
Chapter 27

Appendix 2

27.1 Multiaffine Maps

The purpose of this section is to prove a lemma showing how a multiaffine map can be expressed in terms
of some uniquely determined multilinear maps. For the reader’s convenience, we recall the definition of a
multilinear map. Let E1, . . . , Em, and F , be vector spaces over R, where m ≥ 1.

Definition 27.1.1 A function f :E1 × . . . × Em → F is a multilinear map (or an m-linear map), iff it is
linear in each argument, holding the others fixed. More explicitly, for every i, 1 ≤ i ≤ m, for all x1 ∈ E1 . . .,
xi−1 ∈ Ei−1, xi+1 ∈ Ei+1, . . ., xm ∈ Em, for every family (yj)j∈J of vectors in Ei, for every family (λj)j∈J

of scalars,

f(x1, . . . , xi−1,
∑

j∈J

λjyj , xi+1, . . . , xn) =
∑

j∈J

λjf(x1, . . . , xi−1, yj, xi+1, . . . , xn).

Having reviewed the definition of a multilinear map, we define multiaffine maps. Let E1, . . . , Em, and F ,
be affine spaces over R, where m ≥ 1.

Definition 27.1.2 A function f :E1× . . .×Em → F is a multiaffine map (or an m-affine map), iff it is affine
in each argument, that is, for every i, 1 ≤ i ≤ m, for all a1 ∈ E1, . . . , ai−1 ∈ Ei−1, ai+1 ∈ Ei+1, . . . , am ∈
Em, a ∈ Ei, the map a &→ f(a1, . . . , ai−1, a, ai+1, . . . , am) is an affine map, i.e. iff it preserves barycentric
combinations. More explicitly, for every family (bj)j∈J of points in Ei, for every family (λj)j∈J of scalars
such that

∑
j∈J λj = 1, we have

f(a1, . . . , ai−1,
∑

j∈J

λjbj , ai+1, . . . , am) =
∑

j∈J

λjf(a1, . . . , ai−1, bj, ai+1, . . . , am).

An arbitrary function f :Em → F is symmetric (where E and F are arbitrary sets, not just vector spaces
or affine spaces), iff

f(xπ(1), . . . , xπ(m)) = f(x1, . . . , xm),

for every permutation π: {1, . . . ,m} → {1, . . . ,m}.

It is immediately verified that a multilinear map is also a multiaffine map (viewing a vector space as an
affine space).

The next lemma will show that an n-affine form can be expressed as the sum of 2n − 1 k-linear forms,
where 1 ≤ k ≤ n, plus a constant. Thus, we see that the main difference between multilinear forms and
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multiaffine forms, is that multilinear forms are homogeneous in their arguments, whereas multiaffine forms
are not, but they are sums of homogeneous forms. A good example of n-affine forms is the elementary
symmetric functions. Given n variables x1, . . . , xn, for each k, 0 ≤ k ≤ n, we define the k-th elementary
symmetric function σk(x1, . . . , xn), for short, σk, as follows:

σ0 = 1;

σ1 = x1 + · · ·+ xn;

σ2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + · · ·+ xn−1xn;

σk =
∑

1≤i1<...<ik≤n xi1 · · ·xik ;

σn = x1x2 · · ·xn.

A concise way to express σk is as follows:

σk =
∑

I⊆{1,...,n}

|I|=k

(∏

i∈I

xi

)
.

Note that σk consists of a sum of

(
n
k

)
= n!

k!(n−k)! terms of the form xi1 · · ·xik . As a consequence,

σk(x, x, . . . , x) =

(
n
k

)
xk.

Clearly, each σk is symmetric.

We will prove a generalization of lemma 2.7.2, characterizing multiaffine maps in terms of multilinear
maps. The proof is more complicated than might be expected, but luckily, an adaptation of Cartan’s use of
“successive differences” allows us to overcome the complications.

In order to understand where the proof of the next lemma comes from, let us consider the special case
of a biaffine map f :E2 → F , where F is a vector space. Because f is biaffine, note that

f(a1 + v1, a2 + v2)− f(a1, a2 + v2) = g(v1, a2 + v2)

is a linear map in v1, and as a difference of affine maps in a2 + v2, it is affine in a2 + v2. But then, we have

g(v1, a2 + v2) = g(v1, a2) + h1(v1, v2),

where h1(v1, v2) is linear in v2. Thus, we have

f(a1 + v1, a2 + v2)− f(a1, a2 + v2) = f(a1 + v1, a2)− f(a1, a2) + h1(v1, v2),

that is,

f(a1 + v1, a2 + v2) = f(a1, a2) + h1(v1, v2) + f(a1, a2 + v2)− f(a1, a2) + f(a1 + v1, a2)− f(a1, a2).

Since
g(v1, a2 + v2)− g(v1, a2) = h1(v1, v2),

where both g(v1, a2+v2) and and g(v1, a2) are linear in v1, h1(v1, v2) is also linear in v1, and since we already
know that h1(v1, v2) is linear in v2, then h1 is bilinear. But f(a1, a2 + v2) − f(a1, a2) is linear in v2, and
f(a1 + v1, a2)− f(a1, a2) is linear in v1, which shows that we can write

f(a1 + v1, a2 + v2) = f(a1, a2) + h1(v1, v2) + h2(v1) + h3(v2),
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where h1 is bilinear, and h2 and h3 are linear. The uniqueness of h1 is clear, and as a consequence, the
uniqueness of h2 and h3 follows easily.

The above argument uses the crucial fact that the expression

f(a1 + v1, a2 + v2)− f(a1, a2 + v2)− f(a1 + v1, a2) + f(a1, a2) = h1(v1, v2),

is bilinear. Thus, we are led to consider differences of the form

∆v1f(a1, a2) = f(a1 + v1, a2)− f(a1, a2).

The slight trick is that if we compute the difference

∆v2∆v1f(a1, a2) = ∆v1f(a1, a2 + v2)−∆v1f(a1, a2),

where we incremented the second argument instead of the first argument as in the previous step, we get

∆v2∆v1f(a1, a2) = f(a1 + v1, a2 + v2)− f(a1, a2 + v2)− f(a1 + v1, a2) + f(a1, a2),

which is precisely the bilinear map h1(v1, v2). This idea of using successive differences (where at each step,
we move from argument k to argument k + 1) will be central to the proof of the next lemma.

Lemma 27.1.3 For every m-affine map f :Em → F , there are 2m−1 unique multilinear maps fS:Ek → −→
F ,

where S ⊆ {1, . . . ,m}, k = |S|, S )= ∅, such that

f(a1 + v1, . . . , am + vm) = f(a1, . . . , am) +
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

fS(vi1 , . . . , vik),

for all a1 . . . , am ∈ E, and all v1, . . . , vm ∈ −→
E .

Proof . First, we show that we can restrict our attention to multiaffine maps f :Em → F , where F is a

vector space. Pick any b ∈ F , and define h:Em → −→
F , where h(a) = bf(a) for every a = (a1, . . . , am) ∈

Em, so that f(a) = b + h(a). We claim that h is multiaffine. For every i, 1 ≤ i ≤ m, for every
a1, . . . , ai−1, ai+1, . . . , am ∈ E, let fi:E → F be the map

ai &→ f(a1, . . . , ai−1, ai, ai+1, . . . , am),

and let hi:E → −→
F be the map

ai &→ h(a1, . . . , ai−1, ai, ai+1, . . . , am).

Since f is multiaffine, we have

hi(ai + u) = b(f(a) +
−→
fi (u)) = bf(a) +

−→
fi (u),

where a = (a1, . . . , am), and where
−→
fi is the linear map associated with fi, which shows that hi is an affine

map with associated linear map
−→
fi .

Thus, we now assume that F is a vector space. Given an m-affine map f :Em → F , for every (v1, . . . , vm)

∈ −→
E

m

, we define
∆vm∆vm−1 · · ·∆v1f

inductively as follows: for every a = (a1, . . . , am) ∈ Em,
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∆v1f(a) = f(a1 + v1, a2, . . . , am)− f(a1, a2, . . . , am),

and generally, for all i, 1 ≤ i ≤ m,

∆vif(a) = f(a1, . . . , ai−1, ai + vi, ai+1, . . . , am)− f(a1, a2, . . . , am);

Thus, we have

∆vk+1∆vk · · ·∆v1f(a) = ∆vk · · ·∆v1f(a1, . . . , ak+1 + vk+1, . . . , am)−∆vk · · ·∆v1f(a),

where 1 ≤ k ≤ m− 1.

We claim that the following properties hold:

(1) Each ∆vk · · ·∆v1f(a) is k-linear in v1, . . . , vk and (m− k)-affine in ak+1, . . . , am;

(2) We have

∆vm · · ·∆v1f(a) =
m∑

k=0

(−1)m−k
∑

1≤i1<...<ik≤m

f(a1, . . . , ai1 + vi1 , . . . , aik + vik , . . . , am).

Properties (1) and (2) are proved by induction on k. We prove (1), leaving (2) as an easy exercise. Since
f is m-affine, it is affine in its first argument, and so,

∆v1f(a) = f(a1 + v1, a2, . . . , am)− f(a1, a2, . . . , am)

is a linear map in v1, and since it is the difference of two multiaffine maps in a2, . . . , am, it is (m− 1)-affine
in a2, . . . , am.

Assuming that ∆vk · · ·∆v1f(a) is k-linear in v1, . . . , vk and (m − k)-affine in ak+1, . . ., am, since it is
affine in ak+1,

∆vk+1∆vk · · ·∆v1f(a) = ∆vk · · ·∆v1f(a1, . . . , ak+1 + vk+1, . . . , am)−∆vk · · ·∆v1f(a)

is linear in vk+1, and since it is the difference of two k-linear maps in v1, . . . , vk, it is (k + 1)-linear in
v1, . . . , vk+1, and since it is the difference of two (m− k − 1)-affine maps in ak+2 . . . , am, it is (m − k − 1)-
affine in ak+2 . . . , am. This concludes the induction.

As a consequence of (1), ∆vm · · ·∆v1f is a m-linear map. Then, in view of (2), we can write

f(a1 + v1, . . . , am + vm) =

∆vm · · ·∆v1f(a) +
m−1∑

k=0

(−1)m−k−1
∑

1≤i1<...<ik≤m

f(a1, . . . , ai1 + vi1 , . . . , aik + vik , . . . , am),

and since every
f(a1, . . . , ai1 + vi1 , . . . , aik + vik , . . . , am)

in the above sum contains at most m − 1 of the v1, . . . , vm, we can apply the induction hypothesis, which
gives us sums of k-linear maps, for 1 ≤ k ≤ m− 1, and of 2m− 1 terms of the form (−1)m−k−1f(a1, . . . , am),
which all cancel out except for a single f(a1, . . . , am), which proves the existence of multilinear maps fS such
that

f(a1 + v1, . . . , am + vm) = f(a1, . . . , am) +
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

fS(vi1 , . . . , vik),

for all a1 . . . , am ∈ E, and all v1, . . . , vm ∈ −→
E .
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We still have to prove the uniqueness of the linear maps in the sum. This can be done using the
∆vm · · ·∆v1f . We claim the following slightly stronger property, that can be shown by induction on m: if

g(a1 + v1, . . . , am + vm) = f(a1, . . . , am) +
∑

S⊆{1,...,m}, k=|S|
S={i1,...,ik}, k≥1

fS(vi1 , . . . , vik ),

for all a1 . . . , am ∈ E, and all v1, . . . , vm ∈ −→
E , then

∆vjn · · ·∆vj1
g(a) = f{j1,...,jn}(vj1 , . . . , vjn),

where {j1, . . . , jn} ⊆ {1, . . . ,m}, j1 < . . . < jn, and a = (a1, . . . , am). We can now show the uniqueness of
the fS , where S ⊆ {1, . . . , n}, S )= ∅, by induction. Indeed, from above, we get

∆vm · · ·∆v1f = f{1,...,m}.

But g − f{1,...,m} is also m-affine, and it is a sum of the above form, where n = m− 1, so we can apply the
induction hypothesis, and conclude the uniqueness of all the fS .

When f :Em → F is a symmetric m-affine map, we can obtain a more precise characterization in terms
of m symmetric k-linear maps, 1 ≤ k ≤ m.

Lemma 27.1.4 For every symmetric m-affine map f :Em → F , there are m unique symmetric multilinear

maps fk:Ek → −→
F , where 1 ≤ k ≤ m, such that

f(a1 + v1, . . . , am + vm) = f(a1, . . . , am) +
m∑

k=1

∑

1≤i1<...<ik≤m

fk(vi1 , . . . , vik),

for all a1 . . . , am ∈ E, and all v1, . . . , vm ∈ −→
E .

Proof . Since f is symmetric, for every k, 1 ≤ k ≤ m, for every sequences 〈i1 . . . , ik〉 and 〈j1 . . . , jk〉
such that 1 ≤ i1 < . . . < ik ≤ m and 1 ≤ j1 < . . . < jk ≤ m, there is a permutation π such that
π(i1) = j1, . . . ,π(ik) = jk, and since

f(xπ(1), . . . , xπ(m)) = f(x1, . . . , xm),

by the uniqueness of the sum given by lemma 27.1.3, we must have

f{i1,...,ik}(vj1 , . . . , vjk) = f{j1,...,jk}(vj1 , . . . , vjk),

which shows that,
f{i1,...,ik} = f{j1,...,jk},

and then that each f{i1,...,ik} is symmetric, and thus, letting fk = f{1,...,k}, we have

f(a1 + v1, . . . , am + vm) = f(a1, . . . , am) +
m∑

k=1

∑

S⊆{1,...,m}
S={i1,...,ik}

fk(vi1 , . . . , vik),

for all a1 . . . , am ∈ E, and all v1, . . . , vm ∈ −→
E .

Thus, a symmetric m-affine map is obtained by making symmetric in v1, . . . vm, the sum fm + fm−1 +
· · · + f1 of m symmetric k-linear maps, 1 ≤ k ≤ m. The above lemma shows that it is equivalent to deal
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with symmetric m-affine maps, or with symmetrized sums fm + fm−1+ · · ·+ f1 of symmetric k-linear maps,
1 ≤ k ≤ m.

When
−→
E is a vector space of finite dimension n, and

−→
F is a vector space, we obtain the following

characterization of multilinear maps (readers who are nervous, may assume for simplicity that
−→
F = R). Let

(e1, . . . , en) be a basis of E.

Lemma 27.1.5 Given any vector space
−→
E of finite dimension n, and any vector space

−→
F , for any basis

(e1, . . . , en) of
−→
E , for any symmetric multilinear map f :Em → −→

F , for any m vectors

vj = v1, je1 + · · ·+ vn, jen ∈ −→
E ,

we have

f(v1, . . . , vm) =
∑

I1∪...∪In={1,...,m}
Ii∩Ij=∅, i)=j

1≤i,j≤n

( ∏

i1∈I1

v1, i1

)
· · ·

( ∏

in∈In

vn, in

)
f(e1, . . . , e1︸ ︷︷ ︸

|I1|

, . . . , en, . . . , en︸ ︷︷ ︸
|In|

),

and for any v ∈ −→
E , the homogeneous polynomial function h associated with f is given by

h(v) =
∑

k1+···+kn=m
0≤ki, 1≤i≤n

(
m

k1, . . . , kn

)
vk1
1 · · · vkn

n f(e1, . . . , e1︸ ︷︷ ︸
k1

, . . . , en, . . . , en︸ ︷︷ ︸
kn

).

Proof . By multilinearity of f , we have

f(v1, . . . , vm) =
∑

(i1,...,im)∈{1,...,n}m

vi1, 1 · · · vim,mf(ei1 , . . . , eim).

Since f is symmetric, we can reorder the basis vectors arguments of f , and this amounts to choosing n
disjoint sets I1, . . . , In such that I1 ∪ . . .∪ In = {1, . . . ,m}, where each Ij specifies which arguments of f are
the basis vector ej . Thus, we get

f(v1, . . . , vm) =
∑

I1∪...∪In={1,...,m}
Ii∩Ij=∅, i)=j

1≤i,j≤n

( ∏

i1∈I1

v1, i1

)
· · ·

( ∏

in∈In

vn, in

)
f(e1, . . . , e1︸ ︷︷ ︸

|I1|

, . . . , en, . . . , en︸ ︷︷ ︸
|In|

).

When we calculate h(v) = f(v, . . . , v︸ ︷︷ ︸
m

), we get the same product vk1
1 · · · vkn

n a multiple number of times, which

is the number of ways of choosing n disjoints sets Ij , each of cardinality ki, where k1 + · · ·+ kn = m, which

is precisely

(
m

k1, . . . , kn

)
, which explains the second formula.

Thus, lemma 27.1.5 shows that we can write h(v) as

h(v) =
∑

k1+···+kn=m
0≤ki, 1≤i≤n

vk1
1 · · · vkn

n ck1,...,kn ,

for some “coefficients” ck1,...,kn ∈ −→
F , which are vectors. When

−→
F = R, the homogeneous polynomial

function h of degree m in n arguments v1, . . . , vn, agrees with the notion of polynomial function defined by
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a homogeneous polynomial. Indeed, h is the homogeneous polynomial function induced by the homogeneous
polynomial of degree m in the variables X1, . . . , Xn,

∑

(k1,...,kn), kj≥0
k1+···+kn=m

ck1,...,knX
k1
1 · · ·Xkn

n .

We also obtain the following useful characterization of multiaffine maps f :E → F , when E is of finite
dimension.

Lemma 27.1.6 Given any affine space E of finite dimension n, and any affine space F , for any basis

(e1, . . . , en) of
−→
E , for any symmetric multiaffine map f :Em → F , for any m vectors

vj = v1, je1 + · · ·+ vn, jen ∈ −→
E ,

for any points a1, . . . , am ∈ E, we have

f(a1 + v1, . . . , am + vm) = b +
∑

1≤p≤m

∑

I1∪...∪In={1,...,p}
Ii∩Ij=∅, i)=j

1≤i,j≤n

( ∏

i1∈I1

v1, i1

)
· · ·

( ∏

in∈In

vn, in

)
w|I1|,...,|In|,

for some b ∈ F , and some w|I1|,...,|In| ∈
−→
F , and for any a ∈ E, and v ∈ −→

E , the affine polynomial function
h associated with f is given by

h(a+ v) = b+
∑

1≤p≤m

∑

k1+···+kn=p
0≤ki, 1≤i≤n

vk1
1 · · · vkn

n wk1,...,kn ,

for some b ∈ F , and some wk1,...,kn ∈ −→
F .

Lemma 27.1.6 shows the crucial role played by homogeneous polynomials. We could have taken the form
of an affine map given by this lemma as a definition, when E is of finite dimension.

! When
−→
F is a vector space of dimension greater than one, or an affine space, one should not confuse

such polynomial functions with the polynomials defined as usual, say in Lang [107], Artin [5], or Mac
Lane and Birkhoff [116]. The standard approach is to define formal polynomials whose coefficients belong
to a (commutative) ring. Then, it is shown how a polynomial defines a polynomial function. In the present
approach, we define directly certain functions that behave like generalized polynomial functions. Another
major difference between the polynomial functions above and formal polynomials, is that formal polynomials
can be added and multiplied. Although we can make sense of addition as affine combination in the case of
polynomial functions with range an affine space, multiplication does not make any sense.

27.2 Polarizing Polynomials in One or Several Variables

We show that polynomials in one or several variables are uniquely defined by polar forms which are multiaffine
maps. We first show the following simple lemma.

Lemma 27.2.1 (1) For every polynomial p(X) ∈ R[X ], of degree ≤ m, there is a symmetric m-affine form
f :Rm → R, such that p(x) = f(x, x, . . . , x) for all x ∈ R. If p(X) ∈ R[X ] is a homogeneous polynomial of
degree exactly m, then the symmetric m-affine form f is multilinear.
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(2) For every polynomial p(X1, . . . , Xn) ∈ R[X1, . . . , Xn], of total degree ≤ m, there is a symmetric
m-affine form f : (Rn)m → R, such that p(x1, . . . , xn) = f(x, x, . . . , x), for all x = (x1, . . . , xn) ∈ Rn. If
p(X1, . . . , Xn) ∈ R[X1, . . . , Xn] is a homogeneous polynomial of total degree exactly m, then f is a symmetric
multilinear map f : (Rn)m → R.

Proof . (1) It is enough to prove it for a monomial of the form Xk, k ≤ m. Clearly,

f(x1, . . . , xm) =
k!(m− k)!

m!
σk

is a symmetric m-affine form satisfying the lemma (where σk is the k-th elementary symmetric function,

which consists of

(
m
k

)
= m!

k!(m−k)! terms), and when k = m, we get a multilinear map.

(2) It is enough to prove it for a homogeneous monomial of the form Xk1
1 · · ·Xkn

n , where ki ≥ 0, and
k1 + · · ·+ kn = d ≤ m. Let f be defined such that

f((x1, 1, . . . , xn, 1), . . . , (x1, m, . . . , xn,m)) =

k1! · · · kn!(m− d)!

m!

∑

I1∪...∪In⊆{1,...,m}
Ii∩Ij=∅, i)=j, |Ij |=kj

( ∏

i1∈I1

x1, i1

)
· · ·

( ∏

in∈In

xn, in

)
.

The idea is to split any subset of {1, . . . ,m} consisting of d ≤ m elements into n disjoint subsets I1, . . . , In,
where Ij is of size kj (and with k1 + · · ·+ kn = d). There are

m!

k1! · · · kn!(m− d)!
=

(
m

k1, . . . , kn,m− d

)

such families of n disjoint sets, where k1 + · · · + kn = d ≤ m. Indeed, this is the number of ways of
choosing n+1 disjoint subsets of {1, . . . ,m} consisting respectively of k1, . . . , kn, and m−d elements, where

k1 + · · ·+ kn = d. One can also argue as follows: There are

(
m
k1

)
choices for the first subset I1 of size k1,

and then

(
m− k1

k2

)
choices for the second subset I2 of size k2, etc, and finally,

(
m− (k1 + · · ·+ kn−1)

kn

)

choices for the last subset In of size kn. After some simple arithmetic, the number of such choices is indeed

m!

k1! · · · kn!(m− d)!
=

(
m

k1, . . . , kn,m− d

)
.

It is clear that f is symmetric m-affine in x1, . . . , xm, where xj = (x1, j , . . . , xn, j), and that

f(x, . . . , x︸ ︷︷ ︸
m

) = xk1
1 · · ·xkn

n ,

for all x = (x1, . . . , xn) ∈ Rn. Also, when d = m, it is easy to see that f is multilinear.

As an example, if

p(X) = X3 + 3X2 + 5X − 1,

we get

f(x1, x2, x3) = x1x2x3 + x1x2 + x1x3 + x2x3 +
5

3
(x1 + x2 + x3)− 1.
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When n = 2, which corresponds to the case of surfaces, we can give an expression which is easier to
understand. Writing U = X1 and V = X2, to minimize the number of subscripts, given the monomial
UhV k, with h+ k = d ≤ m, we get

f((u1, v1), . . . , (um, vm)) =
h!k!(m− (h+ k))!

m!

∑

I∪J⊆{1,...,m}
I∩J=∅

|I|=h, |J|=k

(∏

i∈I

ui

)(∏

j∈J

vj

)
.

For a concrete example involving two variables, if

p(U, V ) = UV + U2 + V 2,

we get

f((u1, v1), (u2, v2)) =
u1v2 + u2v1

2
+ u1u2 + v1v2.


