
Chapter 18

Polynomial Curves

18.1 Polar Forms and Control Points

The purpose of this short chapter is to show how polynomial curves are handled in terms of control points.
This is a very nice application of affine concepts discussed in previous chapters and provides a stepping stone
for the study of rational curves. This chapter is just a brief introduction. A comprehensive treatment of
polynomial curves can be found in Gallier [70]).

The key to the treatment of polynomial curves in terms of control points is that polynomials can be
multilinearized.1 To be more precise, say that a map f : Rd × · · · × R

d︸ ︷︷ ︸
m

→ R
n is multiaffine if it is affine in

each of its arguments, and that a map f : Rd × · · · × R
d︸ ︷︷ ︸

m

→ R
n is symmetric if it does not depend on the order

of its arguments, i.e., f(aπ(1), . . . , aπ(m)) = f(a1, . . . , am) for all a1, . . . , am, and all permutations π. Then,
for every polynomial F (t) of degree m, there is a unique symmetric and multiaffine map f : R × · · · × R︸ ︷︷ ︸

m

→ R

such that
F (t) = f(t, . . . , t︸ ︷︷ ︸

m

), for all t ∈ R.

This is an old “folk theorem”, probably already known to Newton. The proof is easy. By linearity, it
is enough to consider a monomial of the form xk, where k ≤ m. The unique symmetric multiaffine map
corresponding to xk is

σk(t1, . . . , tm)(
m
k

) ,

where σk(t1, . . . , tm) is the kth elementary symmetric function in m variables, i.e.

σk =
∑

I⊆{1,...,m}
|I|=k

(∏
i∈I

ti

)
.

Given a polynomial curve F : R → R
n of degree m

x1(t) = F1(t),
. . . = . . .

xn(t) = Fn(t),
1The term “multilinearized” is technicaly incorrect, we should say “multiaffinized”!

571



572 CHAPTER 18. POLYNOMIAL CURVES

where F1(t), . . . , Fn(t) are polynomials of degree at most m, F : R → R
n arises from a unique symmetric

multiaffine map f : Rm → R
n, the polar form of F , such that

F (t) = f(t, . . . , t︸ ︷︷ ︸
m

),

for all t ∈ R (see Ramshaw [141], Farin [58, 57], Hoschek and Lasser [90], or Gallier [70]). For example,

consider the plane cubic defined as follows:

F1(t) =
3
4
t2 − 3

2
t − 9

4
, F2(t) =

3
4
t3 − 3

2
t2 − 9

4
t.

We get the polar forms

f1(t1, t2, t3) =
1
4
(t1t2 + t1t3 + t2t3) − 1

2
(t1 + t2 + t3) − 9

4

f2(t1, t2, t3) =
3
4
t1t2t3 − 1

2
(t1t2 + t1t3 + t2t3) − 3

4
(t1 + t2 + t3).

Also, for r �= s, the map f : Rm → R
n is determined by the m + 1 control points (b0, . . . , bm), where

bi = f(r, . . . , r︸ ︷︷ ︸
m−i

, s, . . . , s︸ ︷︷ ︸
i

),

since

f(t1, . . . , tm) =
m∑

k=0

∑
I∪J={1,...,m}

I∩J=∅, card(J)=k

∏
i∈I

(
s − ti
s − r

)∏
j∈J

(
tj − r

s − r

)
f(r, . . . , r︸ ︷︷ ︸

m−k

, s, . . . , s︸ ︷︷ ︸
k

).

For example, with respect to the affine frame r = −1, s = 3, the coordinates of the control points of the
cubic defined earlier are:

b0 = (0, 0)
b1 = (−4, 4)
b2 = (−4,−12)
b3 = (0, 0).

Conversely, for every sequence of m + 1 points (b0, . . . , bm), there is a unique symmetric multiaffine map
f such that

bi = f(r, . . . , r︸ ︷︷ ︸
m−i

, s, . . . , s︸ ︷︷ ︸
i

),

namely

f(t1, . . . , tm) =
m∑

k=0

∑
I∪J={1,...,m}

I∩J=∅, card(J)=k

∏
i∈I

(
s − ti
s − r

)∏
j∈J

(
tj − r

s − r

)
bk.

Thus, there is a bijection between the set of polynomial curves of degree m and the set of sequences
(b0, . . . , bm) of m + 1 control points.

The figure below shows four contol points b0, b1, b2, b3 specifying a polynomial curve of degree 3, where
b0 = f(r, r, r), b1 = f(r, r, s), b2 = f(r, s, s), b3 = f(s, s, s).
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Figure 18.1: Control points and control polygon

The upshot of all this is that for algorithmic purposes, it is convenient to define polynomial curves in
terms of polar forms. Recall that the canonical affine space associated with the field R is denoted as A,
unless confusions arise.

Definition 18.1.1 A (parameterized) polynomial curve in polar form of degree m is an affine polynomial
map F : A → E of polar degree m, defined by its m-polar form, which is some symmetric m-affine map
f : Am → E , where A is the real affine line, and E is any affine space (of dimension at least 2). Given any
r, s ∈ A, with r < s, a (parameterized) polynomial curve segment F ([r, s]) in polar form of degree m is the
restriction F : [r, s] → E of an affine polynomial curve F : A → E in polar form of degree m. We define the
trace of F as F (A), and the the trace of F [r, s] as F ([r, s]).

Typically, the affine space E is the real affine space A
3 of dimension 3.

Remark : When defining polynomial curves, it is convenient to denote the polynomial map defining the
curve by an upper-case letter, such as F : A → E , and the polar form of F by the same, but lower-case letter,
f . It would then be confusing to denote the affine space which is the range of the maps F and f also as F ,
and thus, we denote it as E (or at least, we use a letter different from the letter used to denote the polynomial
map defining the curve). Also note that we defined a polynomial curve in polar form of degree at most m,
rather than a polynomial curve in polar form of degree exactly m, because an affine polynomial map f of
polar degree m may end up being degenerate, in the sense that it could be equivalent to a polynomial map
of lower polar degree. For convenience, we will allows ourselves the abuse of language where we abbreviate
“polynomial curve in polar form” to “polynomial curve”.

We summarize the relationship between control points and polynomial curves in the following lemma.

Lemma 18.1.2 Given any sequence of m + 1 points a0, . . . , am in some affine space E, there is a unique
polynomial curve F : A → E of degree m, whose polar form f : Am → E satisfies the conditions

f(r, . . . , r︸ ︷︷ ︸
m−k

, s, . . . , s︸ ︷︷ ︸
k

) = ak,
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(where r, s ∈ A, r �= s). Furthermore, the polar form f of F is given by the formula

f(t1, . . . , tm) =
m∑

k=0

∑
I∪J={1,...,m}
I∩J=∅, |J|=k

∏
i∈I

(
s − ti
s − r

)∏
j∈J

(
tj − r

s − r

)
ak,

and F (t) is given by the formula

F (t) =
m∑

k=0

Bm
k [r, s](t) ak,

where the polynomials

Bm
k [r, s](t) =

(
m
k

)(
s − t

s − r

)m−k(
t − r

s − r

)k

are the Bernstein polynomials of degree m over [r, s].

Note that since the polar form f of a polynomial curve F of degree m is symmetric, the order of the
arguments is irrelevant. Often, when argument are repeated, we also omit commas between argument. For
example, we abbreviate f(r, . . . , r︸ ︷︷ ︸

i

, s, . . . , s︸ ︷︷ ︸
j

) as f(risj).

In the next section, we will abbreviate f(t, . . . , t︸ ︷︷ ︸
j

, r, . . . , r︸ ︷︷ ︸
m−i−j

, s, . . . , s︸ ︷︷ ︸
i

) as f(tjrm−i−jsi).

18.2 The de Casteljau Algorithm

The definition of polynomial curves in terms of polar forms leads to a very nice algorithm known as the de
Casteljau algorithm, to draw polynomial curves. Using the de Casteljau algorithm, it is possible to determine
any point F (t) on the curve, by repeated affine interpolations (see Farin [58, 57], Hoschek and Lasser [90],
Risler [142], or Gallier [70]). The example below shows F (1/2).

��

��

��

��

��

��

��

�� ���

b0

b1

b2

b3

b0, 1

b1, 1

b2, 1

b0, 2 b1, 2

F (1/2) = b0, 3

Figure 18.2: A de Casteljau diagram for t = 1/2
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In the general case where a curve F is specified by m + 1 control points (b0, . . . , bm) w.r.t. to an interval
[r, s], let us define the following points bi,j used during the computation of F (t) (where f is the polar form
of F ):

bi,j =
{

bi if j = 0, 0 ≤ i ≤ m,
f(tjrm−i−jsi) if 1 ≤ j ≤ m, 0 ≤ i ≤ m − j.

Then, we have the following equations:

bi,j =
(

s − t

s − r

)
bi,j−1 +

(
t − r

s − r

)
bi+1,j−1.

The result is
F (t) = b0,m.

The computation can be conveniently represented in the following triangular form:

0 1 . . . j − 1 j . . . m − k . . . m

b0,0

b0,1

b1,0
. . .

b0,j−1

... b0,j

bi,j−1

...
. . .

bi,j b0,m−k

bi+1,j−1

...
... bm−k−j,j

... b0,m

bm−k−j+1,j−1

... bk,m−k

bm−k−1,1

...

bm−k,0 bm−j,j

... bm−j+1,j−1

...

bm−1,0

bm−1,1

bm,0

When r ≤ t ≤ s, each interpolation step computes a convex combination, and bi,j lies between bi,j−1 and
bi+1,j−1. In this case, geometrically, the algorithm consists of a diagram consisting of the m polylines

(b0,0, b1,0), (b1,0, b2,0), (b2,0, b3,0), (b3,0, b4,0), . . . , (bm−1,0, bm,0)
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(b0,1, b1,1), (b1,1, b2,1), (b2,1, b3,1), . . . , (bm−2,1, bm−1,1)
(b0,2, b1,2), (b1,2, b2,2), . . . , (bm−3,2, bm−2,2)

. . .

(b0,m−2, b1,m−2), (b1,m−2, b2,m−2)
(b0,m−1, b1,m−1)

called shells, and with the point b0,m, they form the de Casteljau diagram. Note that the shells are nested
nicely. The polyline

(b0, b1), (b1, b2), (b2, b3), (b3, b4), . . . , (bm−1, bm)

is also called a control polygon of the curve. When t is outside [r, s], we still obtain m shells and a de
Casteljau diagram, but the shells are not nicely nested.

One of the best features of the de Casteljau algorithm is that it lends itself very well to recursion. Indeed,
going back to the case of a cubic curve, it is easy to show that the sequences of points (b0, b0,1, b0,2, b0,3) and
(b0,3, b1,2, b2,1, b3) are also control polygons for the exact same curve (see Farin [58, 57], Hoschek and Lasser
[90], Gallier [70]). Thus, we can compute the points corresponding to t = 1/2 with respect to the control
polygons

(b0, b0,1, b0,2, b0,3) and (b0,3, b1,2, b2,1, b3),

and this yields a recursive method for approximating the curve. This method called the subdivision method
applies to polynomial curves of any degree and can be used to render efficiently a curve segment F over [r, s].

��

��

��

��

��

��

��

�� ���

b0

b1

b2

b3

b0, 1

b1, 1

b2, 1

b0, 2 b1, 2

F (1/2) = b0, 3

Figure 18.3: Approximating a curve using subdivision

For much more on polynomial curves, see Gallier [70].



Chapter 19

Polynomial Surfaces

19.1 Polar Forms

The purpose of this short chapter is to show how polynomial surfaces are handled in terms of control points.
As Chapter 18, this Chapter is just a brief introduction and a stepping stone for the study of rational
surfaces. A comprehensive treatment of polynomial surfaces can be found in Gallier [70]).

The deep reason why polynomial surfaces can be effectively handled in terms of control points is that
multivariate polynomials arise from multiaffine symmetric maps (see Ramshaw [141], Farin [58, 57], Hoschek
and Lasser [90], or Gallier [70]). Denoting the affine plane R

2 as P, traditionally, a polynomial surface in R
n

is a function F :P → R
n, defined such that

x1 = F1(u, v),
. . . = . . .

xn = Fn(u, v),

for all (u, v) ∈ R
2, where F1(U, V ), . . . , Fn(U, V ) are polynomials in R[U, V ].

There are two natural ways to polarize the polynomials defining F . The first way is to polarize separately
in u and v. If p is the highest degree in u and q is the highest degree in v, we get a unique multiaffine map

f : (R)p × (R)q → R
n

of degree (p+ q) which is symmetric in its first p arguments and symmetric in its last q arguments, such that

F (u, v) = f(u, . . . , u︸ ︷︷ ︸
p

; v, . . . , v︸ ︷︷ ︸
q

).

We get what is traditionally called a tensor product surface, or as we prefer to call it, a bipolynomial
surface of bidegree 〈p, q〉 (or a rectangular surface patch). We also say that the multiaffine maps arising in
polarizing separately in u and v are 〈p, q〉-symmetric.

The second way to polarize is to treat the variables u and v as a whole. This way, if F is a polynomial
surface such that the maximum total degree of the monomials is m, we get a unique symmetric degree m
multiaffine map

f : (R2)m → R
n,

such that
F (u, v) = f((u, v), . . . , (u, v)︸ ︷︷ ︸

m

).

577
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We get what is called a total degree surface (or a triangular surface patch).

Using linearity, it is clear that all we have to do is to polarize a monomial uhvk. It is easily verified that
the unique 〈p, q〉-symmetric multiaffine polar form of degree p + q

fp,q
h,k(u1, . . . , up; v1, . . . , vq)

of the monomial uhvk is given by

fp,q
h,k(u1, . . . , up; v1, . . . , vq) =

1(
p
h

)(
q
k

) ∑
I⊆{1,...,p},|I|=h
J⊆{1,...,q},|J|=k

(∏
i∈I

ui

)∏
j∈J

vj


 .

The denominator
(

p
h

)(
q
k

)
is the number of terms in the above sum.

It is also easily verified that the unique symmetric multiaffine polar form of degree m

fm
h,k((u1, v1), . . . , (um, vm))

of the monomial uhvk is given by

fm
h,k((u1, v1), . . . , (um, vm)) =

1(
m
h

)(
m − h

k

) ∑
I∪J⊆{1,...,m}

|I|=h,|J|=k,I∩J=∅

(∏
i∈I

ui

)∏
j∈J

vj


 .

The denominator
(

m
h

)(
m − h

k

)
=
(

m
h k (m − h − k)

)
is the number of terms in the above sum.

As an example, consider the following surface known as Enneper’s surface:

F1(U, V ) = U − U3

3
+ UV 2

F2(U, V ) = V − V 3

3
+ U2V

F3(U, V ) = U2 − V 2.

We get the polar forms

f1((U1, V1), (U2, V2), (U3, V3)) =
U1 + U2 + U3

3
− U1U2U3

3

+
U1V2V3 + U2V1V3 + U3V1V2

3

f2((U1, V1), (U2, V2), (U3, V3)) =
V1 + V2 + V3

3
− V1V2V3

3

+
U1U2V3 + U1U3V2 + U2U3V1

3

f3((U1, V1), (U2, V2), (U3, V3)) =
U1U2 + U1U3 + U2U3

3
− V1V2 + V1V3 + V2V3

3
.
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19.2 Control Points For Triangular Surfaces

Given an affine frame ∆rst in the plane (where r, s, t ∈ P are affinely independent points), it turns out that
any symmetric multiaffine map f :Pm → E is uniquely determined by a family of (m+1)(m+2)

2 points (where
E is any affine space, say R

n). Let

∆m = {(i, j, k) ∈ N
3 | i + j + k = m}.

The following lemma is easily shown (see Ramshaw [141] or Gallier [70]).

Lemma 19.2.1 Given a reference triangle ∆rst in the affine plane P, given any family (bi, j, k)(i,j,k)∈∆m

of (m+1)(m+2)
2 points in E, there is a unique surface F :P → E of total degree m, defined by a symmetric

m-affine polar form f :Pm → E, such that

f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

) = bi, j, k,

for all (i, j, k) ∈ ∆m. Furthermore, f is given by the expression

f(a1, . . . , am) =
∑

I∪J∪K={1,...,m}
I,J,K pairwise disjoint

(∏
i∈I

λi

)(∏
j∈J

µj

)(∏
k∈K

νk

)
f(r, . . . , r︸ ︷︷ ︸

|I|

, s, . . . , s︸ ︷︷ ︸
|J|

, t, . . . , t︸ ︷︷ ︸
|K|

),

where ai = λir + µis + νit, with λi + µi + νi = 1, and 1 ≤ i ≤ m. A point F (a) on the surface F can be
expressed in terms of the Bernstein polynomials Bm

i,j,k(U, V, T ) = m!
i!j!k! U iV jT k, as

F (a) = f(a, . . . , a︸ ︷︷ ︸
m

) =
∑

(i, j, k)∈∆m

Bm
i,j,k(λ, µ, ν) f(r, . . . , r︸ ︷︷ ︸

i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where a = λr + µs + νt, with λ + µ + ν = 1.

For example, with respect to the standard frame ∆rst = ((1, 0, 0), (0, 1, 0), (0, 0, 1)), we obtain the fol-
lowing 10 control points for the Enneper surface:

f(r, r, r)(
2
3
, 0, 1

)
f(r, r, t)(
2
3
, 0,

1
3

) f(r, r, s)(
2
3
,
2
3
,
1
3

)
f(r, t, t)(
1
3
, 0, 0

) f(r, s, t)(
1
3
,
1
3
, 0

) f(r, s, s)(
2
3
,
2
3
,−1

3

)

f(t, t, t)
(0, 0, 0)

f(s, t, t)(
0,

1
3
, 0

) f(s, s, t)(
0,

2
3
,−1

3

) f(s, s, s)(
0,

2
3
,−1

)

A family N = (bi, j, k)(i,j,k)∈∆m
of (m+1)(m+2)

2 points in E is called a (triangular) control net, or Bézier
net . Note that the points in

∆m = {(i, j, k) ∈ N
3 | i + j + k = m},
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can be thought of as a triangular grid of points in P. For example, when m = 5, we have the following grid
of 21 points:

500

401 410

302 311 320

203 212 221 230

104 113 122 131 140

005 014 023 032 041 050

We intentionally let i be the row index, starting from the left lower corner, and j be the column index,
also starting from the left lower corner. The control net N = (bi, j, k)(i,j,k)∈∆m

can be viewed as an image of
the triangular grid ∆m in the affine space E . It follows from lemma 19.2.1 that there is a bijection between
polynomial surfaces of degree m and control nets N = (bi, j, k)(i,j,k)∈∆m

.

19.3 Control Points For Rectangular Surfaces

Given any two affine frames (r1, s1) and (r2, s2) for the affine line A, it turns out that a 〈p, q〉-symmetric
multiaffine map

f : (A)p × (A)q → E
is completely determined by the family of (p + 1)(q + 1) points in E

bi, j = f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

),

where 0 ≤ i ≤ p and 0 ≤ j ≤ q. The following lemma is easily shown (see Ramshaw [141] or Gallier [70]).

Lemma 19.3.1 Let (r1, s1) and (r2, s2) be any two affine frames for the affine line A, and let E be an
affine space (of finite dimension n ≥ 3). For any natural numbers p, q, for any family (bi, j)0≤i≤p, 0≤j≤q of
(p + 1)(q + 1) points in E, there is a unique bipolynomial surface F : A × A → E of degree 〈p, q〉, with polar
form the (p + q)-multiaffine 〈p, q〉-symmetric map

f : (A)p × (A)q → E ,

such that
f(r1, . . . , r1︸ ︷︷ ︸

p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

) = bi, j ,

for all i, 1 ≤ i ≤ p and all j, 1 ≤ j ≤ q. Furthermore, f is given by the expression

f(u1, . . . , up; v1, . . . , vq)

=
∑

I∩J=∅
I∪J={1,...,p}

K∩L=∅
K∪L={1,...,q}

∏
i∈I

(
s1 − ui

s1 − r1

)∏
j∈J

(
uj − r1

s1 − r1

) ∏
k∈K

(
s2 − vk

s2 − r2

)∏
l∈L

(
vl − r2

s2 − r2

)
b|J|, |L|.

A point F (u, v) on the surface F can be expressed in terms of the Bernstein polynomials Bp
i [r1, s1](u) and

Bq
j [r2, s2](v), as

F (u, v) =
∑

0≤i≤p
0≤j≤q

Bp
i [r1, s1](u)Bq

j [r2, s2](v) f(r1, . . . , r1︸ ︷︷ ︸
p−i

, s1, . . . , s1︸ ︷︷ ︸
i

; r2, . . . , r2︸ ︷︷ ︸
q−j

, s2, . . . , s2︸ ︷︷ ︸
j

).
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A family N = (bi, j)0≤i≤p, 0≤j≤q of (p + 1)(q + 1) points in E , is often called a (rectangular) control net,
or Bézier net . Note that we can view the set of pairs

p,q = {(i, j) ∈ N
2 | 0 ≤ i ≤ p, 0 ≤ j ≤ q},

as a rectangular grid of (p + 1)(q + 1) points in A × A. The control net N = (bi, j)(i,j)∈ p,q
, can be viewed

as an image of the rectangular grid p,q in the affine space E . The portion of the surface F corresponding
to the points F (u, v) for which the parameters u, v satisfy the inequalities r1 ≤ u ≤ s1 and r2 ≤ v ≤ s2, is
called a rectangular (surface) patch, or rectangular Bézier patch, and F ([r1, s1], [r2, s2]) is the trace of the
rectangular patch.

As an example, the monkey saddle is the surface defined by the equation

z = x3 − 3xy2.

It is easily shown that the monkey saddle is specified by the following rectangular control net of degree (3, 2)
over [0, 1] × [0, 1]:

sqmonknet1 = {{0, 0, 0}, {0, 1/2, 0}, {0, 1, 0}, {1/3, 0, 0},
{1/3, 1/2, 0}, {1/3, 1, -1}, {2/3, 0, 0}, {2/3, 1/2, 0},
{2/3, 1, -2}, {1, 0, 1}, {1, 1/2, 1}, {1, 1, -2}}

In the next section, we review a beautiful algorithm to compute a point F (a) on a surface patch using
affine interpolation steps, the de Casteljau algorithm.

19.4 The de Casteljau Algorithm and Subdivision

In this section, we quickly review how the de Casteljau algorithm can be used to subdivide a triangular
patch into three subpatches. For more details, see Farin [58, 57], Hoschek and Lasser [90], Risler [142], or
Gallier [70]. There are also versions of the de Casteljau algorithm for rectangular patches, but we will not
go into this topic in order to keep the size of this book reasonable. Again, readers are invited to consult
Farin [58, 57], Hoschek and Lasser [90], Risler [142], or Gallier [70].

Given an affine frame ∆rst, given a triangular control net N = (bi, j, k)(i,j,k)∈∆m
, recall that in terms of

the polar form f :Pm → E of the polynomial surface F :P → E defined by N , for every (i, j, k) ∈ ∆m, we
have

bi, j, k = f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

).

Given a = λr + µs + νt in P, where λ + µ + ν = 1, in order to compute F (a) = f(a, . . . , a), the computation
builds a sort of tetrahedron consisting of m + 1 layers. The base layer consists of the original control points
in N , which are also denoted as (b0

i, j, k)(i,j,k)∈∆m
. The other layers are computed in m stages, where at stage

l, 1 ≤ l ≤ m, the points (bl
i, j, k)(i,j,k)∈∆m−l

are computed such that

bl
i, j, k = λbl−1

i+1, j, k + µbl−1
i, j+1, k + νbl−1

i, j, k+1.

During the last stage, the single point bm
0, 0, 0 is computed. An easy induction shows that

bl
i, j, k = f(a, . . . , a︸ ︷︷ ︸

l

, r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
k

),

where (i, j, k) ∈ ∆m−l, and thus, F (a) = bm
0, 0, 0.



582 CHAPTER 19. POLYNOMIAL SURFACES

Assuming that a is not on one of the edges of ∆rst, the crux of the subdivision method is that the three
other faces of the tetrahedron of polar values bl

i, j, k besides the face corresponding to the original control
net, yield three control nets

Nast = (bl
0, j, k)(l,j,k)∈∈∆m

,

corresponding to the base triangle ∆ast,

N rat = (bl
i, 0, k)(i,l,k)∈∈∆m

,

corresponding to the base triangle ∆rat, and

N rsa = (bl
i, j, 0)(i,j,l)∈∈∆m

,

corresponding to the base triangle ∆rsa. If a belongs to one of the edges, say rs, then the triangle ∆rsa
is flat, i.e. ∆rsa is not an afine frame, and the net N rsa does not define the surface, but instead a curve.
However, in such cases, the degenerate net N rsa is not needed anyway.

From an implementation point of view, we found it convenient to assume that a triangular net N =
(bi, j, k)(i,j,k)∈∆m

is represented as the list consisting of the concatenation of the m + 1 rows

bi, 0, m−i, bi, 1, m−i−1, . . . , bi, m−i, 0,

i.e.,

f(r, . . . , r︸ ︷︷ ︸
i

, t, . . . , t︸ ︷︷ ︸
m−i

), f(r, . . . , r︸ ︷︷ ︸
i

, s, t, . . . , t︸ ︷︷ ︸
m−i−1

), . . . , f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
m−i−1

, t), f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
m−i

),

where 0 ≤ i ≤ m. As a triangle, the net N is listed (from top-down) as

f(t, . . . , t︸ ︷︷ ︸
m

) f(t, . . . , t︸ ︷︷ ︸
m−1

, s) . . . f(t, s, . . . , s︸ ︷︷ ︸
m−1

) f(s, . . . , s︸ ︷︷ ︸
m

)

. . . . . .

. . .

f(r, . . . , r︸ ︷︷ ︸
m−1

, t) f(r, . . . , r︸ ︷︷ ︸
m−1

, s)

f(r, . . . , r︸ ︷︷ ︸
m

)

The main advantage of this representation is that we can view the net N as a two-dimensional array net ,
such that net [i, j] = bi, j, k (with i+ j + k = m). In fact, only a triangular portion of this array is filled. This
way of representing control nets fits well with the convention that the affine frame ∆rst is represented as
follows:
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t s

r

a

Figure 19.1: An affine frame

Instead of simply computing F (a) = bm
0, 0, 0, the de Casteljau algorithm can be easily adapted to output

the three nets Nast, N rat, and N rsa.

Using the above version of the de Casteljau algorithm, it is possible to recursiveley subdivide a triangular
patch. It would seem natural to subdivide ∆rst into the three subtriangles ∆ars, ∆ast, and ∆art, where
a = (1/3, 1/3, 1/3) is the center of gravity of the triangle ∆rst, getting new control nets Nars, Nast and
Nart using the functions described earlier, and repeat this process recursively. However, this process does not
yield a good triangulation of the surface patch, because no progress is made on the edges rs, st, and tr, and
thus, such a triangulation does not converge to the surface patch. Thus, in order to compute triangulations
that converge to the surface patch, we need to subdivide the triangle ∆rst in such a way that the edges of
the affine frame are subdivided. There are many ways of performing such subdivisions, and we propose a
method which has the advantage of yielding a very regular triangulation and of being very efficient.

The subdivision strategy that we propose is to divide the affine frame ∆rst into four subtriangles ∆abt,
∆bac, ∆crb, and ∆sca, where a = (0, 1/2, 1/2), b = (1/2, 0, 1/2), and c = (1/2, 1/2, 0), are the middle points
of the sides st, rt and rs respectively, as shown in the diagram below:

t r

s

a

b

c

abt

bac

crb

sca

Figure 19.2: Subdividing an affine frame ∆rst
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It turns out that the four subpatches can be computed in four calls to the subdivison version of the
de Casteljau algorithm. Details of such an algorithm can be found in Gallier [70], as well as subdivison
algorithms for rectangular surfaces. The monkey saddle shown in figure 19.3 was obtained using a version
of the de Casteljau algorithm.
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Figure 19.3: A monkey saddle


