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Abstract

This paper presents a new algorithm for the convex hull problem, which is based on a
reduction to a combinatorial decision problem CompletenessC, which in turn can
be solved by a simplicial homology computation. Like other convex hull algorithms,
our algorithm is polynomial (in the size of input plus output) for simplicial or simple
input. We show that the “no”-case of CompletenessC has a certificate that can
be checked in polynomial time (if integrity of the input is guaranteed).

1 Introduction

Every convex polytope P ⊂ R
d can be described as the convex hull of a

finite set P of points or as the (bounded) set of solutions of a finite system
H of linear equations and inequalities [Ziegler(1995), Lect. 1]. In view of the
fundamental role that polytopes play in Euclidean geometry and hence for
any type of geometric computing, the conversion between the two types of
representations, known as the convex hull problem, is of key interest. It splits
into two separate tasks.

� An extended abstract version of this paper, “Polytope verification by homology
computation,” has appeared in the Proceedings of EuroCG, Berlin, March 26–28,
2001, pp. 142–145.
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The first task is the facet enumeration problem: Given a finite set of points
P ⊂ R

d, determine the combinatorial structure of its boundary. For this one
does not want to explicitly enumerate all the faces (the intersections of P with
supporting hyperplanes), but one wants sparser date, namely to compute a
minimal representation of the convex hull conv(P) in terms of equations and
(facet-defining) inequalities. Here the equations should describe the affine hull
aff(P ), while the additional inequalities correspond to the facets (faces of
codimension 1) of P . If P is full-dimensional in R

d, then the facet-defining
inequalities are unique up to scaling.

The second task is the vertex enumeration problem: Given a finite system H
of linear (equations and) inequalities, and provided that the set of solutions
P =

⋂H is bounded, compute the minimal set of points P whose convex hull
is P . This minimal set is unique; it consists of the vertices (0-dimensional
faces) of P .

The two tasks are dual to each other, via cone polarity. Thus if an LP-type ora-
cle (an algorithm which for a system of inequalities computes a solution, or for
a set of points computes a separating hyperplane, cf. [Grötschel et al.(1993)])
is available, every algorithm for the facet enumeration problem can also be
used for vertex enumeration, and vice versa.

The use of “oracles” is essential in the following. In our exposition, we at-
tempt to separate geometric from combinatorial data/algorithms, and thus
to separate the computational complexity of various sub-problems from the
main task. This is achieved by delegating the subproblems in terms of oracles
(in the sense of [Lovász(1986)] and [Grötschel et al.(1993)]). The complexity
model adopted is that oracle calls cost only one unit, independent of the ac-
tual complexity of the subproblem or of the algorithm used to solve it (that
is, to implement the subproblem). Thus, for example, the arithmetics of real
numbers is delegated to an oracle (as in [Lovász(1986), Part 1]), and calls to
such an oracle are counted as “the number of arithmetic operations.” Simi-
larly, LP-computations via an oracle cost one unit each, independent of the
still-not-resolved complexity status of linear programming. (Here polynomial
algorithms such as the ellipsoid method are available in the bit/Turing machine
model [Grötschel et al.(1993)], but there no provably strongly-polynomial al-
gorithm yet, whose running time would be bounded by a polynomial of num-
ber of arithmetic operations.) Thus, at the Symbolic Computation level of
“an LP-oracle available” the polynomial algorithms derived below are indeed
strongly-polynomial algorithms.

Despite the great interest in the convex hull problem, and despite the fact
that a number of different strategies and algorithms have been explored, im-
plemented and analyzed in detail (see the web page [Fukuda(2000)], as well as
[Avis(2001)], [Avis(2000)], [Fukuda(2003)], [Gawrilow and Joswig(1997–2003)],
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and [Gawrilow and Joswig(2001)] for implementations), the problem can be
considered “solved” neither in theory, nor in practice. If the dimension d is
fixed, Chazelle’s celebrated algorithm [Chazelle(1993)] gives an asymptoti-
cally worst-case optimal (polynomial time) theoretical solution. Its optimal-
ity is based on McMullen’s “Upper Bound Theorem” [McMullen(1970)] on
the maximal number of facets for a d-polytope with n vertices. However, for
any given convex hull problem, the output may be small, but it may also
be much larger than the input — indeed, it may be of exponential size, if
the dimension is not fixed. This is very relevant, since high-dimensional com-
putations occur in a variety of important applications. Thus one is asking
for a convex hull algorithm whose running time is bounded by a polyno-
mial in the size of “input plus output.” Such an algorithm would be called
output-sensitive. The analysis by Avis, Bremner and Seidel [Avis et al.(1997)]
shows that, unfortunately, none of the known types of convex hull algorithms
is output-sensitive. These can roughly be categorized as follows: Incremen-
tal and triangulation producing (e.g., Chazelle’s method), incremental with-
out triangulations (e.g., Fourier-Motzkin elimination [Ziegler(1995), Lect. 1]),
non-incremental (e.g., reverse search [Avis and Fukuda(1992)]). Note that, by
a result of Bremner [Bremner(1999)], only non-incremental methods can pos-
sibly be output-sensitive.

The purpose of this paper is to describe a new (non-incremental) convex hull
algorithm, based on a completely different principle. To this end, we first
present a (folklore) polynomial reduction of FacetEnumeration to the deci-
sion problem PolytopeVerification. Then we further reduce to the Com-
pleteness problem: Is a given description of a d-polytope by some of its
vertices and some of its facets complete, that is, are we given all the vertices
and all the facets? Looking at the convex hull problem via its reduction to
PolytopeVerification or Completeness automatically reveals its inher-
ent self-dual structure. It is an interesting feature that the Completeness
problem can be posed both with geometric input data and as an entirely
combinatorial problem CompletenessC, where only the incidences between
vertices and facets are given.

Let us just mention here one recent occurrence of the combinatorial complete-
ness problem: [McCarthy et al.(2002)] describes a situation where one wants
to know whether a given inequality description for a polytope is complete.
Moreover, the vertex coordinates in some of their problems are necessarily
non-rational, so any coordinate-free/combinatorial approach is welcome. Un-
fortunately, the most interesting case left “open” by McCarthy et al. (the
convex hull of the matrices corresponding to the Coxeter group H4) is a poly-
tope completeness problem in dimension d = 16 with 14,400 vertices: From
this data our method generates gigantic boundary matrices that are plainly
too large to process.
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We have further been informed by Samuel Fiorini (email, January 2002) that
he has successfully used a certificate for the “no”-case of CompletenessC
that is similar to the one that we describe in Section 6.

Our main contribution is an algorithm to attack the combinatorial Com-
pletenessC problem via deciding whether a certain simplicial homology
group of a certain abstract simplicial complex vanishes or not. Moreover, we
present a polynomially checkable certificate for non-completeness, provided
that the input is valid. For the geometric version the validity of the input can
be checked easily. Unfortunately, the complexity status for the homology com-
putation problem is open. The best currently available strategy to decide non-
triviality of the homology group in question seems to be to compute boundary
matrices and perform Gaussian elimination. Since the boundary matrices in
our algorithm can be exponentially large, we do not obtain an output-sensitive
method. However, like other methods (e.g., Avis and Fukuda’s reverse search
[Avis and Fukuda(1992)] or Seidel’s gift-wrapping algorithm [Seidel(1991)])
our algorithm is output-sensitive in the case of simplicial polytopes.

2 FacetEnumeration via PolytopeVerification

We start with a more formal description of the facet enumeration problem:

Problem 1 FacetEnumeration(e,P):
Input: integer e ≥ 0; finite set of points P ⊂ R

e.
Output: minimal description of conv(P) in terms of equations (for the affine
hull of P) and inequalities (one for each facet of conv(P))

It is well-known, see [Avis et al.(1997)], [Fukuda(2000), Node 21], and
[Kaibel and Pfetsch(2003), Problems 1–3], that FacetEnumeration has a
polynomial reduction to the polytope verification problem:

Problem 2 PolytopeVerification(e,P,H):
Input: integer e ≥ 0; finite set of points P ⊂ R

e; finite set H of closed half-
spaces in R

e

Output: answer yes/no to the question whether conv(P) =
⋂H

Freund and Orlin have shown that a related problem, to decide whether
⋂H ⊆

conv(P), is co-NP-complete [Freund and Orlin(1985)].
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3 PolytopeVerification via CompletenessG

Assuming that an LP-type oracle is available, the PolytopeVerification
problem is polynomially equivalent to the following geometric polytope com-
pleteness problem:

Problem 3 CompletenessG(d,V,F):
Input: integer d ≥ 0; finite set of points V ⊂ R

d; finite set F of closed half-
spaces in R

d, such that
• P := conv(V) is contained in Q :=

⋂F
• dim P = dim Q = d
• every v ∈ V defines a vertex of Q
• every F ∈ F defines a facet of P
Output: answer yes/no to the question whether P = Q

As in the case of PolytopeVerification, the roles of vertices and facets
are interchangeable for CompletenessG.

We sketch the reduction of PolytopeVerification to CompletenessG.
Given any input (e,P,H) for PolytopeVerification, set P := conv(P)
and Q :=

⋂H. Employ Gaussian elimination to determine dimP . Verify
whether all the inequalities in H are valid for P ; if this is not the case, then
P �⊆ Q, so we output no; otherwise P ⊆ Q is established. Now extract the set
H′ of all halfspaces from H for which P lies in the bounding hyperplane, that
is, all those inequalities which are tight on aff P . An LP-type oracle is suffi-
cient to check whether

⋂H′ = aff P ; if this is not the case, then we know that
dim Q > dim P , so we can output no. Otherwise we proceed by restricting the
input to aff P , that is, we deal with the situation where P is full-dimensional.

Now remove from H all the halfspaces which do not determine facets of P ; this
may be done using Gaussian elimination. (In the case P = Q, this removal
does not change Q; in the case P ⊂ Q, it may enlarge Q.) Similarly, we
now remove from P all those points which do not arise as intersections of
some bounding hyperplanes of halfspaces in H; again this may be done via
Gaussian elimination. (In the case of P = Q, this removal does not change P ;
in the case P ⊂ Q, we may lose vertices of P , thus making P smaller.)

Now we have prepared our input for CompletenessG. Indeed, the first two
conditions on the input are satisfied, the other two are easily checked: If one
of them fails, then output the answer no. �

Clearly, an LP-type oracle cannot be avoided in the reduction: The instance
CompletenessG(d, ∅,F) asks to decide whether

⋂F = ∅. This is known to
be strongly polynomially equivalent to finding an optimal solution of a linear
program, cf. [Grötschel et al.(1993)].
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4 CompletenessG via CompletenessC

The incidence matrix of a polytope P with vertex set V and facet set F is
defined to be the matrix

IP :=
(
iFv

)
F∈F ,v∈V ∈ {0, 1}F×V ,

where iFv = 1 if vertex v lies on the facet F (that is, if v ∈ F ), and iFv = 0
means that v /∈ F . This matrix is well-defined up to permutation of rows and
of columns, which corresponds to reordering V and F . A minor of a matrix will
refer to any submatrix obtained by possibly removing rows and/or columns.
A minor J of the incidence matrix IP is complete if J = IP . Thus we arrive
at the combinatorial polytope completeness problem:

Problem 4 CompletenessC(d, J):
Input: integer d ≥ 0; incidence matrix minor J of a d-polytope
Output: answer yes/no to the question whether J is complete

It is not obvious that this problem is well defined. However, from Theo-
rem 5 below it follows that there are no two d-polytopes P and P ′ such
that a 0/1-matrix J is both a complete incidence matrix for P and an in-
complete minor of an incidence matrix for P ′. (See also the related discussion
in [Joswig et al.(2001)].) It is clear that CompletenessG has a polynomial
reduction to CompletenessC.

It is essential to have the dimension among the input parameters of Com-
pletenessC. This is demonstrated by the following example [Ziegler(1995),
p. 71]:

JKM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0
1 1 0 0 0 0 1 1
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We can identify V = {1, 2, . . . , 8} and F = {1234, 1278, 1458, 2367, 3456, 5678}
with the sets of vertices and facets, respectively, of a 3-dimensional cube (in
a suitable “Klee-Minty” vertex numbering; see Figure 1(b) below). Conse-
quently, CompletenessC(3, JKM) = yes. But we can also identify V with
the vertices of a cyclic 4-polytope C4(8). Then each element in F corresponds
to a facet of C4(8), according to Gale’s evenness criterion. Hence Complete-
nessC(4, JKM) = no, since C4(8) has 20 facets.

A more generic class of examples for which the dimension information is needed
arises from the prism construction: Let P be an arbitrary d-polytope and
P ′ = P × [0, 1] the prism over P . The facets of P ′ are P × {0}, P × {1},
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and the products of facets of P with the interval [0, 1]. Call the latter facets
of P ′ vertical, and let JP be an incidence matrix of P . We have Complete-
nessC(d, JP ) = yes. On the other hand JP is also a minor of an incidence
matrix of P ′, which corresponds to the vertical facets and, say, the vertices in
the bottom facet P × {0}. Therefore, CompletenessC(d + 1, JP ) = no.

5 CompletenessC via simplicial homology

We will point out that CompletenessC has a topological core. The reader
is referred to [Björner(1995)] for a survey of topological combinatorics tools,
and to the appendix for a brief introduction to simplicial homology. In the
following we will use reduced simplicial homology with coefficients in Z2. One
could use any other commutative coefficient ring with unit, but Z2 is the
natural choice in terms of efficiency and simplicity.

Let J ∈ {0, 1}F×V be an incidence matrix minor of some polytope P with
vertex set V ′ ⊇ V and facet set F ′ ⊇ F . Thus the columns of J are in
bijection with a (partial) vertex set V of P . Each row of J is the characteristic
vector of a subset of columns, i.e., of a subset of V. Thus in the following
we interpret J as a combinatorial encoding of a system F of (not necessarily
distinct) subsets of V, and with slight abuse of notation we write F ⊆ 2V . The
crosscut complex of J is the simplicial complex

Γ(J) :=
(
V,

⋃ {
2F : F ∈ F

})
,

the simplicial complex of all sets of vertices that are contained in some facet
in F . If P is simplicial and J is complete, then the crosscut complex coincides
with the boundary complex of P .

Before we state and prove our main result we shall discuss the small cases,
where d ≤ 2, directly. A 1-dimensional polytope is a line segment [v, w] with
two vertices v and w, which happen to be also the facets. Its boundary is
S

0 = {v, w}, and we have H̃0(S
0; Z2) ∼= Z2. A proper partial 1-polytope has

one vertex and one facet; its crosscut complex is a single point, and the reduced
homology in dimension 0 vanishes. A 2-dimensional polytope is an n-gon; its
boundary is the n-cycle, homeomorphic to S

1, and we have H̃1(S
1; Z2) ∼= Z2. A

proper partial 2-polytope is the disjoint union of edge paths, each of which is
contractible. Hence the first homology of a proper partial 2-polytope vanishes.
The same reasoning applies if we replace Z2 by any other coefficient ring.

For an example of the crosscut complex of a partial 3-polytope see Figure 1(a).

Theorem 5 The incidence matrix minor J ∈ {0, 1}F×V of a d-polytope is
complete if and only if H̃d−1(Γ(J); Z2) �= 0.
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PROOF. The set

Π(P, J) :=
⋃

F∈F
conv{v ∈ V : v ∈ F} ⊆ ∂P

is a compact subset of the boundary of P : For every “given” facet F of P ,
it contains the convex hull of all “given” vertices. Thus Π(P, J) is a poly-
hedral complex, called a partial polytope, covered by its convex (and hence
contractible) cells conv{v ∈ V : v ∈ F}. According to the nerve theorem
[Björner(1995)], the crosscut complex Γ(J) has the same homotopy type as
the set Π(P, J). In particular, the homology of the set Π(P, J) and of the
crosscut complex coincide.

In the yes case, if the sets of vertices and facets both are complete, Π(P, J)
is the complete boundary of P , homeomorphic to S

d−1, and therefore we have
H̃d−1(Γ(F); Z2) ∼= Z2.

In the no case, if the vertex or the facet list is incomplete, then Π(P, J) is a
proper subset of ∂P , which is a subcomplex of a suitable triangulation of ∂P ,
so it cannot have (d − 1)-dimensional homology. �

One might be tempted to ask: Why work with the crosscut complex instead of
a triangulation of Π(P, J)? However, in general, such a triangulation cannot
derived from the input to CompletenessC nor from the input to Com-
pletenessG; see [Joswig et al.(2000)].

The complexity status of the problem to compute the rank of an arbitrary
homology group, or even to decide whether a certain homology group van-
ishes, seems to be open; see [Kaibel and Pfetsch(2003), Problem 33]. Thus
currently our best option is based on explicitly computing simplicial homol-
ogy via boundary matrices, as in Algorithm 1.

For a brief introduction to simplicial homology including an explicit definition
of the k-th boundary matrix ∂k see the Appendix.

Algorithm 1 CompletenessViaHomology(d, J)
Input: integer d ≥ 0; an incidence matrix minor J of a d-polytope
Output: answer yes/no to the question whether J is complete

(1) generate Z2-boundary matrices ∂d and ∂d−1 for Γ(J)
(2) if dimZ2 ker ∂d−1 > rankZ2 ∂d then

return yes
else

return no

To estimate the costs of this computation, suppose that n = |V|, m = |F|,
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and that the maximum cardinality of any facet equals s. Thus J ∈ {0, 1}m×n,
and every row of J contains at most s ones. Then the size of the relevant
boundary matrices is bounded from above by

(
s

d+1

)
m ×

(
s
d

)
m and

(
s
d

)
m ×(

s
d−1

)
m, respectively. We use Gaussian elimination over Z2 to compute the

rank and the corank, respectively.

Corollary 6 The algorithm CompletenessViaHomology(d, J) has a poly-
nomial running time if s is bounded by d + c, for an absolute constant c ≥ 0.

The corollary refers to an interesting case: A d-polytope is simplicial if each
proper face is a simplex or, equivalently, each facet contains exactly d ver-
tices. We infer that the running time of CompletenessViaHomology for
simplicial polytopes is bounded by O(dm3).

It has been observed [Bremner et al.(1998)] that FacetEnumeration for a
polytope P is polynomially equivalent to FacetEnumeration for the dual
polytope P ∗. Using our techniques, a similar result can be obtained directly. If
I is an incidence matrix for P , then the transposed matrix Itr is an incidence
matrix for P ∗. Any minor J of I is complete if and only if its transpose
is a complete minor of Itr. This leads to the following modification of our
algorithm. While s was defined above as the maximal row size of the input
incidence matrix minor, define

s′ := min{maximal row size, maximal column size}.

Thus we modify our algorithm: It should first compare the sizes of the primal
and the dual problem, and then perform the (reduced) homology computa-
tion for the smaller problem. The modified algorithm CompletenessVia-
Homology(d, J) has polynomial running time if s′ is bounded by “d plus a
constant.” In particular, this yields an O(d(n + m)3)-algorithm for the Com-
pletenessC problem specialized to polytopes which are simplicial or simple,
that is, dual to a simplicial polytope.

We note, however, that these running times are neither optimal nor the best
available: The reverse search algorithm [Avis and Fukuda(1992)] computes the
convex hull (and thereby solves CompletenessG) of a simplicial polytope
in O(dnm) steps.

6 A Certificate for Incompleteness

Let P be a d-polytope with ordered vertex set V ′ = {v1, . . . , vn} and facet
set F ′. Inductively, define a sequence ∆0, . . . , ∆n of polytopal subdivisions of
the boundary complex ∂P : Set ∆0 := ∂P . In order to obtain ∆k replace each
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facet F of ∆k−1 which contains vk by the set of cones with apex vk over those
facets of F which do not contain vk. The final subdivision is a triangulation
∆(P ) := ∆m of ∂P , the pulling triangulation [Lee(1997)] with respect to the
chosen ordering of V ′. For an example of a pulling triangulation see Figure 1(b).

(a) The (3-dimensional) crosscut com-
plex of some partial 3-cube C. The
two quadrangle faces of C yield tetra-
hedra in Γ(C), which are displayed al-
most flat. The crosscut complex is ho-
motopy equivalent to S

1 and hence the
second homology group vanishes.

1

2

3

4

5

6

7
8

(b) The pulling triangulation of the
boundary of a 3-cube with respect to
a “Klee-Minty” vertex ordering. The
facet {1, 7, 8} of the triangulation cor-
responds to the flag {8} ⊂ {7, 8} ⊂
{1, 2, 7, 8} of the cube.

Fig. 1. Crosscut complex and pulling triangulation.

The pulling triangulation of ∂P has several nice properties (not shared, for
example, by the “placing triangulation”) that may be exploited for our pur-
poses. First, its combinatorics is determined by the combinatorics of P ; see
below. Furthermore, if we use a linear ordering of the vertex set V ′ in which
the vertices in V ⊆ V ′ come first, then the corresponding pulling triangulation
of the boundary of P contains a triangulation of Π(P, J) as a subcomplex.

Let us now identify the vertex set V ′ with the set [n] = {1, . . . , n} and each
facet F ∈ F ′ with the subset of [n] that corresponds to the vertices of F .
Thus any triangulation of ∂P is encoded by a collection of d-subsets of [n],

that is, to a subset of
(

[n]
d

)
. We write {v1, . . . , vd}< for a d-subset of [n] with

v1 < v2 < · · · < vd.

Lemma 7 Let P be a d-polytope whose vertex set is labeled by [n].

Then a set {v1, . . . , vd}< ∈
(

[n]
d

)
corresponds to a facet of the pulling triangu-

lation of ∂P (with respect to the chosen vertex labeling) if and only if there is
a complete flag of faces

∅ ⊂ G0 ⊂ G1 ⊂ . . . ⊂ Gd−1 ⊂ P,
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such that vi is the smallest vertex in Gd−i for 1 ≤ i ≤ d, that is, if there are
facets F1, . . . , Fd of P such that

vi = min(F1 ∩ . . . ∩ Fi)

for 1 ≤ i ≤ d.

PROOF. Every pulling facet {v1, . . . , vd}< lies in a facet F1 = Gd−1 of P ,
with v1 = min Gd−1. It is a cone with apex v1 and base Gd−2 ⊂ Gd−1. The
existence of the rest of the maximal flag (Gi)0≤i<d follows recursively. Given
the flag, the existence of the facets F1, . . . , Fd follows [Ziegler(1995), Lect. 2].
(Given a complete flag, the corresponding sequence of facets Fi is uniquely
determined if P is simple, but not in general.) �

If we have an arbitrary incidence matrix minor J of a d-polytope P , then
we can read the combinatorial characterization of the pulling triangulation
from Lemma 7 as the definition of a complex that coincides with the pulling
triangulation of ∂P in case J is complete, but that is well-defined in general:

Definition 8 Given an integer d > 0 and a 0/1-matrix J ∈ {0, 1}m×n, which
we interpret as the incidence matrix of a set system F ⊆ 2[n], the pulling
complex of d and J is

∆(d, J) :=
{
{v1, . . . , vd}< ∈

(
[n]
d

)
: there are F̄1, . . . , F̄d ∈ F such that

vi = min(F̄1 ∩ . . . ∩ F̄i) for 1 ≤ i ≤ d
}
.

Lemma 9 Let P be a d-dimensional polytope with vertex set V ′ and facet set
F ′, and let J be a incidence matrix minor corresponding to subsets V ⊆ V ′

and F ⊆ F ′. Let P̄ ⊆ P be the convex hull of the vertices in V. Fix a linear
ordering on the vertex set V ′ such that the vertices in V come first.

Then the simplicial complex ∆(d, J) is a subcomplex of ∆(P ) as well as of
∆(P̄ ). In particular, ∆(d, J) is a proper subcomplex of ∆(P ), unless the minor
J is complete, that is, J = IP . In the incomplete case ∆(d, J) may even be
empty.

PROOF. Let {v1, . . . , vd}< ∈ ∆(d, J), then there are F̄1, . . . , F̄d ∈ F such
that vi = min(F̄1 ∩ . . .∩ F̄i). Since J is an incidence matrix minor of P , there
are facets Fi ⊇ F̄i of P , and by the assumption on the vertex ordering the
vertices in F̄i come first, so min(F̄1 ∩ . . . ∩ F̄i) = min(F1 ∩ . . . ∩ Fi), which
yields {v1, . . . , vd}< ∈ ∆(P ).
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Now P̄ = conv(V), and the F̄i = Fi∩V are vertex sets of faces (not necessarily
facets) of P̄ . If the vertices vi = min(F̄1 ∩ . . . ∩ F̄i) are distinct, then the
faces F̄1 ∩ . . . ∩ F̄i form a complete flag in the face lattice of P̄ , and thus
{v1, . . . , vd}< ∈ ∆(P̄ ), by Lemma 7. �

In particular, ∆(d, J) triangulates a subset of the complex Π(P, J) that ap-
pears in the proof of Theorem 5.

Now we present a polynomially-checkable certificate for the case that J is
incomplete. Note, however, that this result does not prove that Complete-
nessC is in co-NP: We are not able to check (in polynomial time) whether the
input is valid, that is, whether J is actually an incidence matrix minor of some
d-polytope. On the other hand, we could derive that CompletenessG is in
co-NP, but that is clear anyway, since any missing facet provides a certificate.

Theorem 10 Any no instance of the problem CompletenessC(d, J) has a
certificate that can be verified in polynomial time.

PROOF. The minor J is incomplete if and only if the pulling complex ∆(d, J)
is not a complete triangulation of a d-polytope boundary. Two cases arise.
The first one is if ∆(d, J) = ∅, in which case Algorithm 2 described below will
certify in polynomial time that J is not complete.

The second case is if ∆(d, J) is non-empty but incomplete. In this case (since
the dual graph of the pulling triangulation ∆(P ) is connected) there is a
facet {v1, . . . , vd} ∈ ∆(d, J) together with an index i such that there is no
second facet of ∆(d, J) that contains {v1, . . . , vd} \ {vi}. In this situation our
certificate is the set {v1, . . . , vd} \ {vi}. Calling IsPullingFacet for every
d-subset of [n] which contains the certificate, this certificate can be verified in
polynomial time, since there are n − d + 1 of these subsets. �

Now we proceed by describing the two subroutines needed for Theorem 10.
The first one is Algorithm 2: Given an incidence matrix minor J it either finds
a facet of ∆(d, J) in polynomial time or it detects that J is incomplete. The
correctness follows from Lemma 7. Our specific formulation of the algorithm
produces a pulling triangulation facet which does not contain 1: This restric-
tion does not hurt, since ∆(d, J) must contain such a facet if J is complete.

Algorithm 2 FindPullingFacet(d, J)
Input: incidence matrix minor J ∈ {0, 1}m×n of a d-polytope;

d-tuple {v1, . . . , vd}< ∈
(

[n]
d

)
; (d, J) as above

Output: a facet {v1, . . . , vd} ∈ ∆(d, J), or incomplete
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(1) S ← [n]
(2) for each i from 1 to d do

Fi ← any F ∈ F such that
min S /∈ F , F ∩ S �= ∅, and |F ∩ S| is maximal

if no such facet exists then
return incomplete

S ← S ∩ Fi

vi ← min S
(3) return {v1, . . . , vd}<

Our second subroutine, Algorithm 3, checks whether a given set of d vertices is
a facet of the pulling complex ∆(d, J) or not. Its correctness again follows from
the characterization in Lemma 7. Its running time is bounded by O(d(n+m)).

Algorithm 3 IsPullingFacet(d, J, {v1, . . . , vd}<)
Input: (d, J) as above
Output: answer yes/no to the question whether {v1, . . . , vd} ∈ ∆(d, J)

(1) for each i from d downto 1 do
compute the set Fi of all facets (i.e., rows of J) that

contain {vi, . . . , vd}
(2) for each i from 1 to d do

Fi ← any F ∈ Fi with vi = min(F1 ∩ . . . ∩ Fi−1 ∩ F )
if no such F exists then

return no
(3) return yes

We close our discussion with a pointer to a specific special case: It would
be interesting to know whether Completeness(d, J) has a polynomial time
solution for the very special case where J has all columns and lacks at most
one row.
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Appendix: Simplicial Homology in a Nutshell

Let V be a finite ordered set. An (abstract) simplicial complex on V is a
non-empty subset ∆ ⊆ 2V which is closed with respect to forming subsets. A
k-face σ is an element of ∆ of cardinality k+1; we then define dim σ = k. The
dimension of ∆ is dim ∆ = max{dim σ | σ ∈ ∆}. The number of k-dimensional
faces of ∆ is fk(∆), with f−1(∆) = 1 corresponding to the empty set, and
fk(∆) = 0 for k < −1 or k > dim ∆.

Let R be an arbitrary commutative ring with unit, and let Ck(∆; R) be the
free R-module generated by the set of k-faces of ∆. The elements of Ck(∆) are

15



called k-chains. We define the boundary of a k-face σ = {v0, . . . , vk}, where
v0 < v1 < · · · < vk, to be the (k − 1)-chain

∂σ =
k∑

i=0

(−1)i{v0, . . . , vi−1, vi+1, . . . , vk}.

This map has a unique R-linear extension ∂k : Ck(∆; R) → Ck−1(∆; R). The
empty set generates C−1(∆; R), and ∂0 is surjective. By definition Ck(∆; R) =
{0} for k < −1 or k > dim ∆. The k-cycles Zk(∆; R) = ker ∂k and the k-
boundaries Bk(∆; R) = im ∂k+1 are free R-modules. For any (k+1)-face τ one
can verify that ∂k(∂k+1τ) = 0, and hence Bk(∆; R) ⊆ Zk(∆; R). The quotient

H̃k(∆; R) = Zk(∆; R)/Bk(∆; R)

is the k-th reduced homology module of ∆ with coefficients in R.

We summarize some key properties of (reduced simplicial) homology: If ∆
is homotopy equivalent to ∆′, then H̃k(∆; R) ∼= H̃k(∆

′; R) for all k. If ∆ is
connected, then H̃0(∆; R) = 0. If ∆ is a triangulation of the d-sphere S

d, then
H̃d(∆; R) ∼= R, and all other reduced homology modules vanish.

In our application, we are solely interested in the case where R = Z2 is a
field. Then Ck(∆; Z2) is a Z2-vector space of dimension fk(∆), the boundary
operator ∂k is given by a Z2-matrix of size fk−1(∆)× fk(∆), and H̃k(∆; Z2) is
a vector space of dimension

dimZ2 Zk(∆; Z2) − dimZ2 Bk(∆; Z2) = fk(∆) − rankZ2 ∂k − rankZ2 ∂k+1.

The reader is referred to the monograph [Munkres(1984)] for a detailed pre-
sentation.
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