
Chapter 20

More On Embedding an Affine Space
in a Vector Space

20.1 From Multiaffine Maps to Multilinear Maps

In this Section, we show how to homogenize multiaffine maps. The proof of Lemma 20.1.1 requires a technical
result about the characterization of multiaffine maps in terms of linear maps. This result and its proof can
be found in Gallier [70] and on the web site, see web page (Lemma 27.1.3).

Lemma 20.1.1 Given any affine space E and any vector space
−→
F , for any m-affine map f :Em → −→F ,

there is a unique m-linear map f̂ : (Ê)m → −→F extending f , such that, if

f(a1 + v1, . . . , am + vm) = f(a1, . . . , am) +
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

fS(vi1 , . . . , vik
),

for all a1 . . . , am ∈ E, and all v1, . . . , vm ∈ −→E , where the fS are uniquely determined multilinear maps (see
the web site web page, Lemma 27.1.3), then

f̂(v1 +̂ λ1a1, . . . , vm +̂ λmam) = λ1 · · ·λmf(a1, . . . , am)

+
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

( ∏
j∈{1,...,m}

j /∈S

λj

)
fS(vi1 , . . . , vik

),

for all a1 . . . , am ∈ E, all v1, . . . , vm ∈ −→E , and all λ1, . . . , λm ∈ R. Furthermore, for λi �= 0, 1 ≤ i ≤ m, we
have

f̂(v1 +̂ λ1a1, . . . , vm +̂ λmam) = λ1 · · ·λmf(a1 + λ−1
1 v1, . . . , am + λ−1

m vm).

Proof . Let us assume that f̂ exists. We first prove by induction on k, 1 ≤ k ≤ m, that

f̂(a1, . . . , vi1 , . . . , vik
, . . . , am) = fS(vi1 , . . . , vik

),

for every S ⊆ {1, . . . , m}, such that S = {i1, . . . , ik} and k = |S|, for all a1 . . . , am ∈ E, and all v1, . . . , vm ∈−→
E .

For k = 1, assuming for simplicity of notation that i1 = 1, for any a1 ∈ E, since f̂ is m-linear, we have

f̂(a1 + v1, a2, . . . , am) = f̂(a1, a2, . . . , am) + f̂(v1, a2, . . . , am),
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586 CHAPTER 20. MORE ON EMBEDDING AN AFFINE SPACE IN A VECTOR SPACE

but since f̂ extends f , we have

f̂(a1 + v1, a2, . . . , am) = f(a1 + v1, a2, . . . , am) = f(a1, a2, . . . , am) + f̂(v1, a2, . . . , am),

and using the expression of f in terms of the fS , we also have

f(a1 + v1, a2, . . . , am) = f(a1, a2, . . . , am) + f{1}(v1).

Thus, we have
f̂(v1, a2, . . . , am) = f{1}(v1)

for all v1 ∈ −→E .

Assume that the induction hypothesis holds for all l < k +1, and let S = {i1, . . . , ik+1}, with k +1 = |S|.
Since f̂ is multilinear, for any a ∈ E, we have

f̂(a1, . . . , a + vi1 , . . . , a + vik+1 , . . . , am) = f̂(a1, . . . , a, . . . , a, . . . , am)

+ f̂(a1, . . . , vi1 , . . . , vik+1 , . . . , am) +
∑

T={j1,...,jl}
T⊆S, 1≤l≤k

f̂(a1, . . . , vj1 , . . . , vjl
, . . . , am).

However, by the induction hypothesis, we have

f̂(a1, . . . , vj1 , . . . , vjl
, . . . , am) = fT (vj1 , . . . , vjl

),

for every T = {j1, . . . , jl}, 1 ≤ l ≤ k, and since f̂ extends f , we get

f̂(a1, . . . , a + vi1 , . . . , a + vik+1 , . . . , am) = f(a1, . . . , a, . . . , a, . . . , am)

+ f̂(a1, . . . , vi1 , . . . , vik+1 , . . . , am) +
∑

T={j1,...,jl}
T⊆S, 1≤l≤k

fT (vj1 , . . . , vjl
).

Since f̂ extends f , also have

f̂(a1, . . . , a + vi1 , . . . , a + vik+1 , . . . , am) = f(a1, . . . , a + vi1 , . . . , a + vik+1 , . . . , am),

and by expanding this expression in terms of the fT , we get

f̂(a1, . . . , a + vi1 , . . . , a + vik+1 , . . . , am) = f(a1, . . . , a, . . . , a, . . . , am)

+ fS(vi1 , . . . , vik+1) +
∑

T={j1,...,jl}
T⊆S, 1≤l≤k

fT (vj1 , . . . , vjl
).

Thus, we conclude that

f̂(a1, . . . , vi1 , . . . , vik+1 , . . . , am) = fS(vi1 , . . . , vik+1).

This shows that f̂ is uniquely defined on
−→
E , and clearly, the above defines a multilinear map. Now,

assume that λi �= 0, 1 ≤ i ≤ m. We get

f̂(v1 +̂ λ1a1, . . . , vm +̂ λmam) = f̂(λ1(a1 + λ−1
1 v1), . . . , λm(am + λ−1

m vm)),

and since f̂ is m-linear, we get

f̂(λ1(a1 + λ−1
1 v1), . . . , λm(am + λ−1

m vm)) = λ1 · · ·λmf̂(a1 + λ−1
1 v1, . . . , am + λ−1

m vm).
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Since f̂ extends f , we get

f̂(v1 +̂ λ1a1, . . . , vm +̂ λmam) = λ1 · · ·λmf(a1 + λ−1
1 v1, . . . , am + λ−1

m vm).

We can expand the right-hand side using the fS , and we get

f(a1 + λ−1
1 v1, . . . , am + λ−1

m vm) = f(a1, . . . , am) +
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

λ−1
i1
· · ·λ−1

ik
fS(vi1 , . . . , vik

),

and thus, we get

f̂(v1 +̂ λ1a1, . . . , vm +̂ λmam) = λ1 · · ·λmf(a1, . . . , am)

+
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

( ∏
j∈{1,...,m}

j /∈S

λj

)
fS(vi1 , . . . , vik

).

This expression agrees with the previous one when λi = 0 for some of the λi, 1 ≤ i ≤ m, and this shows that
f̂ is uniquely defined. Clearly, the above expression defines an m-linear map. Thus, the lemma is proved.

As a corollary, we obtain the following useful lemma.

Lemma 20.1.2 Given any two affine spaces E and F and an m-affine map f :Em → F , there is a unique
m-linear map f̂ : (Ê)m → F̂ extending f as in the diagram below,

Em f−→ F

j×···×j

� �j

(Ê)m −→
bf

F̂

such that, if

f(a1 + v1, . . . , am + vm) = f(a1, . . . , am) +
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

fS(vi1 , . . . , vik
),

for all a1 . . . , am ∈ E, and all v1, . . . , vm ∈ −→E , where the fS are uniquely determined multilinear maps, then

f̂(v1 +̂ λ1a1, . . . , vm +̂ λmam) = λ1 · · ·λmf(a1, . . . , am)

+̂
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

( ∏
j∈{1,...,m}

j /∈S

λj

)
fS(vi1 , . . . , vik

),

for all a1 . . . , am ∈ E, all v1, . . . , vm ∈ −→E , and all λ1, . . . , λm ∈ R. Furthermore, for λi �= 0, 1 ≤ i ≤ m, we
have

f̂(v1 +̂ λ1a1, . . . , vm +̂ λmam) = λ1 · · ·λmf(a1 + λ−1
1 v1, . . . , am + λ−1

m vm).

Proof . Immediate from lemma 20.1.1 (see the proof of lemma 4.4.3 from lemma 4.4.2).

The homogenized version f̂ of an m-affine map f is weight-multiplicative, in the sense that

ω(f̂(z1, . . . , zm)) = ω(z1) · · ·ω(zm),

for all z1, . . . , zm ∈ Ê.
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From a practical point of view,

f̂(v1 +̂ λ1a1, . . . , vm +̂ λmam) = λ1 · · ·λmf(a1 + λ−1
1 v1, . . . , am + λ−1

m vm),

shows us that f is recovered from f̂ by setting λi = 1, for 1 ≤ i ≤ m. We can use this formula to find the
homogenized version f̂ of the map f . For example, if we consider the affine space A with its canonical affine
frame (the origin is 0, and the basis consists of the single vector 1), if f : A × A → A is the biaffine map
defined such that

f(x1, x2) = ax1x2 + bx1 + cx2 + d,

the bilinear map f̂ : Â× Â→ Â, is given by

f̂((x1, λ1), (x2, λ2)) = (λ1λ2

[
a(x1λ

−1
1 )(x2λ

−1
2 ) + bx1λ

−1
1 + cx2λ

−1
2 + d

]
, λ1λ2)

= (ax1x2 + bx1λ2 + cx2λ1 + dλ1λ2, λ1λ2),

where we choose the basis (1, 0), in Â.

Note that f(x1, x2) is indeed recovered from f̂ by setting λ1 = λ2 = 1. Since multiaffine maps can be
homogenized, polynomial maps can also be homogenized. This is very useful in practice. In fact, using the
characterization of multiaffine maps f :Em → F when E is of finite dimension given in Gallier [70] and on
the web site, see
web page (Lemma 27.1.6), we can get an explicit formula for the homogenized version f̂ of f , generalizing
our previous example.

If (a, (−→e1 , . . . ,−→en)) is an affine frame for E, we know that for any m vectors

vj = v1, je1 + · · ·+ vn, jen ∈ −→E ,

we have

f(a + v1, . . . , a + vm) = b +
∑

1≤p≤m

∑
I1∪...∪In={1,...,p}

Ii∩Ij=∅, i �=j
1≤i,j≤n

( ∏
i1∈I1

v1, i1

)
· · ·

( ∏
in∈In

vn, in

)
w|I1|,...,|In|,

for some b ∈ F , and some w|I1|,...,|In| ∈ −→F , and since Ê =
−→
E ⊕Ra, with respect to the basis (e1, . . . , en, 〈a, 1〉)

of Ê, we have

f̂(v1 +̂ λ1a, . . . , vm +̂ λma) = λ1 · · ·λmb

+̂
∑

1≤p≤m

∑
I1∪...∪In={1,...,p}

Ii∩Ij=∅, i �=j
1≤i,j≤n

( ∏
i1∈I1

v1, i1

)
· · ·

( ∏
in∈In

vn, in

)( ∏
j∈{1,...,m}

j /∈(I1∪...∪In)

λj

)
w|I1|,...,|In|.

In other words, we obtain the expression for f̂ by homogenizing the polynomials which are the coefficients
of the w|I1|,...,|In|. For the homogenized version ĥ of the affine polynomial h associated with f , we get:

ĥ(v +̂ λa) = λmb +̂
∑

1≤p≤m

∑
k1+···+kn=p
0≤ki, 1≤i≤n

vk1
1 · · · vkn

n λm−p wk1,...,kn
.

Remark : Recall that homogenizing a polynomial P (X1, . . . , Xn) ∈ R[X1, . . . , Xn] is done as follows. If
P (X1, . . . , Xn) is of total degree p, and we want to find a homogeneous polynomial Q(X1, . . . , Xn, Z) of total
degree m ≥ p, such that

P (X1, . . . , Xn) = Q(X1, . . . , Xn, 1),
we let

Q(X1, . . . , Xn, Z) = ZmP

(
X1

Z
, . . . ,

Xn

Z

)
.



Chapter 21

Complements of Projective Geometry

21.1 Multiprojective Maps

In order to deal with rational functions, we also need to extend definition 5.5.1 to multilinear maps.

Given a multilinear map f :Em → F , let

Ker f = {(u1, . . . , um) ∈ Em | f(u1, . . . , um) = 0}
be the kernel of f .

� Beware that Ker f is not necessarily a subspace of Em. Also,

P(E)m = P(E)× · · · ×P(E)︸ ︷︷ ︸
m

is not a projective space.

Then, for any (u1, . . . , um), (v1, . . . , vm) ∈ (Em − Ker f), if ui ∼ vi, for 1 ≤ i ≤ m, then vi = λiui, for
some λi ∈ K − {0}, where 1 ≤ i ≤ m, and since f is multilinear, we get

f(v1, . . . , vm) = λ1 · · ·λmf(u1, . . . , um).

Thus, if ui ∼ vi, for 1 ≤ i ≤ m, we have f(u1, . . . , um) ∼ f(v1, . . . , vm), which shows that P(f) can be
defined on equivalence classes modulo ∼, by

P(f)([u1]∼, . . . , [um]∼) = [f(u1, . . . , um)]∼.

Definition 21.1.1 Given two nontrivial vector spaces E and F , a multilinear map f :Em → F induces
a partial map P(f):P(E)m → P(F ), called a multiprojective map, such that P(f): (P(E)m − p × · · · ×
p(Ker f))→ P(F ) is a total map, as in the following diagram:

Em −Ker f
f−→ F − {0}

p×···×p

� �p

P(E)m − p× · · · × p(Ker f) −→
P(f)

P(F )

If f is injective, i.e. when Ker f = {(0, . . . , 0)}, then P(f):P(E)m → P(F ) is a total function called a
multiprojective transformation.

Lemma 5.5.3 can be extended to multiprojective maps. The proof is left as an exercise to the reader.
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21.2 More on Projective Completions and Frames

Lemma 5.6.3 can be extended to deal with multiprojective maps. The proof is left as an exercise (the tricky
part is to show the uniqueness of f̃). To state the new result, we need a definition. Given a multiaffine map
f :Em → F , we know from Gallier [70] and the web site, see web page (Lemma 27.1.3) that f has a unique
decomposition as a sum of multilinear maps of the form

f(a + u1, . . . , a + um) = f(a, . . . , a) +̂
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

fS(ui1 , . . . , uik
).

For every nonempty subset S = {i1, . . . , ik} of {1, 2, . . . ,m}, let
−→
iS : (
−→
E )k → (

−→
E )m be the injection defined

such that for all u1, . . . , uk ∈ −→E ,

−→
iS (u1, . . . , uk)j =

{
uh if j ∈ S and j = ih,
0 if j /∈ S.

Lemma 21.2.1 Given any affine space (E,
−→
E ), for every projective space P(F ), every hyperplane H in F ,

and every f :Em → P(F ) such that f(Em) ⊆ FH and f is multiaffine, there is a unique multiprojective map
f̃ : (Ẽ)m → P(F ) such that

f = f̃ ◦ i and P(fS) = f̃ ◦P(
−→
iS )

for every nonempty subset S of {1, . . . , m}, as in the following diagram:

Em i−→ Em ⊆ (Ẽ)m ⊇ P(
−→
E )m P(

−→
iS )←− P(

−→
E )k

f ↘
� ef P(fS)↙

FH ⊆ P(F ) ⊇ P(H)

The lemma also holds for symmetric multiaffine maps and symmetric multiprojective maps.

As a corollary of the previous two lemmas, we obtain the following lemma.

Lemma 21.2.2 Given any two affine spaces E and F and an affine map f :E → F , there is a unique

projective map f̃ : Ẽ → F̃ extending f and such that the restriction of f̃ to P(
−→
E ) agrees with P(f), as in the

diagram below:

E
f−→ F

i

� �i

Ẽ −→
ef

F̃

Given a multiaffine map f :Em → F , there is a unique multiprojective map f̃ : (Ẽ)m → F̃ extending f

and such that the restriction of f̃ to P(
−→
E )m agrees with P(fS) for every nonempty subset S of {1, . . . , m}

(more precisely, P(fS) = f̃ ◦P(
−→
iS )), as in the diagram below:

Em f−→ F

i

� �i

(Ẽ)m −→
ef

F̃

The lemma also holds for symmetric multiaffine maps and symmetric multiprojective maps. In both cases,
the map f̃ is called the projective completion of f .
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Proof . Given the affine map f :E → F , the composition i ◦ f :E → F̃ is an affine map to the affine

space F̂F = F , complement of the projective hyperplane P(
−→
F ) in F̃ = P(F̂ ), and by lemma 5.6.3, there is a

unique projective map f̃ : Ẽ → F̃ extending i ◦ f , i.e. extending f . For the second part, apply lemma 21.2.1.

It is often useful to define a projective frame of the projective completion Ẽ of an affine space E from an
affine frame of E , and this is object of the next definitions.

Definition 21.2.3 Given an affine space E and an affine frame (Ω1, (e1, . . . , en)) for E , where Ω1 is the
chosen origin of E , we associate the projective frame

(e1∞, . . . , en∞, Ω1, Ω1 + e1 + · · ·+ en),

corresponding to the basis (e1, . . . , en, Ω1) of Ê . If a ∈ E has coordinates (x1, . . . , xn) over the frame
(Ω1, (e1, . . . , en)) of E , then a ∈ Ẽ has homogeneous coordinates (X1, . . . , Xn+1) proportional to (x1, . . . , xn,
1), and thus, Xn+1 �= 0, and xi = Xi

Xn+1
, for 1 ≤ i ≤ n. If u∞ ∈ Ẽ is a point at infinity, and u ∈

−→E has coordinates (x1, . . . , xn) over the affine basis of E , then u∞ ∈ Ẽ has homogeneous coordinates
(X1, . . . , Xn, 0) proportional to (x1, . . . , xn, 0). Thus, points at infinity of Ẽ are characterized by Xn+1 = 0.

To an affine (barycentric) frame (a1, . . . , an+1) for E , we associate the projective frame(
a1, . . . , an+1,

1
n + 1

(a1 + · · ·+ an+1)
)

,

corresponding to the basis (a1, . . . , an+1) of Ê . If a ∈ E has barycentric coordinates (λ1, . . . , λn+1) over the
frame (a1, . . . , an+1) for E , with λ1+· · ·+λn+1 = 1, then a ∈ Ẽ has homogeneous coordinates (X1, . . . , Xn+1)
proportional to (λ1, . . . , λn+1). Since λ1 + · · · + λn+1 = 1, we must have X1 + · · · + Xn+1 �= 0, and

λi = Xi

X1+···+Xn+1
, for 1 ≤ i ≤ n + 1. A vector u ∈ −→E can be written uniquely as

u = λ1Ω1a1 + · · ·+ λn+1Ω1an+1,

where λ1 + · · ·+ λn+1 = 0, the above being independent of Ω1 ∈ E . Then, the point at infinity u∞ ∈ Ẽ has
homogeneous coordinates (X1, . . . , Xn+1) proportional to (λ1, . . . , λn+1). Note that points are infinity are
characterized by X1 + · · ·+ Xn+1 = 0.

Most of the time, we use the first kind of projective frame. We are now almost ready to define rational
curves, but we still need to define certain kinds of projections.

Definition 21.2.4 Given a vector space
−→
E , for any hyperplane

−→
H in

−→
E , and any vector u not in

−→
H , since

−→
E =

−→
H ⊕Ku, the map pu,H :

−→
E → −→H , defined such that

pu,H(h + λu) = h,

for every h ∈ −→H and every λ ∈ K is a linear map called the (cylindric) projection from
−→
E onto

−→
H along

the direction u. We also define the projective map

πu, H : (P(
−→
E )− {[u]})→ P(

−→
H ),

called the central projection (or conic projection, or perspective projection) of center [u] from P(
−→
E ) onto

P(
−→
H ), such that πu, H = P(pu,H). Finally, given any affine space E with associated vector space

−→
E , given
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any affine hyperplane H in E (with direction
−→
H ), given any point Ω ∈ E not in H, the central projection

(or conic projection, or perspective projection)

πΩ, bH : (Ẽ − {Ω})→ H̃,

of center Ω from Ẽ onto H̃ is the projective map induced by the projection pΩ, bH : Ê → Ĥ from Ê onto the

hyperplane Ĥ along the direction Ω in Ê (where Ω = 〈Ω, 1〉 ∈ Ê).

The reader can verify for himself that the projection πΩ, bH(θ) of a point θ ∈ Ẽ distinct from Ω is the

intersection of the projective line passing through Ω and θ with the projective hyperplane H̃. This is why it
is called central (or conic, or perspective) projection of center Ω. It is only undefined at Ω.

It might help the reader to see what pΩ, bH : Ê → Ĥ and πΩ, bH : (Ẽ − {Ω}) → H̃ really are in terms of

coordinate systems. Let (e1, . . . , en) be a basis of Ĥ. Since Ω /∈ H, we can complete this basis into a
basis (e1, . . . , en+1) of Ê, where en+1 = 〈Ω, 1〉. As a projective frame of H̃, we choose (ai)1≤i≤n+1, where
ai = [ei]∼ for 1 ≤ i ≤ n, and an+1 = [e1 + · · ·+ en]∼, and as a projective frame of Ẽ, we choose (bi)1≤i≤n+2,
where bi = [ei]∼ for 1 ≤ i ≤ n + 1, and bn+2 = [e1 + · · · + en+1]∼. Then, the matrix of the linear map
pΩ, bH with respect to the bases (e1, . . . , en+1) and (e1, . . . , en) is the n× (n + 1) matrix (In, 0), consisting of

the n × n identity matrix, with an extra column consisting of n zeros. If a point θ ∈ Ẽ has homogeneous
coordinates (x1, . . . , xn, xn+1) with respect to the frame (bi)1≤i≤n+2 in Ẽ, then πΩ, bH(θ) has homogeneous

coordinates (x1, . . . , xn) with respect to the frame (ai)1≤i≤n+1 in H̃.

Thus, in terms of these coordinates systems, the central (perspective) projection πΩ, bH(θ) amounts to
dropping the (n + 1)-th entry from the homogeneous coordinates (x1, . . . , xn, xn+1) for θ.

The central projection πu,H will be used in the situation where
−→
E =

−̂→
F is the homogenized version of

some vector space
−→
F , viewed as an affine space, where

−→
H =

−→
F , the hyperplane in

−̂→
F corresponding to

the vector space
−→
F itself, and where the direction of projection is u = 〈Ω, 1〉 which does not belong to the

hyperplane
−→
F , as required (with Ω = 0 the origin of

−→
F ). In this situation, the central projection

πΩ,F : (
−̃→
F − {Ω})→ P(

−→
F ),

from the projective completion
−̃→
F of

−→
F to P(

−→
F ) is denoted as ΠΩ: (

−̃→
F − {Ω})→ P(

−→
F ).

In the special case where
−→
F = Ê is the homogenized version of some affine space E , the central projection

πΩ, bE : (˜̂E − {Ω})→ Ẽ
from the projective completion ˜̂E of Ê to the projective completion Ẽ of E is also denoted as ΠΩ: (˜̂E−{Ω})→ Ẽ .

It is also useful to define the following map.

Definition 21.2.5 Given any affine space E with associated vector space
−→
E , the natural projection Π: Ê →

Ẽ from Ê onto Ẽ is the map
Π: (Ê − {0})→ Ẽ,

where

Π(θ) =
{

a if θ = 〈a, λ〉, where a ∈ E and λ �= 0;

u∞ if θ = u, where u ∈ (
−→
E − {0}).



21.2. MORE ON PROJECTIVE COMPLETIONS AND FRAMES 593

It is obvious that Π is surjective. Note that if ∼ is the equivalence relation on Ê used to define Ẽ = P(Ê),

since we identified Ẽ with the disjoint union E ∪P(
−→
E ), then

Π: (Ê − {0})→ Ẽ

is just the canonical projection map of definition 5.2.1. In other words, we have Π(θ) = [θ]∼, for every
θ ∈ (Ê − {0}).

Let us consider again the situation where E =
−̂→
F is the homogenized version of some vector space

−→
F .

The following lemma shows that the projection map p:
−→
F → P(

−→
F ) carries essentially as much information

as the central projection ΠΩ: (
−̃→
F − {Ω})→ P(

−→
F ). Recall that

−̃→
F is identified with

−→
F ∪P(

−→
F ).

Lemma 21.2.6 Given any vector space
−→
F , the natural projection map p:

−→
F → P(

−→
F ) is the restriction of

the central projection ΠΩ: ((
−→
F − {Ω}) ∪ P(

−→
F )) → P(

−→
F ) to (

−→
F − {Ω}) (where

−→
F is viewed as an affine

space and Ω is the origin 0 of
−→
F ). Furthermore, for every point u∞ ∈ P(

−→
F ) (point at infinity in

−̃→
F ), we

have ΠΩ(u∞) = u∞ = p(u).

Proof . We just need to figure out what is the linear projection

pΩ,F :
−̂→
F → −→F ,

onto the hyperplane
−→
F , along the direction Ω = 〈Ω, 1〉 in

−̂→
F . But we know that

−̂→
F =

−→
F ⊕K〈Ω, 1〉,

and thus, for every u +̂ µ〈Ω, 1〉 ∈ −̂→F , where u ∈ −→F , we have

pΩ,F (u +̂ µ〈Ω, 1〉) = u,

and consequently,
πΩ,F ([u +̂ µ〈Ω, 1〉]≈) = p(u) = [u]∼,

where ≈ is the equivalence relation on
−̂→
F inducing

−̃→
F , and ∼ is the equivalence relation on

−→
F inducing

P(
−→
F ). Now,

−̃→
F is identified with the disjoint union

−→
F ∪P(

−→
F ). When µ �= 0, we have

〈u, µ〉 = 〈0 + u, µ〉 = 〈Ω + u, µ〉 = µu +̂ 〈Ω, µ〉 = µu +̂ µ〈Ω, 1〉,

and so, we have
πΩ,F ([〈u, µ〉]≈) = πΩ,F ([µu +̂ µ〈Ω, 1〉]≈) = p(µu) = p(u) = [u]∼.

Note that we used the fact that
−→
F is viewed as an affine space and that Ω is the origin 0 of

−→
F to conclude

that 0 + u = u. Since we have identified [〈u, µ〉]≈ with u, the above shows that p is the restriction of the

central projection ΠΩ to (
−→
F − {Ω}).1 When µ = 0, we still have

ΠΩ([u]≈) = [u]∼ = p(u).

1Recall that [Ω]∼ = [0]∼ is undefined. This explains why we have to remove Ω from
−→
F .
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In the second case, [u]≈ = u∞ ∈ P(
−→
F ) is a point at infinity in

−̃→
F , and p is not defined on such points at

infinity, but ΠΩ(u∞) = u∞ = p(u) = [u]∼, and thus, ΠΩ is the identity on P(
−→
F ).

If we apply lemma 21.2.6 to the special case where
−→
F = Ê for some affine space E , we note that the

natural projection Π: (Ê − {Ω})→ Ẽ is the restriction of the central projection ΠΩ: ((Ê − {Ω}) ∪ Ẽ)→ Ẽ to
(Ê − {Ω}) (where Ω is the origin 0 of Ê , where Ê is viewed as an affine space). Furthermore, for every point
θ∞ ∈ P(Ê) = Ẽ , we have ΠΩ(θ∞) = θ∞ = Π(θ).

Remarks: (1) The reason for considering ˜̂E is that when we define a polynomial curve (or surface) in Ê ,
in order to be rigorous, we need to specify the behavior at points at infinity before we can project this curve
or surface onto Ẽ . If one is willing to ignore points at infinity, Π is all we need to define rational curves or
surfaces. Unfortunately, if we want to treat points at infinity rigorously, we must use the central projection
ΠΩ.

(2) Note that ΠΩ(θ∞) = θ∞ = Π(θ) shows that every point at infinity in ˜̂E is projected onto itself in

Ẽ , i.e., ΠΩ is the identity on Ẽ . However, a point u ∈ ˜̂E (where u ∈ −→E ) which is not a point at infinity is
projected to the point at infinity u∞ in Ẽ .

21.3 More on Multiprojective maps and Multilinear Maps

We will also need to relate multiprojective maps P(f): (Ẽ)m → Ẽ associated with multilinear maps f : (Ê)m →
Ê to multiprojective maps g̃: (Ẽ)m → ˜̂E associated with multiaffine maps g:Em → Ê . The intuition is that
a rational curve or surface (defined by a multilinear polar form f : (Ê)m → Ê , where E = A or E = A

2) is
the central projection of some polynomial curve of surface (defined by a multiaffine polar form g:Em → Ê ,
where E = A or E = A

2). Conversely, the central projection of a polynomial curve or surface is a rational
curve or surface. To be rigorous, all of this has to be stated in terms of multiprojective maps. In fact, it will
be simpler to prove a slightly more general lemma.

Lemma 21.3.1 Given any affine space E and any vector space
−→
F , for any multilinear map f : (Ê)m → −→F ,

the restriction g:Em → −→F of f : (Ê)m → −→F to Em is a multiaffine map such that P(f) = ΠΩ◦g̃. Conversely,

for any multiaffine map g:Em → −→F , there is a multilinear map f : (Ê)m → −→F such that g:Em → −→F is the

restriction of f : (Ê)m → −→F to Em, and P(f) = ΠΩ ◦ g̃. These two properties are expressed by the following
diagram:

Em g−→ −→
F

i

� �i

(Ê)m p−→ (Ẽ)m eg−→ −̃→
F

f

� P(f)

� ↙ ΠΩ

−→
F −→

p
P(
−→
F )

The lemma also holds for symmetric multiaffine maps and symmetric multilinear maps.

Proof . Assume f : (Ê)m → −→F is a multilinear map. The map g:Em → −→F is the restriction of f : (Ê)m →
−→
F to Em. Since f is multilinear, it is obvious that g is multiaffine.
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Since Ê =
−→
E ⊕Ka for every a ∈ E, pick some origin a ∈ E. Now, since f is multilinear, we can write

f(a +̂ u1, . . . , a +̂ um) =
∑

S⊆{1,...,m}
S={i1,...,ik}

i1<...<ik

f(a, . . . , ui1 , . . . , uik
, . . . , a).

The above expression gives us the unique decomposition of the multiaffine map g as a sum of k-linear maps
(where f(a, . . . , a) is treated as a point), and using lemma 20.1.2, we see that the unique multilinear map

ĝ: (Ê)m → −̂→F extending g, is given by the expression

ĝ(u1 +̂ λ1a, . . . , um +̂ λma) =
∑

S⊆{1,...,m}
S={i1,...,ik}

i1<...<ik

( ∏
j∈{1,...,m}

j /∈S

λj

)
· f(a, . . . , ui1 , . . . , uik

, . . . , a),

where the symbol · is used to denote scalar multiplication in
−̂→
F , to avoid confusion with scalar multiplication

in
−→
F which is denoted as juxtaposition, and f(a, . . . , a) is treated as a point of

−̂→
F . Since f is multilinear,

we have

f(u1 +̂ λ1a, . . . , um +̂ λma) =
∑

S⊆{1,...,m}
S={i1,...,ik}

i1<...<ik

( ∏
j∈{1,...,m}

j /∈S

λj

)
f(a, . . . , ui1 , . . . , uik

, . . . , a).

If ĝ(u1 +̂ λ1a, . . . , um +̂ λma) is a point in
−̂→
F , then we must have λi �= 0, for 1 ≤ i ≤ m, and we can write

ĝ(u1 +̂ λ1a, . . . , um +̂ λma) = λ1 · · ·λm ·
∑

S⊆{1,...,m}
S={i1,...,ik}

i1<...<ik

(∏
j∈S

λ−1
j

)
f(a, . . . , ui1 , . . . , uik

, . . . , a),

= λ1 · · ·λm ·
∑

S⊆{1,...,m}
S={i1,...,ik}

i1<...<ik

f(a, . . . , λ−1
i1

ui1 , . . . , λ
−1
ik

uik
, . . . , a).

We will now use lemma 21.2.6, which tells us that

ΠΩ([〈u, λ〉]≈) = p(u) = [u]∼,

for u ∈ −→F − {Ω} (where Ω is the origin 0 in
−→
F ), and ΠΩ(u∞) = p(u). By lemma 21.2.6, we have

ΠΩ(g̃([u1 +̂ λ1a], . . . , [um +̂ λma])) = p

( ∑
S⊆{1,...,m}
S={i1,...,ik}

i1<...<ik

f(a, . . . , λ−1
i1

ui1 , . . . , λ
−1
ik

uik
, . . . , a)

)
.

We also have

f(u1 +̂ λ1a, . . . , um +̂ λma) = λ1 · · ·λm

∑
S⊆{1,...,m}
S={i1,...,ik}

i1<...<ik

f(a, . . . , λ−1
i1

ui1 , . . . , λ
−1
ik

uik
, . . . , a),
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and so

P(f)([u1 +̂ λ1a], . . . , [um +̂ λma]) = p

( ∑
S⊆{1,...,m}
S={i1,...,ik}

i1<...<ik

f(a, . . . , λ−1
i1

ui1 , . . . , λ
−1
ik

uik
, . . . , a)

)
.

Thus, we have shown that

P(f)([u1 +̂ λ1a], . . . , [um +̂ λma]) = ΠΩ(g̃([u1 +̂ λ1a], . . . , [um +̂ λma])).

If ĝ(u1 +̂ λ1a, . . . , um +̂ λma) is a vector in
−̂→
F , and thus in

−→
F , then since ΠΩ(u∞) = p(u) for u ∈ −→F , we

have
P(f)([u1 +̂ λ1a], . . . , [um +̂ λma]) = ΠΩ(g̃([u1 +̂ λ1a], . . . , [um +̂ λma])).

We still have to prove the converse. Given a multiaffine map g:Em → −→F , we know that g has a unique
decomposition as a sum of k-linear maps, of the form

g(a + u1, . . . , a + um) = g(a, . . . , a) +̂
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

gS(ui1 , . . . , uik
).

Let us define the map f : (Ê)m → −→F , such that

f(u1 +̂ λ1a, . . . , um +̂ λma) = λ1 · · ·λmg(a, . . . , a)

+̂
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

( ∏
j∈{1,...,m}

j /∈S

λj

)
gS(ui1 , . . . , uik

).

It is immediately verified that f is multilinear, and clearly,

g(a1, . . . , am) = f(a1, . . . , am),

for all a1, . . . , am ∈ E. To conclude, we apply the previous part of the proof, which shows that P(f) = ΠΩ◦g̃.

Applying lemma 21.3.1 to the special case where
−→
F = Ê for some affine space E , we obtain the following

corollary.

Lemma 21.3.2 Given any two affine spaces E, E, for any multilinear map f : (Ê)m → Ê, the restriction
g:Em → Ê of f : (Ê)m → Ê to Em is a multiaffine map such that P(f) = ΠΩ ◦ g̃. Conversely, for any
multiaffine map g:Em → Ê, there is a multilinear map f : (Ê)m → Ê such that g:Em → Ê is the restriction
of f : (Ê)m → Ê to Em, and P(f) = ΠΩ ◦ g̃. These two properties are expressed by the following diagram:

Em g−→ Ê
i

� �i

(Ê)m p−→ (Ẽ)m eg−→ ˜̂E
f

� P(f)

� ↙ ΠΩ

Ê −→
p

Ẽ
The lemma also holds for symmetric multiaffine maps and symmetric multilinear maps.


