Â3:

θi,j 0 0 0 1 1 1

0 0 (0, 0,−1, 1) (0, 1,−1, 1) (0, 2, 0, 2)

0 1 (1, 0,−1, 1) (1, 1,−1, 1) (1, 2, 0, 2)

1 1 (2, 0, 0, 2) (2, 1, 0, 2) (2, 2, 1, 3)
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Expressed in terms of points in A3, we have the following control points:

θi,j 0 0 0 1 1 1

0 0 ((0, 0,−1), 1) ((0, 1,−1), 1) ((0, 1, 0), 2)

0 1 ((1, 0,−1), 1) ((1, 1,−1), 1) ((12 , 1, 0), 2)

1 1 ((1, 0, 0), 2) ((1, 1
2 , 0), 2) ((23 ,

2
3 ,

1
3 ), 3)

Example 2. Again, consider the sphere given by the polynomials

G1(X,Y ) = 2X

G2(X,Y ) = 2Y

G3(X,Y ) = X2 + Y 2 − 1

G4(X,Y ) = X2 + Y 2 + 1.

This time, we want to view the sphere as a total degree surface of degree 2, and we polarize the above
polynomials w.r.t X and Y , obtaining:

g1(x1, y1, x2, y2) = x1 + x2

g2(x1, y1, x2, y2) = y1 + y2

g3(x1, y1, x2, y2) = x1x2 + y1y2 − 1

g4(x1, y1, x2, y2) = x1x2 + y1y2 + 1.

With respect to the reference triangle (r, s, t) = ((1, 0, 0), (0, 1, 0), (0, 0, 1)) in P , we obtain the following

six control points θijk in Â3, where i + j + k = 2. It is important to recall that we always list the control
points θijk assuming that i is the index of the rows, starting from the left lower corner, and that j is the
index of the columns, also starting from the left lower corner.

(2, 0, 0, 2)

(1, 0,−1, 1) (1, 1,−1, 1)

(0, 0,−1, 1) (0, 1,−1, 1) (0, 2, 0, 2)

Expressed in terms of points in A3, we have the following control points:

((1, 0, 0), 2)

((1, 0,−1), 1) ((1, 1,−1), 1)

((0, 0,−1), 1) ((0, 1,−1), 1) ((0, 1, 0), 2)

Example 3. The sphere can also be parameterized in terms of two angles θ and ϕ, where θ is the angle
between the axis Ω1x and any line D1 passing through Ω1 in the xΩ1y plane, and ϕ is the angle between the
axis Ω1z and any line D2 passing through Ω1 and in the plane determined by Ω1z and the line D1. We have

x = cos θ sinϕ

y = sin θ sinϕ

z = cosϕ.

This is not a rational parameterization, but using the fact that

cos θ =
1− tan2 θ

2

1 + tan2 θ
2

and sin θ =
2 tan θ

2

1 + tan2 θ
2

,
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letting u = tan θ
2 and v = tan ϕ

2 , we get

x =
2(1− u2)v

(1 + u2)(1 + v2)

y =
4uv

(1 + u2)(1 + v2)

z =
1− v2

1 + v2
,

and thus, the sphere can be defined by the following polynomials:

G1(X,Y ) = 2(1−X2)Y

G2(X,Y ) = 4XY

G3(X,Y ) = (1 +X2)(1− Y 2)

G4(X,Y ) = (1 +X2)(1 + Y 2).

If we polarize these polynomials separately in X and Y , we get

g1(x1, x2, y1, y2) = (1 − x1x2)(y1 + y2)

g2(x1, x2, y1, y2) = (x1 + x2)(y1 + y2)

g3(x1, x2, y1, y2) = (1 + x1x2)(1 − y1y2)

g4(x1, x2, y1, y2) = (1 + x1x2)(1 + y1y2).

With respect to the affine frame (0, 1) of A, we obtain the following nine control points in Â3:

θi,j 0 0 0 1 1 1

0 0 (0, 0, 1, 1) (1, 0, 1, 1) (2, 0, 0, 2)

0 1 (0, 0, 1, 1) (1, 1, 1, 1) (2, 2, 0, 2)

1 1 (0, 0, 2, 2) (0, 2, 2, 2) (0, 4, 0, 4)

Letting A = (0, 0, 1), B = (0, 1, 0), C = (0, 0, 1), D = (0, 1, 1), E = (1, 0, 1), F = (1, 1, 0), G = (1, 1, 1),
observe that the points Ω1, A,B,C, D,E, F,G are the vertices of the unit cube built on Ω1, A,B,C, and
expressed in terms of points in A3, we have the following nine control points:

θi,j 0 0 0 1 1 1

0 0 (C, 1) (E, 1) (A, 2)

0 1 (C, 1) (G, 1) (F, 2)

1 1 (C, 2) (D, 2) (B, 4)

For 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1, we obtain the eighth of sphere determined by Ω1, A,B,C.

Example 4. Consider the torus obtained by rotating the circle of center (a, 0, 0) and of radius b < a
situated in the plane xΩ1z, around the axis Ω1z. This torus can be parameterized in terms of two angles θ
and ϕ, where θ is the angle between the axis Ω1x and any line D1 passing through Ω1 in the xΩ1y plane,
and ϕ is the angle between the line D1 and any line D2 passing through the center of the rotating circle and
in the plane determined by Ω1z and the line D1. We have

x = (a+ b cosϕ) cos θ

y = (a+ b cosϕ) sin θ

z = b sinϕ.
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This is not a rational parameterization, but using the trick involving tan θ
2 and tan ϕ

2 , as in example 3, we
get

x =
(1− u2)(a(1 + v2) + b(1− v2))

(1 + u2)(1 + v2)

y =
2u(a(1 + v2) + b(1− v2))

(1 + u2)(1 + v2)

z =
2bv

1 + v2
,

and thus, the torus can be defined by the following polynomials:

G1(X,Y ) = (1−X2)(a(1 + Y 2) + b(1− Y 2))

G2(X,Y ) = 2X(a(1 + Y 2) + b(1− Y 2))

G3(X,Y ) = 2b(1 +X2)Y

G4(X,Y ) = (1 +X2)(1 + Y 2).

Note that for a = 0, we get another representation of the sphere (of radius b). If we polarize these
polynomials separately in X and Y , we get

g1(x1, x2, y1, y2) = (1 − x1x2)(a(1 + y1y2) + b(1− y1y2))

g2(x1, x2, y1, y2) = (x1 + x2)(a(1 + y1y2) + b(1− y1y2))

g3(x1, x2, y1, y2) = b(1 + x1x2)(y1 + y2)

g4(x1, x2, y1, y2) = (1 + x1x2)(1 + y1y2).

With respect to the affine frame (0, 1) of A, we obtain the following nine control points in Â3:

θi,j 0 0 0 1 1 1

0 0 (a+ b, 0, 0, 1) (a+ b, 0, b, 1) (2a, 0, 2b, 2)

0 1 (a+ b, a+ b, 0, 1) (a+ b, a+ b, b, 1) (2a, 2a, 2b, 2)

1 1 (0, 2(a+ b), 0, 2) (0, 2(a+ b), 2b, 2) (0, 4a, 4b, 4)

Expressed in terms of points in A3, we have the following nine control points:

θi,j 0 0 0 1 1 1

0 0 ((a+ b, 0, 0), 1) ((a+ b, 0, b), 1) ((a, 0, b), 2)

0 1 ((a+ b, a+ b, 0), 1) ((a+ b, a+ b, b), 1) ((a, a, b), 2)

1 1 ((0, a+ b, 0), 2) ((0, a+ b, b), 2) ((0, a, b), 4)

For 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1, we obtain a sixteenth of the torus, the “front end” of the upper quarter of
the torus. To obtain the “back end”, we can assume that the torus is parameterized in terms of the angles
θ and π − ϕ, which yields the following polynomials:

G′
1(X,Y ) = (1−X2)(a(1 + Y 2)− b(1− Y 2))

G′
2(X,Y ) = 2X(a(1 + Y 2)− b(1− Y 2))

G′
3(X,Y ) = 2b(1 +X2)Y

G′
4(X,Y ) = (1 +X2)(1 + Y 2).



23.2. TRIANGULAR AND RECTANGULAR BR-SURFACES 657

It is easily verified that we find the following control points:

θi,j 0 0 0 1 1 1

0 0 ((a− b, 0, 0), 1) ((a− b, 0, b), 1) ((a, 0, b), 2)

0 1 ((a− b, a− b, 0), 1) ((a− b, a− b, b), 1) ((a, a, b), 2)

1 1 ((0, a− b, 0), 2) ((0, a− b, b), 2) ((0, a, b), 4)

We note the symmetry with respect to the circle of center Ω1 and radius a > b. Now, we can construct
one eighth of a torus, and by symmetry with respect to the plane xΩ1y, yΩ1z, and xΩ1z, we obtain the
entire torus.

Example 5. A Moëbius strip can be defined parametrically as

x = (2 + v sin
θ

2
) cos θ

y = (2 + v sin
θ

2
) sin θ

z = v cos
θ

2
.

Geometrically, the above formulae can be explained as follows. Consider the point C(θ) on the circle of
center Ω1 and radius 2 situated in the plane xΩ1y, where θ ∈ [0, 2π] is the angle between Ω1x and Ω1C(θ),
and the point M1(θ) on the semi-circle of center C(θ) and radius 1 situated in the plane determined by Ω1z
and Ω1C(θ), such that the angle between Ω1C and Ω1M1 is π

2 − θ
2 . Then, the point m(v, θ) defined such

that
Cm = vCM1,

is on a Moëbius strip, when θ ∈ [0, 2π] and v ∈ [−1, 1]. The above is not a rational parameterization, but
using the trick of example 4, we can express everything in terms of u = tan θ

4 , and we get

x =
2((1− u2)2 − 4u2)(1 + u2 + uv)

(1 + u2)3

y =
8u(1− u2)(1 + u2 + uv)

(1 + u2)3

z =
(1− u2)v

1 + u2
,

and thus, the Moëbius strip can be defined by the following polynomials:

G1(X,Y ) = 2((1−X2)2 − 4X2)(1 +X2 +XY )

G2(X,Y ) = 8X(1−X2)(1 +X2 +XY )

G3(X,Y ) = (1−X2)(1 +X2)2Y

G4(X,Y ) = (1 +X2)3.

It is easily verified that these polynomials can be written as

G1(X,Y ) = 2[1− 5X2 − 5X4 +X6 + (X − 6X3 +X5)Y ]

G2(X,Y ) = 8[X −X5 + (X2 −X4)Y ]

G3(X,Y ) = (1 +X2 −X4 −X6)Y

G4(X,Y ) = 1 + 3X2 + 3X4 +X6.
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Perseverant readers can polarize the above polynomials separately in X and Y , and then compute 14
control points that form a rectangular control net for the Moëbius strip:

θi,j j = 0 j = 1

i = 0 ((2, 0, 0), 1) ((2, 0, 1), 1)

i = 1 ((2, 4
3 , 0), 1) ((73 ,

4
3 , 1), 1)

i = 2 ((109 , 20
9 , 0), 65 ) ((53 ,

8
3 ,

8
9 ),

6
5 )

i = 3 ((0, 5
2 , 0),

8
5 ) ((14 ,

7
2 ,

3
4 ),

8
5 )

i = 4 ((− 10
9 , 20

9 , 0), 125 ) ((− 14
9 , 10

3 , 5
9 ),

12
5 )

i = 5 ((−2, 43 , 0), 4) ((−3, 2, 13 ), 4)

i = 6 ((−2, 0, 0), 8) ((−3, 0, 0), 8)

Remark : With the above control net, the Moëbius strip is obtained over [−1, 1] × [−1, 1]. Using the
change of parameter

u =
u′

1− u′

v = 2v′ − 1,

it is possible to find a rectangular control net for the Moëbius strip, such that the entire strip is obtained
for (u′, v′) ∈ [0, 1]× [0, 1]. In the next chapter, we will also give a triangular control net.

As in the case of rational curves, it is sometimes convenient to have an explicit formula giving the current
point F (a) (or F (u, v)) on a rational surface specified as a BR-surface. There are two cases, depending
whether the control net specifying F is rectangular or triangular.

23.3 Rational Surfaces and Bernstein Polynomials

Let us assume that F is specified by the rectangular control net N = (θi, j)0≤i≤p, 0≤j≤q, and that H and
K are the sets of pairs of indices such that, H ∪ K = {0, . . . , p} × {0, . . . , q}, H ∩ K = ∅, and for every
(i, j) ∈ H ,

θi,j = 〈ai,j , wi,j〉

is a weighted point, where ai,j ∈ E and wi,j )= 0, and for every (i, j) ∈ K,

θi,j = ui,j

is a control vector. Then, with respect to the affine frame (0, 1) in A, the bipolynomial surface G[N ] defined
(in Ê) by the rectangular control net N = (θi, j)0≤i≤p, 0≤j≤q is given in terms of the Bernstein polynomials
as

G[N ](u, v) =
∑

0≤i≤p,
0≤j≤q

Bp
i (u)B

q
j (v) θi,j .

Now, the above formula gives G[N ](u, v) as a barycenter in Ê , which, by lemma 4.1.2, can be expressed more
explicitly. The explicit form of the barycenter depends on the quantity

w(u, v) =
∑

(i,j)∈H

wi,jB
p
i (u)B

q
j (v).
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If w(u, v) )= 0, then

G[N ](u, v) =

〈
∑

(i,j)∈H

wi,jB
p
i (u)B

q
j (v)

w(u, v)
ai,j +

∑

(i,j)∈K

Bp
i (u)B

q
j (v)

w(u, v)
ui,j , w(u, v)

〉
,

else if w(u, v) = 0, then

G[N ](u, v) =
∑

(i,j)∈H

wi,jB
p
i (u)B

q
j (v) ai,j +

∑

(i,j)∈K

Bp
i (u)B

q
j (v)ui,j ,

where ∑

(i,j)∈H

wi,jB
p
i (u)B

q
j (v) ai,j =

∑

(i,j)∈H

wi,jB
p
i (u)B

q
j (v)bai,j

for any b ∈ E , which, by lemma 2.4.1, is a vector independent of b.

Then, since F (u, v) = Π(G[N ](u, v)), we have the following:

Letting

w(u, v) =
∑

(i,j)∈H

wi,jB
p
i (u)B

q
j (v),

if w(u, v) )= 0, then

F (u, v) =
∑

(i,j)∈H

wi,jB
p
i (u)B

q
j (v)

w(u, v)
ai,j +

∑

(i,j)∈K

Bp
i (u)B

q
j (v)

w(u, v)
ui,j ,

else if w(u, v) = 0 and

∑

(i,j)∈H

wi,jB
p
i (u)B

q
j (v) ai,j +

∑

(i,j)∈K

Bp
i (u)B

q
j (v)ui,j )= 0,

then

F (u, v) =




∑

(i,j)∈H

wi,jB
p
i (u)B

q
j (v) ai,j +

∑

(i,j)∈K

Bp
i (u)B

q
j (v)ui,j





∞

,

else if w(u, v) = 0 and

∑

(i,j)∈H

wi,jB
p
i (u)B

q
j (v) ai,j +

∑

(i,j)∈K

Bp
i (u)B

q
j (v)ui,j = 0,

then
F (u, v) = undefined.

Remark : If K = ∅ and wi,j ≥ 0 for all i, j ∈ H , then the trace F ([0, 1]× [0, 1]) of F belongs to the convex
hull of the points ai,j .

Let us now assume that F is specified by the triangular control net N = (θi, j, k)(i,j,k)∈∆m
, and that H

and K are the sets of pairs of indices such that, H ∪K = ∆m, H ∩K = ∅, and for every (i, j, k) ∈ H ,

θi,j,k = 〈ai,j,k, wi,j,k〉

is a weighted point, where ai,j,k ∈ E and wi,j,k )= 0, and for every (i, j, k) ∈ K,

θi,j,k = ui,j,k
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is a control vector. Then, assuming the reference triangle ∆rst in the affine plane P , for every point
c = λr + µs + νt, where λ + µ + ν = 1, the point G[N ](c) on the surface defined (in Ê) by the triangular
control net N = (θi, j, k)(i,j,k)∈∆m

is given in terms of the Bernstein polynomials as

G[N ](c) =
∑

(i,j,k)∈∆m

Bm
i,j,k(λ, µ, ν) θi,j,k,

where, the Bernstein polynomial Bm
i,j,k is given by

Bm
i,j,k(λ, µ, ν) =

m!

i!j!k!
λiµjνk.

Now, the above formula gives G[N ](c) as a barycenter in Ê , which, by lemma 4.1.2, can be expressed more
explicitly. The explicit form of the barycenter depends on the quantity

w(λ, µ, ν) =
∑

(i,j,k)∈H

wi,j.kB
m
i,j,k(λ, µ, ν).

If w(λ, µ, ν) )= 0, then

G[N ](c) =

〈
∑

(i,j,k)∈H

wi,j,kBm
i,j,k(λ, µ, ν)

w(λ, µ, ν)
ai,j,k +

∑

(i,j,k)∈K

Bm
i,j,k(λ, µ, ν)

w(λ, µ, ν)
ui,j,k, w(λ, µ, ν)

〉
,

else if w(λ, µ, ν) = 0, then

G[N ](c) =
∑

(i,j,k)∈H

wi,j,kB
m
i,j,k(λ, µ, ν) ai,j,k +

∑

(i,j,k)∈K

Bm
i,j,k(λ, µ, ν)ui,j,k,

where ∑

(i,j,k)∈H

wi,j,kB
m
i,j,k(λ, µ, ν) ai,j,k =

∑

(i,j,k)∈H

wi,j,kB
m
i,j,k(λ, µ, ν)bai,j,k

for any b ∈ E , which, by lemma 2.4.1, is a vector independent of b.

Then, since F (c) = Π(G[N ](c)), we have the following:

Letting

w(λ, µ, ν) =
∑

(i,j,k)∈H

wi,j,kB
m
i,j,k(λ, µ, ν),

if w(λ, µ, ν) )= 0, then

F (c) =
∑

(i,j,k)∈H

wi,j,kBm
i,j,k(λ, µ, ν)

w(λ, µ, ν)
ai,j,k +

∑

(i,j,k)∈K

Bm
i,j,k(λ, µ, ν)

w(λ, µ, ν)
ui,j,k,

else if w(λ, µ, ν) = 0 and

∑

(i,j,k)∈H

wi,j,kB
m
i,j,k(λ, µ, ν) ai,j,k +

∑

(i,j,k)∈K

Bm
i.j.k(λ, µ, ν)ui,j,k )= 0,

then

F (c) =




∑

(i,j,k)∈H

wi,j,kB
m
i,j,k(λ, µ, ν) ai,j,k +

∑

(i,j,k)∈K

Bm
i,j,k(λ, µ, ν)ui,j,k





∞

,
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else if w(λ, µ, ν) = 0 and

∑

(i,j,k)∈H

wi,j,kB
m
i,j.k(λ, µ, ν) ai,j,k +

∑

(i,j,k)∈K

Bm
i,j,k(λ, µ, ν)ui,j,k = 0,

then
F (c) = undefined.

Remark : If K = ∅ and wi,j,k ≥ 0 for all i, j, k ∈ H , then the trace F (∆rst) of F belongs to the convex
hull of the points ai,j,k.

23.4 Subdivision Algorithms for Rational Surfaces

As in the case of curves (see Section 22.3), it is easy to adapt the subdivision algorithm described for
polynomial surfaces to the rational case. This can be done in two ways. Either we subdivide in Ê , getting
polyhedral approximations determined by control nets in Ê , and project these control nets down on E using
Π. For a fairly complete treatment of this method, the reader is referred to Fiorot and Jeannin [60, 61]. The
second method, which we advocate since it seems simpler, is to use the isomorphism Ω̂: Ê → F of lemma
4.3.2. As we explained in the case of curves, what this means is that given a vector in Ê expressed as

u = (x1, . . . , xn, w),

we have
Ω̂(u) = (wx1, . . . , wxn, w),

if w )= 0, and
Ω̂(u) = (x1, . . . , xn, 0),

if w = 0.

We can then apply the subdivision methods suggested in chapter 19 (for details, see Gallier [70]), but in
F . The following function sends a control net consisting of points in Ê to a control net of points in F .

(* To map a net in the affine space into the hat space *)

maptohat[{net__}] :=
Block[
{lnet = {net}, newnet = {},
pt, h, w, i, l1},
l1 = Length[lnet];
Do[

pt = lnet[[i]]; w = Last[pt]; h = Drop[pt, -1];
If[w =!= 0, h = w * h; pt = Append[h, w]
];

newnet = Append[newnet,pt], {i, 1, l1}
];

newnet
];

Once a list of nets (in F) has been computed using subdivision, it is necessary to map these nets down
to the original affine space E . This is performed by the function proj such that,

proj[(x1, . . . , xn, w)] = (x1/w, . . . , xn/w),
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if w )= 0,
proj[(x1, . . . , xn, 0)] = (x1, . . . , xn),

if some xi )= 0, which corresponds to a point at infinity, and

proj[(0, . . . , 0, 0)] = undefined.

Concretely, we have to be careful in dividing by w when |w| is very close to zero, since due to limited
numerical precision, this may cause a division by zero. As in the case of curves, we only perform division
when |w| > 10−20, and we give a warning if |w| ≤ 10−16. Another problem is that a vector (x1, . . . , xn, w)
may be very close to the zero vector. This time, there is no simple way of dealing with zero vectors. We
cannot simply discard such entries, since this yields bad control nets, and continuity cannot be used either.
We will suggest a way of dealing with this situation later on. The followingMathematica functions implement
the projection of a list of nets.

(* To project a point in the hat space back onto the affine space *)

projpt[pt_] :=
Block[
{h, w},
w = Last[pt]; h = Drop[pt, -1];

If[Abs[w] > 10^(-20),
If[Abs[w] <= 10^(-16),

Print["*** Warning: Point with very
small weight: ", pt," ***"]];

h = h/w, Print["*** Warning:
Point at infinity!: ", pt, " ***"];

h = 10^(20) * h
];

h
];

(* To project a net in the hat space back onto the affine space *)

projnet[{net__}] :=
Block[
{snet = {net}, newnet = {}, pt, h, j, l2, flag},
l2 = Length[snet];

Do[
pt = snet[[j]]; h = projpt[pt];
newnet = Append[newnet,h], {j, 1, l2}

];
newnet
];

(* To project a list of nets in the hat space back onto
the affine space *)

projlis[{netlis__}] :=
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Block[
{slis = {netlis}, newlis = {},
anet, newnet, j, l2},

l2 = Length[slis];
Do[

anet = slis[[j]]; newnet = projnet[anet];
newlis = Append[newlis,newnet], {j, 1, l2}

];
newlis
]

Example 1. The subdivision algorithm is illustrated by the following example of an ellipsoid defined by
the fractions

x(u, v) =
2au

u2 + v2 + 1
,

y(u, v) =
2bv

u2 + v2 + 1
,

z(u, v) =
c(u2 + v2 − 1)

u2 + v2 + 1
.

It is easily verified that this representation of the ellipsoid is derived from the stereographic projection
from the north pole onto the plane z = 0. The coordinates of a point on the sphere are the coordinates of
the image of a point (u, v) the xOy plane, under the inverse of stereographic projection. We leave as an
exercise to show that the following triangular control net for a = 4, b = 3, c = 2, is obtained:

net = {{0, 0, -2, 1}, {0, 3, -2, 1}, {0, 3, 0, 2},
{4, 0, -2, 1}, {4, 3, -2, 1}, {4, 0, 0, 2}}

Figures 23.1, 23.2, 23.3, show the result of the subdivision over the standard reference triangle ∆rts, for
n = 1, 2, 3.
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Figure 23.2: Portion of ellipsoid, 2 iterations
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Figure 23.1: Portion of ellipsoid, 1 iteration



23.4. SUBDIVISION ALGORITHMS FOR RATIONAL SURFACES 665

0

1

2

3

4

x

0

1

2

3

y

-2

-1.5

-1

-0.5

0

z

0

1

2

3

4

x

0

1

2

3

y

-2

-1.5

-1

-0.5

0

Figure 23.3: Portion of ellipsoid, 3 iterations

Example 2. As a second example, consider the torus defined by the equations

x = (a− b sinϕ) cos θ

y = (a− b sinϕ) sin θ

z = b cosϕ.

Using the trick involving tan θ
2 and tan ϕ

2 , we get

x =
(1− u2)(a(1 + v2)− 2bv)

(1 + u2)(1 + v2)

y =
2u(a(1 + v2)− 2bv)

(1 + u2)(1 + v2)

z =
b(1 + u2)(1 − v2)

(1 + u2)(1 + v2)
.

Using a program to polarize polynomials in two variables, we obtain the following triangular net of degree
4, for a = 2, b = 1.

tornet = {{2, 0, 1, 1}, {3/2, 0, 1, 1}, {8/7, 0, 5/7, 7/6},
{1, 0, 1/3, 3/2}, {1, 0, 0, 2}, {2, 1, 1, 1},
{3/2, 2/3, 1, 1}, {8/7, 4/7, 5/7, 7/6}, {1, 2/3, 1/3, 3/2},
{10/7, 12/7, 1, 7/6}, {8/7, 8/7, 1, 7/6},
{2/3, 8/9, 5/9, 3/2}, {2/3, 2, 1, 3/2}, {2/3, 4/3, 1, 3/2},
{0, 2, 1, 2}};
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Subdividing 3 times over the standard reference triangle ∆rts, we get the picture shown in Figure 23.4.
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Figure 23.4: Triangular patch of torus, 3 iterations

Using newcnet3 to compute the nets over the triangles

reftrig1 = ((−1, 1, 1), (−1,−1, 3), (1, 1,−1))

and
reftrig2 = ((1,−1, 1), (1, 1,−1), (−1,−1, 3)),

and then subdividing 3 times, we get the picture shown in Figure 23.5.

23.5 Problems

Problem 1. Prove lemma 23.2.2.

Problem 2 Prove lemma 23.2.4.

Problem 3 Consider the ellipsoid defined such that

x =
2a(1− u2)v

(1 + u2)(1 + v2)

y =
4buv

(1 + u2)(1 + v2)

z =
c(1− v2)

1 + v2
.
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(i) Compute a rectangular control net w.r.t. (0, 1)× (0, 1).

(ii) Compute a triangular control net w.r.t. ((1, 0), (0, 1), (0, 0)).

Problem 4 Consider the right conoid defined such that

x =
v(1 − u2)

1 + u2

y =
2uv

1 + u2

z =
4u

1 + u2
.

(i) Compute a rectangular control net w.r.t. (0, 1)× (0, 1).

(ii) Compute a triangular control net w.r.t. ((1, 0), (0, 1), (0, 0)).

Problem 5 Consider the surface defined such that

x =
2v(1− u2)(1 + u2)

(1 + u4)(1 + v2)

y =
4uv(1 + u2)

(1 + u4)(1 + v2)

z =
2v2(1 + u2)2

(1 + u4)(1 + v2)
.

(i) Compute a rectangular control net w.r.t. (0, 1)× (0, 1).

(ii) Compute a triangular control net w.r.t. ((1, 0), (0, 1), (0, 0)).

Problem 6 Consider the hyperboloid of one sheet defined such that

x =
a(1− u2)(1 + v2)

(1 + u2)(1− v2)

y =
2bu(1 + v2)

(1 + u2)(1 − v2)

z =
2cv(1 + u2)

(1 + u2)(1 − v2)
.

(i) Compute a rectangular control net w.r.t. (0, 1)× (0, 1).

(ii) Compute a triangular control net w.r.t. ((1, 0), (0, 1), (0, 0)).

Problem 7 Consider the hyperboloid of two sheets defined such that

x =
2av(1− u2)

(1 + u2)(1 − v2)

y =
4buv

(1 + u2)(1 − v2)

z =
c(1 + u2)(1 + v2)

(1 + u2)(1 − v2)
.

(i) Compute a rectangular control net w.r.t. (0, 1)× (0, 1).
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(ii) Compute a triangular control net w.r.t. ((1, 0), (0, 1), (0, 0)).

Problem 8 Consider the surface defined such that

x = v cos θ,

y = v sin θ.

z = a cos θ − bv.

(i) Prove that the above surface also has the following rational definition:

x =
(u4 − 6u2 + 1)v

(1 + u2)2

y =
4uv(1− u2)

(1 + u2)2

z =
a(u4 − 6u2 + 1)− bv(u2 + 1)2

(1 + u2)2
.

(ii) Compute a triangular control net w.r.t. ((1, 0), (0, 1), (0, 0)).

Problem 9 Write your own program to draw a rational surface patch. Use your program to draw the
following two patches over [−1, 1]× [−1, 1].

hilnetb1 = {{0, 0, 0, 1},{1/3, 0, 0, 1},
{5/8, 0, 1/8, 16/15}, {5/6, 0, 1/3, 6/5},
{20/21, 0, 4/7, 7/5}, {1, 0, 4/5, 5/3}, {1, 0, 1, 2}, {0, 0, 0, 1},
{1/3, 2/15, 0, 1}, {5/8, 1/4, 1/8, 16/15}, {5/6, 1/3, 1/3, 6/5},
{20/21, 8/21, 4/7, 7/5}, {1, 2/5, 4/5, 5/3}, {0, 0, 0, 1},
{1/3, 4/15, 0, 1}, {5/8, 1/2, 1/6, 16/15}, {5/6, 2/3, 4/9, 6/5},
{20/21, 16/21, 16/21, 7/5}, {0, 0, 0, 1}, {1/3, 7/15, 0, 1},
{5/8, 7/8, 1/4, 16/15}, {5/6, 7/6, 2/3, 6/5}, {0, 0, 0, 16/15},
{1/4, 3/4, 0, 16/15}, {4/9, 4/3, 4/9, 6/5}, {0, 0, 0, 4/3},
{0, 1, 0, 4/3}, {0, 0, 0, 2}};

hilnetb2 = {{0, 0, 2, 1},{1/3, 0, 2, 1},
{5/8, 0, 15/8, 16/15}, {5/6, 0, 5/3, 6/5},
{20/21, 0, 10/7, 7/5}, {1, 0, 6/5, 5/3}, {1, 0, 1, 2}, {0, 0, 2, 1},
{1/3, 2/15, 2, 1}, {5/8, 1/4, 15/8, 16/15}, {5/6, 1/3, 5/3, 6/5},
{20/21, 8/21, 10/7, 7/5}, {1, 2/5, 6/5, 5/3}, {0, 0, 34/15, 1},
{1/3, 4/15, 34/15, 1}, {5/8, 1/2, 17/8, 16/15}, {5/6, 2/3, 17/9, 6/5},
{20/21, 16/21, 34/21, 7/5}, {0, 0, 14/5, 1}, {1/3, 7/15, 14/5, 1},
{5/8, 7/8, 21/8, 16/15}, {5/6, 7/6, 7/3, 6/5}, {0, 0, 7/2, 16/15},
{1/4, 3/4, 7/2, 16/15}, {4/9, 4/3, 28/9, 6/5}, {0, 0, 4, 4/3},
{0, 1, 4, 4/3}, {0, 0, 4, 2}};

Problem 10 Consider the rational surface K1 defined such that

x =
a(u4 − 6u2 + 1)(1 + v2)2 + r(v4 − 6v2 + 1)(1− u4)

(1 + u2)2(1 + v2)2
,

y =
4bu(1− u2)(1 + v2)2 + 2ru(v4 − 6v2 + 1)(1 + u2)

(1 + u2)2(1 + v2)2
,

z =
4rv(1 − v2)(1 + u2)2

(1 + u2)2(1 + v2)2
.
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(i) Draw K1 (try several values for a, b, r).

(ii) Expand the numerator of x, and define the surface K2 obtained by changing the term −12au2v2 to
12au2v2.

(iii) Draw K2 over [−1, 1]× [−1, 1].

Problem 11 Consider the torus defined such that

x =
(1− u2)(a(1 + v2)− 2bv)

(1 + u2)(1 + v2)

y =
2u(a(1 + v2)− 2bv)

(1 + u2)(1 + v2)

z =
b(1 + u2)(1 − v2)

(1 + u2)(1 + v2)
.

(i) Show that the above torus is defined by the following rectangular net of bidegree 〈2, 2〉 w.r.t. (−1, 1)×
(−1, 1):

tornet4 = {{0, -(a + b), 0, 4}, {0, 0, 4c, 0}, {0, (-a + b), 0, 4},
{4(a + b), 0, 0, 0}, {0, 0, 0, 0}, {4(a - b), 0, 0, 0},
{0, a + b, 0, 4}, {0, 0, 4c, 0}, {0, a - b, 0, 4}}

(ii) Show that the result of homogenizing separately w.r.t. u and v yields:

x = (t21 − u2)(a(t22 + v2)− 2bvt2),

y = 2ut1(a(t
2
2 + v2)− 2bvt2),

z = b(t21 + u2)(t22 − v2),

w = (t21 + u2)(t22 + v2).

Conclude that there are no base points.

(iii) Show that the above torus is defined by the following triangular net w.r.t. ((1, 0), (0, 1), (0, 0)):

tornet = {{a, 0, c, 1}, {a - b/2, 0, c, 1},
{(6((7a)/6 - b))/7, 0, (5c)/7, 7/6},
{(2((3a)/2 - (3b)/2))/3, 0, c/3, 3/2}, {(2a - 2b)/2, 0, 0, 2},
{a, a/2, c, 1}, {a - b/2, a/2 - b/3, c, 1},
{(6((7a)/6 - b))/7, (6((2a)/3 - (2b)/3))/7, (5c)/7, 7/6},
{(2((3a)/2 - (3b)/2))/3, (2(a - b))/3, c/3, 3/2},
{(5a)/7, (6a)/7, c, 7/6},
{(6((5a)/6 - b/3))/7, (6(a - (2b)/3))/7, c, 7/6},
{(2((5a)/6 - (2b)/3))/3, (2((4a)/3 - (4b)/3))/3, (5c)/9, 3/2},
{a/3, a, c, 3/2}, {a/3, (2((3a)/2 - b))/3, c, 3/2},
{0, a, c, 2}};

(iv) Show that the result of homogenizing u, v w.r.t. the degree 4 yields:

x(u, v, t) = (t2 − u2)(a(t2 + v2)− 2bvt),

y(u, v, t) = 2ut(a(t2 + v2)− 2bvt),

z(u, v, t) = c(t2 + u2)(t2 − v2),

w(u, v, t) = (t2 + u2)(t2 + v2).

Show that there are two base points corresponding to the points (0, 1, 0) and (1, 0, 0) on the line at infinity.


