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Abstract

A convex polytope P can be speci�ed in two ways� as the convex hull of the vertex set V of
P � or as the intersection of the set H of its facet�inducing halfspaces
 The vertex enumeration

problem is to compute V from H
 The facet enumeration problem it to compute H from V 

These two problems are essentially equivalent under point�hyperplane duality
 They are among
the central computational problems in the theory of polytopes
 It is open whether they can be
solved in time polynomial in jHj� jVj


In this paper we consider the main known classes of algorithms for solving these problems

We argue that they all have at least one of two weaknesses� inability to deal well with �degen�
eracies�� or� inability to control the sizes of intermediate results
 We then introduce families of
polytopes that exercise those weaknesses
 Roughly speaking� fat�lattice or intricate polytopes
cause algorithms with bad degeneracy handling to perform badly� dwarfed polytopes cause al�
gorithms with bad intermediate size control to perform badly


We also present computational experience with trying to solve these problem on these hard
polytopes� using various implementations of the main algorithms


� Introduction

A d�dimensional convex polyhedron is the intersection of a �nite number m of non�redundant halfs�
paces H � fH��H�� � � � �Hm g of IRd� A bounded convex polyhedron is called a polytope� A classic
theorem from convexity states that every polytope P can be expressed as the convex hull of its
n extreme points �or vertices� V� These descriptions of P will be referred to as the halfspace and
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vertex descriptions� respectively� The size of a polytope� denoted size�P � � �m� n�d� is the space
required to store both descriptions of a polytope� There are three closely related computational
problems concerning the two descriptions of a polytope	

� The vertex enumeration problem asks to compute V from H�

� The facet enumeration problem asks to compute H from V�
� The polytope veri�cation problem asks to decide whether a given vertex description V and

halfspace description H de�ne the same polytope�

If redundant elements are allowed as inputs to the polytope veri�cation problem� then
all three problems are polynomially equivalent� The �rst two problems are equivalent under
point
hyperplane duality� Either of the �rst two can be trivially used to solve the third� To
solve e�g� vertex enumeration using polytope veri�cation� verify that all vertices have been found
for each facet of P � If not� recurse on that facet� In at most djHj polytope veri�cation calls� the
algorithm �nds a new vertex�

This paper will not be concerned with the polytope veri�cation problem per se� but with vertex
enumeration and facet enumeration� We already stated that these two problems are essentially
equivalent under point
hyperplane duality� Thus it would su�ce if we restricted the discussion
to just one of those two� However� some aspects and phenomena are more easily described in the
context of facet enumeration� others more easily in the context of vertex enumeration� For that
reason we will feel free to switch back and forth between those two problems� with the understanding
that all examples and results stated for vertex enumeration also hold� appropriately dualized� for
the facet enumeration problem� and vice versa� However� most of the ensuing discussions will be
in terms of vertex enumeration��

We are interested in the computational di�culty of vertex enumeration� When measuring the
e�ciency of a vertex enumeration algorithm it is important to take into account the vast possible
variation in output size� By the upper and lower bound theorems of McMullen �
�� and Barnette ���
a polytope P speci�ed as the intersection of m halfspaces in IRd can have as few as

��d�m� � �m� d��d � �� � 


vertices �in the non�simple case even fewer� and as many as

��d�m� �

�
m� b�d� ���
c

bd�
c

�
�

�
m� b�d� 
��
c
b�d� ���
c

�
�

This large possible range suggests that the performance of vertex enumeration algorithms be mea�
sured not only in terms of input size dm but also in terms of output size dn� where n is the number
of vertices produced�

An outstanding question from both a theoretical and a practical point of view is whether vertex
enumeration can be solved in time polynomial in input size dm and output size dn� or equivalently�
polynomial in size�P � � d�m � n�� One of the central purposes of this paper is to show that all
known main types of vertex enumeration algorithms actually do have superpolynomial worst case

�Actually� in some ways it would be more elegant to apply homogenization and frame our discussion in terms of
extreme ray and facet enumeration for polyhedral cones� We will refrain from doing so� mainly since the a
ne setting
provides better intuition� For the most part we will ignore the issue of unboundedness and extreme rays� although it
has some aspects that are interesting in their own right�






running time� This is done by providing explicit example families of polytopes for which the various
algorithms perform poorly� We also corroborate those �ndings by computational experiments�

At this point a comparison to the situation in Linear Programming may be called for� Ob�
viously Linear Programming and vertex enumeration are closely related� The title of our paper
was inspired by the famous paper of Klee and Minty �
�� where they showed that the simplex
algorithm with a certain natural pivoting rule can have superpolynomial running time� Our goal
is more ambitious in that we want to show superpolynomial running time not just for one speci�c
algorithm but for all known main classes of vertex enumeration algorithms� At the same time our
�ndings are more devastating� since in contrast to the simplex algorithm� which on problems arising
in practice essentially never exhibits its possible worst case behaviour� our experience suggests that
vertex enumeration algorithms do exhibit their superpolynomial worst case behaviour on problems
arising in practice �see e�g� ��� 
���� Fortunately vertex enumeration as a problem arises much less
frequently than linear programming� Still� we want to stress that contrary to prevailing opinions
in the computational geometry community� the current situation with respect to vertex and facet
enumeration is unsatisfying both in the practical and in the theoretical sense� In Linear Program�
ming the current state of a�airs appears to be somewhat satisfactory for practical purposes �and
of course from a theoretical point of view there are polynomial algorithms for Linear Programming
in the bit model of computation��

��� The main algorithms

Geometrically the main vertex enumeration algorithms can all be viewed as not just generating all
vertices of a polytope P but actually the ��skeleton of P � i�e� the graph formed by P �s vertices
and edges� Dually� facet enumeration algorithms can be viewed as generating the �facet graph��
i�e� a graph whose nodes are the facets of the polytope and with two facets adjacent i� they share
a common ridge�

In essence there are only two main classes of algorithms for producing these graphs	 graph

traversal algorithms and incremental algorithms�
The graph traversal algorithms �rst �nd some node of the graph in question and then attempt

to identify all nodes and edges of the graph by traversing it in some fashion� In the case of vertex
enumeration each vertex v of a d�polytope P can be identi�ed by a basis� i�e� d facets that contain
v and whose spanning hyperplanes are a�nely independent� Two vertices of P are connected by
an edge of P if they have bases that di�er in exactly one member� Going from a vertex to an
adjacent one during the graph traversal amounts to changing this one member of the basis� This
operation is known as pivoting in the simplex algorithm for linear programming� For this reason
graph traversal algorithms for vertex enumeration are also known as pivoting algorithms� In the
context of facet enumeration going from one facet to a neighboring can be viewed as rotating a
supporting hyperplane about the common ridge� In analogy to a ��dimensional physical realization
this operation is therefore known as a gift�wrapping step�

Representatives of this class of graph traversal algorithms are the gift wrapping algorithm
of Chand and Kapur ����� Seidel�s algorithm ���� and the reverse search algorithm of Avis and
Fukuda ����

Incremental algorithms for the vertex enumeration problem compute the vertex description by
intersecting the de�ning halfspaces sequentially� An initial simplex is constructed from a subset of
d�� halfspaces and its vertices and ��skeleton are computed� Additional halfspaces are introduced
sequentially and the vertex description and ��skeleton are updated at each stage� Essentially such an
update amounts to identifying and removing all vertices that are not contained in the new halfspace�
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introducing new vertices for all intersections between edges and the bounding hyperplane of the
new halfspace� and generating the new edges between these new vertices� Although the �rst explicit
description of such an algorithm� now widely known as the double description method � appeared
in the pioneering ���� paper of Motzkin et al� ����� this paper seems to have been overlooked by
the Computational Geometry community� Many of the same ideas were rediscovered and re�ned
in the beneath and beyond method of Seidel ���� �in the facet enumeration setting�� the randomized
algorithm of Clarkson and Shor ���� and the derandomized algorithm of Chazelle ����� Finally we
should mention that so�called Fourier�Motzkin elimination can be viewed just as a dual formulation
of the double description method and thus falls in the class of incremental algorithms�

All incremental algorithms can employ di�erent insertion orders� One can distinguish between
static insertion orders� which are determined from the inputs before the actual incremental algo�
rithm is started� and dynamic insertion orders� where the next halfspace �vertex� to be considered is
a function of the current polytope and the remaining halfspaces �vertices�� Typical static orderings
are minindex �process in order as the input happens to be�� lexicographic �process halfspaces in
lexicographic order of their suitably normalized coe�cient vectors�� and random� Typical dynamic
orderings are maxcuto� and mincuto� �as next halfspace choose the one whose complement con�
tains the most or least vertices of the current polytope�� As we shall see� the same algorithm
applied to the same input can have vastly di�erent running times when di�erent insertion orders
are used� Thus choosing a good insertion order is crucial� As a manifestation of this consider the
incremental algorithms of Seidel ���� and of Chazelle ����� If performance is measured only in terms
of input size and the dimension d is kept �xed� then these algorithms are asymptotically worst
case optimal �for even d in case of ����� and for general d in case of ������ Seidel�s algorithm relies
crucially on the use of a lexicographic insertion order� The biggest part of Chazelle�s algorithms is
the determination of a very sophisticated dynamic insertion order�

One of the main obstacles to achieving polynomiality in size�P � is degeneracy � In the case of
vertex enumeration this means more than d facets contain a vertex and hence vertices do not have
a unique basis� the polytope is not simple and vertices can be incident to more than d edges� For
pivoting algorithms this creates problems since a non�simple polytope may have many more bases
than vertices� and a naive pivoting algorithm visits every basis� For facet enumeration� degeneracy
dualizes to having more than d vertices contained in a facet� Many incremental facet enumeration
algorithms �e�g� ���� ��� ���� require that the intermediate polytopes be simplicial �or equivalently
triangulated� in order to e�ciently �i�e� not just in polynomial time� �nd the new ridges�

There are two general methods to deal with degeneracy� They apply equally well to pivoting
and to insertion algorithms� The �rst method is to generalize the algorithm so that it generates
the entire face lattice of the polytope� We call such algorithms lattice producing � Examples are the
gift wrapping algorithm of Chand and Kapur ����� Swart ����� Seidel ����� ����� ����� and Rote ��
��

The second method employs perturbations in order to simulate non�degeneracy� Since in the case
of facet enumeration perturbing the input vertices results in triangulating the facets we call such
algorithms triangulation producing � All algorithms that work correctly in the non�degenerate case
are amenable to the perturbation method� One advantage of triangulation producing algorithms
is that they can easily be adapted to compute the volume of a polytope� Using the reverse�search
technique of Avis and Fukuda ��� one can compute the volume of a polytope using space linear in
the input size�

The only exception to the classi�cation �lattice producing� versus �triangulation producing�
appears to be the double description method of Motzkin et al� ����� This incremental method does
not maintain an explicit description of the ��skeleton� but maintains the incidence information
between facets and vertices� from which adjacency information between vertices can be recovered�
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This method appears to deal surprisingly well with degenerate inputs�
In summary� we have classi�ed algorithms along two lines� We have graph traversal algorithms

versus incremental algorithms �with various insertion orders�� And we have lattice producing
algorithms versus triangulation producing algorithms� plus the special case of the double description
method �which happens to be an incremental algorithms��

��� The example polytope families

We consider three classes of polytopes	 fat�lattice polytopes� intricate polytopes� and dwarfed

polytopes� Loosely speaking� a fat�lattice polytope P is one for which the total number of its faces
�of all dimensions� is �much larger� than size�P �� An intricate polytope P is one for which the
number of simplices required to triangulate all of its facets is �much larger� than size�P �� Finally�
a dwarfed polytope P is one that can be represented as Q �H� where P has one more facet than
Q but size�Q� is �much larger� than size�P ��

We now make precise what we mean by the term �much larger�� Given some function A of
m � jHj� n � jVj� and the dimension d� we say that A is �much larger� than size�P � if it is
superpolynomial in size�P � i�e� if A is not bounded by any polynomial in m� n� and d� and hence
not by any polynomial in size�P ��

For all three types of polytopes� fat�lattice� intricate� and dwarfed� we provide example families
of two kinds� uniparametric� and biparametric� A uniparametric family F comprises d�polytopes P
of arbitrarily large dimension d but with size�P � a function of d� A biparametric family contains
for in�nitely many d � IN a subfamily Fd that comprises d�dimensional polytopes P with size�P �
arbitrarily large�

Note that if for the individual subfamilies Fd of a biparametric family F we have only the
polynomial bounds A � ��size�P �cd�� then� considering all of F � it is still the case that �A is much
larger than size�P ��� provided that cd is arbitrarily large with d large enough� �Also note that the
asymptotic expression ��size�P �cd� makes sense� since Fd contains polytopes of arbitrarily large
size��

It will be easy to argue that lattice producing algorithms behave badly on fat�lattice polytopes�
and triangulation producing algorithms behave badly on intricate polytopes� According to our clas�
si�cation this leaves only the double description method uncovered� However this is an incremental
method and we will show that incremental algorithm behave badly on our dwarfed polytopes� if they
employ one of the usual static insertion order or the dynamic mincuto� insertion order� If they use
the dynamic maxcuto� insertion order� then they seem to behave badly on our intricate polytopes�
although we can prove this only for one speci�c uniparametric family of intricate polytopes�

��� Previous work

There has been some work by Dyer ���� and by Swart ����� showing that incremental algorithms
can potentially have very bad behaviour� They built on examples of Kirkman �
�� and Klee �
���
However� they did not pursue a detailed study of the various possible insertion orders� and in
particular ignored dynamic insertion orders� Moreover� our examples are more extreme and more
easily speci�ed as the ones in those references� There is a sizeable literature on polytope degeneracy�
mostly in the context of linear programming� A �selected bibliography� by Gal �
�� contains
�
� references� Of particular interest from a vertex enumeration point of view are the following�
Provan ���� showed that there are network polytopes that yield a superpolynomial number of
perturbed vertices under lexicographic perturbation �and also provided a polynomial algorithm in
our sense for enumerating the vertices of network polytopes�� Armand ��� showed that �in the
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worst case�� perturbing the m � d facets adjacent to a single vertex can yield ��d�m�� �m�d���
vertices� Here we consider classes of polytopes whose best perturbation is superpolynomial�

��� Organization of the paper

In Section 
 we brie�y review basic properties of convex polytopes� In Section � we introduce
our example classes of polytopes and derive their properties� In Section � we discuss how those
example classes force bad behaviour on various algorithms� Our examples of hard polytopes apply
to computational models that include most published vertex and facet enumeration algorithms� A
number of these algorithms have been implemented by various people� But an implementation is
rarely completely faithful to the algorithm from which it is derived� For this reason we present and
discuss in Section � actual computational experience obtained by trying various implementations
on our hard polytope classes of the previous sections�

� Preliminaries

For a set X � IRd a convex combination of X is a point
P

x�X �xx� where �x � � for each x� andP
x�X �x � �� The convex span of X is the set of all convex combinations of X� A point x � X is

called extreme i� it cannot be represented as a convex combination of X n fxg�
A halfspace of IRd is a set representable as fx � IRd j hx� ni � cg� where c � IR and n is a

non�zero vector� Such a halfspace is bounded by the hyperplane fx � IRd j hx� ni � cg� An element
H of a set of halfspaces H is called irredundant if

TH �� T
�H n fhg�� For a set X � IRd let HX

denote the set of halfspaces that contain X� The set
THX is called the convex hull of X�

It is one of the basic results of convexity theory that the convex span and the convex hull of X
are the same � usually denoted as convX� Moreover� if X is �nite� then HX has a �nite number
of irredundant halfspaces� Similarly� if H is a �nite set of halfspaces with

TH bounded� then
TH

has a �nite number of extreme points�
These de�nitions and results naturally lead to the following four computational problems	

Extreme point� Given a �nite set X � IRd� determine its extreme points�

Irredundancy� Given a �nite set H of halfspaces� determine its irredundant elements�

Facet enumeration� Given a �nite set X � IRd� determine the irredundant halfspaces of HX �

Vertex enumeration� Given a �nite set H of halfspaces with
TH bounded� determine the ex�

treme points of
TH�

The �rst two problems� which are related by duality� can be solved using jVj and jHj linear
programs respectively� Clarkson ���� has recently discovered a method to reduce the size of each
linear program to A by d where A is the number of elements of the result set and d is the dimen�
sion� A more sophisticated method for constant dimension has been presented by Matou�sek and
Schwarzkopf �
���

The last two problems are the subject of this paper� Their names derive from the combinatorial
structure of the boundary of polyhedra� i�e� sets representable as the intersection of a �nite family of
halfspaces� Bounded polyhedra are called polytopes� By the discussion above convX is a polytope
for every �nite X� Let P be a polytope and H a halfspace with bounding hyperplane h so that
P � H and P � h �� �� Hyperplane h is then called a supporting hyperplane of P � and P � h is
called a face of P � The empty set and P itself are also considered �improper� faces of P � The faces
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of P are closed under intersection� They are themselves polytopes and their faces are also faces of
P � Thus the faces of P form a lattice� called the face lattice of P �

A face of dimension i is called an i�face� If P is a k�polytope �i�e� a polytope of dimension k��
then its faces of dimension k � �� k � 
� �� and � are respectively called its facets� ridges� edges�
and vertices� Note that the vertices of P are exactly the extreme points of P � We denote them
by V�P �� The facets of P correspond to the irredundant halfspaces of HP � They are denoted by
H�P ��

For a point q �� � let Hq denote the halfspace fx j hx� qi � �g� Let P be a d�polytope in IRd

that contains the origin in its interior� The dual of P is the set P � �
TfHq j q � Pg� Since p � Q

is extreme i� is Hp irredundant in fHq j q � Qg and since q � Hp i� p � Hq� we get that P � is
a polytope with Hv inducing a facet i� v � V�P � and p a vertex i� Hp � H�P �� More generally�
there is a ��� correspondence between i�faces of P and �d� �� i��faces of its dual P �� Because of
this duality facet enumeration for P is equivalent to vertex enumeration of P ��

A d�polytope is called simple i� each of its vertices is contained in exactly d facets� Dually� a
d�polytope is called simplicial i� each of its facets contains exactly d vertices� In this case for i � d
each i�face is an i�simplex � which is the convex hull of i� � a�nely independent points�

For a polytope P let fi�P � denote the number of i�faces of P � and let f�P � �
P

i�� fi�P �� For a

k�simplex Sk we have fi�Sk� �
�k��
i��

�
and f�Sk� � 
k����� Of considerable interest is the question

of the extreme possible values of fi�P � given that P is a d�polytope with m facets� McMullen �
��
has shown that

fi�P � � �i�d�m� �
X

��j�d

�
j

i

��
m� ��maxfj� d � jg

minfj� d � jg

�
�

This bound is realized by the duals of cyclic polytopes� This is a polytope whose m vertices lie
on a so�called d�th order algebraic curve c� which has the de�ning property that every hyperplane
intersects c in at most d points� If S � fp�� � � � � pmg is a set of points ordered along such a curve
c� and J �M � f�� � � � �mg is an index set with jJ j � d� then fpj j j � Jg spans a facet of convS
i� for all k� � � M n J the number of indices in J that lie between k and � is even� This is known
as Gale�s evenness condition and it follows directly from the fact that if a d�th order algebraic
curve c intersects a hyperplane h in d points� then it must �cross� the hyperplane in those points�
Gale�s evenness condition implies that the face structure of a cyclic d�polytope with m vertices is
independent of the curve and of the choice of points along the curve� Thus we generically denote
a cyclic d�polytope with m vertices by Cd�m�� Examples of d�th order algebraic curves are the
moment curve c�t� � �t� t�� � � � � td�� the binomial curve c�t� � �

�t
�

�
�
�t
�

�
� � � � �

�t
d

�
�� for even d � 
	

Carath eodory�s curve c�t� � �cos t� sin t� cos 
t� sin 
t� � � � � cos 	t� sin 	t�� and � for the numerically
courageous � c�t� � ����t� ��� ���t � 
�� � � � � ���t � d���

For simple m�faceted d�polytopes P Barnette ��� has shown the lower bound

fi�P � � �i�d�m� �

�
�m� d��d � �� � 
 if i � �

�m� d�
� d
i��

�
�
�d
i

�
for � � i � d �

This bound is realized by so�called truncation polytopes� which can be de�ned inductively as
follows	 a d�simplex is a truncation polytope with d�� facets� an m�faceted truncation d�polytope
is obtained by intersecting an �m� ���faceted one with a halfspace that contains all but one of the
vertices in its interior and does not contain the remaining vertex� Cyclic polytopes with m facets
show that for non�simple P the face count may be considerably smaller than indicated by �i�d�m��

Note that for d constant andm growing we have �i�d�m� � !�m�� whereas �i�d�m� � !�mbd��c�
for i � dd�
e�

�



Of great importance in this paper is the product construction of polytopes� Let P be a polytope
in IRa and Q be a polytope in IRb� The product of P and Q is de�ned to be the set

P 	Q � f�p� q� j p � P� q � Qg �
We will view P 	Q� which is a subset of IRa 	 IRb� as naturally embedded in IRa�b� The following
holds	

Lemma � Let P be a k�polytope and Q be an ��polytope�

�� P 	Q is a �k � ���polytope� If P and Q are simple� then so is P 	Q�

�� If F is an i�face of P and G is a j�face of Q� with i� j � �� then F 	G is an �i � j��face of

P 	Q� Moreover� this yields all non�empty faces of P 	Q�

�� The vertex count of P 	Q is the product of the vertex counts of P and Q� whereas its facet
count is the sum of the facet counts� Finally� its total face count is the product of the total

face counts� i�e� f�P 	Q� � f�P � 
 f�Q��

Note that the coordinate representation of a vertex �p� q� of P	Q can be obtained by concatenating
the coordinates of p and q� If a�x� � 
 
 
 � akxk � a� de�nes a facet inducing halfspace of P and
b�y� � 
 
 
 b�y� � b� de�nes a facet inducing halfspace of Q� then each de�nes a facet inducing
halfspace of P 	Q� if IRk�� is considered coordinatized by �x�� � � � � xk� y�� � � � � y���

The product construction dualizes to forming the convex hull of P and Q� where P and Q are
contained in orthogonal subspaces and each contains the origin in its interior�

Using the product construction it is easy to build up polytopes with many faces� If P �m� is a
convex polygon with m edges� then P �m�	 P �m� is a ��polytope with m� vertices and 
m facets�
More generally� the 	�fold product P �m�	
 
 
	P �m� yields a 
	�polytope with m� vertices and 	m
facets� which thus has a face complexity that for �xed dimension is asymptotically worst possible
and the same as the one of dual cyclic polytopes�

More information on polytopes can be found in the books of Gr"unbaum �

�� Br#ndsted ���� and
Ziegler �����

� Polytope Families

In this section we introduce three types of polytopes� fat�lattice� intricate� and dwarfed� For each
type of polytope we give explicit in�nite uniparametric and biparametric families� Recall that a
uniparametric family comprises polytopes P of arbitrarily large dimension d but with size�P � a
function of d� A biparametric family is the union of in�nitely many families� Fd� each containing
d�dimensional polytopes P with size�P � arbitrarily large�

At the beginning of each of the three subsections we state theorems that introduce the various
families of polytopes� On �rst reading the reader may want to skip their proofs �although they are
not particularly di�cult��

��� Fat�lattice polytopes

For us a family of fat�lattice polytopes consists of polytopes P with f�P �� the total number of faces
of P � much larger than size�P �� The existence of uniparametric fat�lattice families is well known
�see e�g� ������ It may come as a surprise that biparametric fat�lattice families also exist�

We start with some simple examples�
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Theorem � The set of simplices Td forms a family of fat�lattice polytopes�

Proof� The d�simplex Td has d�� vertices and d�� facets and hence size�Td� � 
d�d���� But

f�Td� � 
d�� � � � 

p

size�Td��� � �� and thus f�Td� is superpolynomial in size�Td��

In general any polytope family with size polynomial in d and at least one �large dimensional�
simplex face �or� since duality preserves the size of the face lattice� a �small dimensional� face
whose face �gure is a simplex� will be fat�lattice�

Concerning biparametric families let us �rst consider as an example the family CC��n� �
C��n� 	 C��n� of ��polytopes formed by taking the product of two ��dimensional cyclic polytopes
with n vertices each� By Lemma � a polytope CC��n� has n� vertices and 
���� n� � n�n � ��
facets� and thus we have size�CC��n�� � !�n��� However� by the same lemma� for the total number
of faces we have

f�CC��n�� � f�C��n��
� � !�n�� � !�size�CC��n��

�� �

Thus in dimension � we can achieve a quadratic relationship between size and total face count�
By considering higher dimensions and using repeated products of cyclic polytopes any polynomial
relationship can be achieved as we will show now	

Let d be such that 
d � �� let a �
lp

d
m
� b � bd�ac� and c � d mod a� and de�ne

CC�d�n� � C�a�n�	 
 
 
 	 C�a�n�� �z �
b times

	C�c�n� �

Thus� roughly speaking� CC�d�n� is the
p
d�fold product of �


p
d��dimensional cyclic polytopes

with n vertices each� We refer to this family of polytopes simply as products of cyclic polytopes�

Theorem � The products of cyclic polytopes CC�d�n� form a biparametric family of fat�lattice

polytopes�

Proof� Let 
d � � be �xed and let a �
lp

d
m
� b � bd�ac� and c � d mod a� as de�ned before�

Obviously for �xed 
d the family contains polytopes CC�d�n� of arbitrarily large size� By Lemma �
the number of vertices of CC�d�n� is nb�� �or nb in the case c � �� and the number of facets is
b 
 ��
a� n� � ��
c� n� � !�na�� and thus size�CC�d�n�� � !�na�� For the total face count we have

f�CC�d�n�� � f�C�a�n��
b 
 f�C�c�n�� � !��na�b 
 nc� � !�nd� � !�size�CC�d�n��

d�a� �

Thus we have
f�CC�d�n�� � ��size�CC�d�n��

c�d� �

with c�d � d�
lp

d
m
� which is arbitrarily large if d is large enough� as required�

Please note that the cyclic polytopes in this construction could be replaced by any other polytope
class with similar complexity� as for instance dual products of polygons� By using integral points
on parabolas as the corners of those polygons one can realize the nb�� vertices of such an altered
CC�d�n� using integral coordinates of size not more than n��

The smallest dimension for which this construction of products of cyclic polytopes yields a
non�trivial result is 
d � �� It is an interesting open problem whether there exists a family of
��dimensional polytopes with f�P � � 
�size�P ���

�



��� Intricate polytopes

We de�ne a family of intricate polytopes as one consisting of polytopes P for which the number of
�maximal� simplices required to triangulate all facets of P is much larger than size�P �� In other
words� every triangulation of the boundary of P contains many more simplices than P has vertices
and facets�

Families of uniparametric intricate polytopes have been known for a long time� The family
Hd � ��� ��d of unit hypercubes was pointed out to us by G"unter Rote� the family TT�d � Td 	 Td
of products of simplices by Bernd Sturmfels� It will turn out that any biparametric family of
fat�lattice polytopes is also intricate�

Theorem � �� Uniparametric families of intricate polytopes are provided by

� hypercubes Hd � ��� ��d� and

� products of simplices TT�d � Td 	 Td�

�� A biparametric family of intricate polytopes is provided by

� products of cyclic polytopes CC�d�n��

This theorem follows from the following three lemmas	

Lemma � The number of �d� ���simplices required to triangulate all facets of Hd is superpolyno�

mial in sd � size�Hd�� in particular� it is at least s
�

�
log log sd����

d �

Proof� The hypercube Hd has 
d vertices and 
d facets� Thus we have

size�Hd� � d�
d � 
d� � sd � 
�d � ud �

A lower bound on the number of n�simplices necessary to triangulate Hn can be obtained using the
following volume�based argument �see e�g� �
���	 Hn has volume �� Any n�simplex of a triangulation
of Hn has all its vertices on a sphere of diameter

p
n� and the maximal possible volume of such

an inscribed n�simplex �realized by the equilateral one� is Vn � �n � ���n�������
nn$�� Hence the
number of n�simplices in any triangulation of Hn is at least ��Vn�

Thus to triangulate the 
d facets of Hd �each of which is a �d� ���cube� requires at least


d

Vd��
�


d 
 
d�� 
 �d� ��$

dd��
�


d 
 d$
dd��

�

d 
 dd
dd�� 
 ed � �d�
�d��

�d � ���simplices� But �d�
� � �
� log ud � �

� log sd �here we use the binary logarithm� and thus
triangulating the boundary of Hd requires at least

�d�
�d�� �
�
�

�
log sd

	 �

�
log sd

� s
�

�
log log sd����

d

�d� ���simplices� as claimed�

The superpolynomiality achieved by hypercubes is only very slight� Products of simplices
achieve a much bigger bound�
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Lemma � The number of �
d� ���simplices required to triangulate all facets of TT�d is superpoly�
nomial in sd � size�Hd�� in particular� for d � � it is at least 


�
p
sd�

Proof� %From Lemma � we know that TT�d � Td 	 Td has �d� ��� vertices and 
�d� �� facets�
Thus for d � � we have

size�TT�d� � 
d�d � ���d� �� � sd � �
d� ��� � ud �

Each facet of TT�d is combinatorially equivalent to Td 	 Td��� Now it is an interesting and useful
fact that every triangulation of Ts 	 Tt requires exactly

�s�t
t

�
simplices� For a volume based proof

see �
��� Thus triangulating the boundary of TT�d requires


�d � ��

�

d� �

d

�
� 
�d��

simplices � the inequality here follows from the fact that
��d��

d

�
is the largest of the 
d binomial

coe�cients
��d��

i

�
� which sum up to 
�d��� But 
d� � � �

p
ud � �

p
sd� and the lemma follows�

The biparametric part of Theorem � is an easy consequence of the following lemma	

Lemma � Every biparametric family of fat�lattice polytopes is also a biparametric family of intri�
cate polytopes�

This follows directly from the following	

Lemma � Any triangulation of the boundary of a d�polytope P contains at least �f�P � � ���
d

maximal simplices�

Proof� Let & be a triangulation of the boundary of P � i�e� a set of �d � ���simplices� For
� � i � d � � every proper i�face of P must contain at least one i�face of a simplex of &� But
the total number of i�faces of simplices in & summed over all i is smaller than j&j 
 
d since every
simplex has 
d faces� Thus

j&j 
 
d �
X

��i�d��

fi�P � � f�P �� �

and the lemma follows�

��� Dwarfed polytopes

In this section the notion of a dwar�ng halfspace or dwar�ng constraint will be crucial� We say
a halfspace H �or its de�ning constraint� dwarfs a d�polytope P with m facets i� P � H is a
truncation d�polytope with m�� facets �and hence has a minimum possible number ��d�m��� �
�d� ���m� �� d� � 
 of vertices��

A family of dwarfed polytopes is a family containing polytopes of the form P � � P �HP � where
HP dwarfs P and size�P � is much larger than size�P ��� In other words� P has many vertices but
the intersection with halfspace HP removes most of the vertices� but no facet�

We will �rst state some families of uniparametric and biparametric dwarfed polytopes� Then
we state the Dwar�ng Theorem� an easy characterization of dwar�ng halfspaces� We apply this
theorem to show that we indeed have families of dwarfed polytopes� and then we �nally prove the
Dwar�ng Theorem�

��



Theorem � �Dwarfed Cubes� Let Kd be the d�dimensional cube speci�ed by the 
d constraints

� � xi � 
 for � � i � d� and let Hd be the halfspace speci�ed by
P

��i�d xi � ��

The family DKd � Kd �Hd is a family of dwarfed polytopes� In particular� we have

size�Kd� � d�
d � 
d� and size�DKd� � d� � 
d� � 
d �

For biparametric families we �rst state a theorem showing that dwar�ng can take on the most
extreme form� in that a d�polytope with m facets and a maximum possible number of ��d�m�
vertices can be dwarfed to a d�polytope with m � � facets and a minimum possible number of
��d�m� �� vertices�

Theorem � �Dwarfed Dual Cyclic Polytopes� For every m�facet d�polytope P that is dual to

a cyclic polytope there is a dwar�ng halfspace�

Although dwarfed dual cyclic polytopes are theoretically intriguing� they are somewhat prob�
lematic from a more practical point of view� The speci�cation of cyclic polytopes �and their duals�
tends to require rather large numbers� The speci�cation of the dwar�ng constraint whose existence
we assert requires much bigger numbers yet� For this reason we consider another family of dwarfed
polytopes� namely dwarfed products of polygons� whose �dwar�ng performance� is asymptotically
similar to the one of dwarfed dual cyclic polytopes�

The following is set in even dimension d � 
	� For convenience we will refer to the d coordinates
as x�� � � � � x� and y�� � � � � y��

Theorem 	 �Dwarfed Products of Polygons� For d � 
	 � � and s � � let PPd�s� be the

polytope speci�ed by the constraints

yk � � for � � k � 	
sxk � yk � � for � � k � 	

�
i� ��xk � yk � �
i � ���s� i�� i� � s� for � � k � 	 and � � i � s� �
�
s� ��xk � yk � 
s�
s� �� for � � k � 	�

and let Hd�s be the halfspace speci�ed by the constraint

x� � x� � ���� x� � 
s� � �

The family DPPd�s� � PPd�s� �Hd�s is a biparametric family of dwarfed polytopes� In particular�

we have �with 	 � d�
	

size�PPd�s�� � d�s� � 	s� and size�DPPd�s�� � d��	�s� 
� � 
� � 
d �

The preceding three theorems are all corollaries to the following dwar�ng theorem�

Theorem 
 �Dwar�ng Theorem� Let P be a simple d�polytope with m facets and H a halfspace

with no vertex of P on its boundary� If the vertices and edges of P that are contained in H form a

tree with m� �� d nodes� then H is a dwar�ng halfspace for P �
Thus P � � P � H has m � � facets� ��d�m � �� � �d � ���m � � � d� � 
 vertices� and

size�P �� � d��m� 
� d� � 
d�

�




Before we prove this Dwar�ng Theorem� we apply it to prove Theorems � through �� We will
refer to the vertices and edges of P that are contained in H as surviving and to edges of P that
are intersected by the bounding hyperplane of H as cut edges�

Proof �for dwarfed cubes�� The polytope Kd is a d�cube� which has 
d vertices and m � 
d
facets� Thus size�Kd� � d�
d� 
d��

The vertices of Kd are the 
d points in IRd with all coordinates � or 
� The surviving vertices�
i�e� the ones contained in Hd� are the d�� points with at most one non�zero coordinate� The only
surviving edges are the d edges that connect the origin to the other d surviving vertices� giving as
graph of surviving vertices and edges a tree with d�� nodes� Now apply the Dwar�ng Theorem�

Proof �for dwarfed dual cyclic polytopes�� Suppose P has a 
�face F that is a polygon
with m � 
 � d vertices� Let v be one of those vertices and let W be the remaining m � � � d
vertices� Clearly there is a hyperplane h that separates W from the remaining vertices of P �let �
be a line that separates v fromW in the 
�plane a�F � and let h be a hyperplane containing � that is
a suitably small perturbation of a hyperplane that supports P in the face F �� Let H be the closed
halfspace bounded by h that contains W � Then by construction there are m � � � d surviving
vertices strung together into a path by m � d surviving edges �the boundary of the polygon F
without v and its two incident edges�� Now apply the Dwar�ng Theorem�

It remains to show that polytope P has such a 
�face F with m� d � 
 vertices� It turns out
that P has many such faces �actually ��d � 
�m� of them�� Let Q be the cyclic polytope that is
the dual of P with vertices p�� p�� � � � � pm in their natural order along the curve used to generate
Q� Let U � fp�� � � � � pd��g� Then� according to Gale�s evenness condition for each of the m��� d
indices i with d � 
 � i � m the set U � fpi� pi��g spans a facet of Q� moreover� U � fpd��� pmg
spans a facet of Q� and this yields all facets containing U � Thus U spans a �d � 
��face F � of Q
that is contained in m � 
 � d facets� Taking the dual we thus get a 
�face F of P that contains
m� 
� d vertices�

Proof �for dwarfed products of polygons�� For any k one can easily check that the
constraints listed above describe an s�sided convex polygon Pk�s� in the xk�yk�plane� whose s
vertices lie on the parabola yk � ��xk � s�� � s� and have integral coordinates with the xk�
coordinates drawn from the set W �s� � f�� s� s � �� s � 
� � � � � 
s � �� 
s � �� 
sg �see Figure �����
The polytope PPd�s� is then the product P��s�	P��s�	
 
 
	P��s�� Thus we know from Lemma �
that PPd�s� is simple� that it has s� vertices and m � 	s facets� Thus size�PPd�s�� � d�s� � 	s��
as claimed�

By considering just the �x�coordinates� the vertex set can be identi�ed with W �s��� Moreover
that natural orthogonal lattice on W �s�� �with wrap�around between 
s and �� yields the 	s� edges
of PPd�s��

It is easy to see that considering halfspace Hd�s the only surviving vertices are the 	�s� 
� � �
vertices whose �x�coordinates� are all � except for possibly one� which however must not be 
s�
The surviving edges form 	 paths emanating from the origin with s� 
 edges each� one along each
�x�coordinate� direction�

Thus the surviving vertices and edges form a tree with 	�s � 
� � � � m � d � � nodes� Now
apply the Dwar�ng Theorem�

Now it just remains to prove the Dwar�ng Theorem� We do this in the following sequence of
lemmas�

��



yk

s �s

�

xk

s�� s�� �s��

Figure �	 The polygon Pk���

Lemma 	 Let P be a d�polyhedron and H a closed halfspace in IRd with bounding hyperplane h so
that h contains no vertex of P �

�� The vertex set of P � � P �H comprises �i	 all surviving vertices of P � and �ii	 all points of

the form e � h� where e is an edge of P �

�� The facet set of P � comprises �a	 the 
new facet� F � � P � h� and �b	 the 
old facets�

F � � F �H where F ranges over all facets of P that contain some surviving vertex�

Proof� See ���� Theorem ������

Lemma 
 If P is bounded� then the subgraph of the skeleton of P formed by the surviving vertices

and edges is connected�

Proof� De�ne a linear program with the constraints H�P � � fH g and an objective function of
the inward normal of H� From the correctness of the simplex method with Bland�s pivot rule �see
e�g� ��
��� there is a path in P �H to the optimum face F � Since the simplex method monotonically
increases the value of the objective function �i�e� the distance from the bounding hyperplane of

��



H�� this path does not intersect the bounding hyperplane of H� hence is entirely along surviving
edges� By Balinski�s Theorem �see e�g� ����� the skeleton of F is connected� hence the graph formed
by surviving vertices and edges is connected�

Lemma � Let P be a simple d�polytope� and let H be such that h contains no vertex of P and so
that the graph G formed by the surviving vertices and edges forms a tree with t nodes�

Then P � � P � H is a truncation polytope with t � d facets �and ��d� t � d� � �d � ��t � 

vertices	�

Proof� We �rst show that P � has the claimed number of vertices� %From Lemma � we know
that every one of the t surviving vertices is a vertex of P �� It now su�ces to show that there are
�d � 
�t � 
 cut edges� i�e� edges of P that are intersected by h� since they yield the remaining
vertices of P �� Each cut edge must be incident to exactly one surviving vertex� Since P is simple
the total number of incidences to the t surviving vertices is dt� Since G is a t�node tree there are
exactly t � � surviving edges� each of which is incident to two surviving vertices� Thus of the dt
incidences exactly 
�t� �� are consumed by the surviving edges� leaving �d� 
�t� 
 incidences to
cut edges� as claimed�

Next we need to show that P � has t� d facets� According to Lemma � it su�ces to show that
in total t� � � d facets of P are incident to surviving vertices�

Since P is simple every vertex is incident to exactly d facets� If two vertices are connected by
an edge of P � then the sets of incident facets di�er by one�

Now root the tree G at any node v� With each node w �� v in G associate the facet Fw that
is incident to w but not to the parent of w� Thus we have t� � � d facets associated to surviving
vertices	 the t�� facets Fw and the d facets incident to the root v� All these facets must be distinct�
since G contains no cycle but� as a consequence of Lemma �� the graph formed by the surviving
vertices and edges that lie in one facet must be connected�

Since h contains no vertex of P we thus have a simple d�polytope P � with t � d facets and
�d � ��t � 
 vertices� By Barnette�s lower bound theorem ��� this vertex number is minimum
possible�

Finally� P � is a truncation polytope� For d � � this is implied by Barnette�s theorem� However�
in our case it can be seen directly for all d	 successively removing leaves w from the tree G and
listing the halfspaces de�ning the corresponding facets Fw in reverse order yields a �truncation
order��

Obviously this last lemma immediately implies the Dwar�ng Theorem�

� Families of Algorithms

Now with our polytope classes in place it will be relatively easy to provide hard examples for the
various facet and vertex enumeration algorithms�

Recall that a lattice producing algorithm is a vertex �or facet� enumeration algorithm that
produces not just the vertices �facets� of the polytope in question but also computes all faces of
that polytope�

Theorem � If a lattice producing algorithm is used to enumerate the vertices �facets	 of a fat�

lattice polytope P � then the number of steps taken by the algorithm is much larger than size�P ��

��



In particular� the number of steps taken for a polytope P with s � size�P � is at least

� 

p
s��� if P is a simplex Td� and

� ��sd�d
p
de� for every �xed d� if P is a product of cyclic polytopes CCd�n��

Proof� Immediate consequence of Theorems � and 
�

Recall that a facet enumeration algorithm is triangulation producing if besides the facets of
a polytope it also produces a triangulation of those facets� A vertex enumeration algorithm is
considered triangulation producing if its dual interpretation is a triangulation producing facet
enumeration algorithm�

For any halfspace H � fx j ha� xi � � g containing the origin in its interior� and for any vector
� let H��� denote the halfspace fx j ha� �� xi � � g� Given a set of halfspaces H � fH� � � � Hm g�
we say that a H� � fH������ � � � Hm��m� g is a perturbation of H if the following conditions hold	

�� If fHi���i�� � � � Hid��id� g is a basis of P � �
TH�� then fHi� � � � Hid g is a basis of P �

TH�


� If v is a vertex of P � there is some basis fHi� � � � Hid g of v such that fHi���i�� � � � Hid��id� g
is a basis of P ��

The second condition is necessary in order to correctly enumerate the vertices of P by enumerating
the vertices of P �� The �rst is also useful� although not strictly necessary �since we could weed out
bad bases in a postprocessing step�� but is implied by the usual requirement that a perturbation be
�su�ciently small�� When proving lower bounds on the number of bases of the perturbed polytope
�and thus on the performance of a pivoting algorithm that visits every basis� we may always assume
without loss of generality the we perturb onto a simple polytope� To see why� consider the dual
situation of perturbing the vertices of a polytope� If the resulting polytope is not simplicial� we
can always triangulate without increasing the number of bases�

All algorithms that perturb onto a simple polytope in order to deal with degeneracies are
triangulation producing �see ���� for a survey of perturbations�� Perturbations have been reasonably
successful in practice even on highly degenerate examples �see e�g� Ceder et al� ���� and there had
been some hope that by judicious choice of the perturbation the sizes of the produced triangulations
could be kept reasonably small� However� intricate polytopes show that this is in general not the
case�

Theorem 
 If a triangulation producing algorithm is used to enumerate the facets of an intricate

polytope P � then the number of steps taken by the algorithm is much larger than size�P �� In

particular� the number of steps taken for a polytope P with s � size�P � is at least

� s
�

�
log log s����� if P is a hypercube Hd�

� 

�
p
s� if P is a product of simplices TT�d � Td 	 Td� and

� ��sd�d
p
de� for every �xed d� if P is a product of cyclic polytopes CCd�n��

Proof� Immediate consequence of Theorem � and its following lemmas�

All currently known graph traversal based algorithms for vertex or facet enumeration are either
lattice producing or triangulation producing� The last two theorems show that they all de�nitely do

��



not have polynomial worst case running time� We should stress� however� that this bad behaviour
of graph traversal based algorithms only happens in the presence of degeneracies� If the input is
non�degenerate� a reasonably implemented graph traversal based algorithm does have running time
polynomial in size�P �� For instance� in order to enumerate the n vertices of a simple d�polytope
speci�ed by m constraints the reverse search method ��� requires O�d�mn� time and only O�dm�
space�

��� Incremental algorithms with static orders

Let us now turn our attention to incremental algorithms� There is a fair number of such algorithms
that for the degenerate case are lattice producing or triangulation producing� For such algorithms
of course the lower bounds supplied by Theorems � and � apply� and thus polynomial worst case
running time is not achievable� There is at least one incremental method though� namely the dou�
ble description method of Motzkin et al� ����� that deals with degeneracies in an entirely di�erent
manner� We will now show that� irrespective of how incremental methods address the issue of
degeneracy� they can have bad running times because they cannot control the sizes of the inter�
mediate polytopes during the incremental construction� Moreover� this can happen for a host of
natural insertion orders�

Consider enumerating the vertices of the d�polytope P �
TH� An incremental algorithm does

this by considering the halfspaces in H in some order H��H�� � � � �Hm� and inductively computing
some description of Pi �

T
��k�iHk from the description of Pi�� and Hi� for i � �� � � � �m� From the

description of the �nal Pm� the vertices of P � Pm are then recovered� Typical �descriptions� of Pi
are the skeleton of Pi� or� in the case of the double description method� the incidence information
between the vertices and the facets of Pi� Let us ignore for the time being the issue of how such
an algorithm gets o� the ground and how it deals with unbounded Pi�s�

In order for such an algorithm to be polynomial in size�P �� the size of each of the intermediate
polytopes Pi must be polynomial in size�P �� Of course whether or not this is the case depends
very much on the ordering of the halfspaces in H�

There are several plausible insertion orders for insertion algorithms	

minindex Insert the halfspaces in the order given by the input�

random Insert the halfspaces in random order�

lex Insert the halfspaces in lexicographically increasing �or decreasing� order of coe�cient vectors�

Such a lexicographic ordering is not canonical unless the inequalities describing the halfspaces are
brought into some canonical form� We will consider two such canonical forms� The �rst� unit form
requires inequalities a�x� � 
 
 
 adxd � ad�� with the largest indexed nonzero ai as ��� the second�
reduced integer form requires the ai�s to be relatively prime integers� Even after establishing
a canonical form one can distinguish two more subcases� the forward case� where one considers a�
the most signi�cant component in �a�� � � � � ad� ad���� and the backward case� where one considers
ad�� most signi�cant�

The orderings described so far are all static in the sense that the ordering can easily be precom�
puted before the actual incremental enumeration algorithm has started� Somewhat more sophis�
ticated are dynamic orderings in which the i�th halfspace to be inserted is some function of Pi��

and the not yet considered halfspaces� Before we go on to speci�c dynamic orderings we state our
results for the listed static orderings�
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Theorem �� Let P �
TH be a polytope from a family of dwarfed polytopes� and H � H is the

dwar�ng constraint� Assume an incremental algorithm is used to enumerate the vertices of P �

minindex If an ordering of H is used that considers the dwar�ng halfspace H last� then the number

of steps taken by the algorithm is much larger than size�P ��

random If an ordering of H is chosen uniformly at random� then the expected number of steps

taken by the algorithm is much larger than size�P ��

lex For any type of lexicographic ordering there is an a�ne transformation taking P �
TH to P � �TH� so that if the incremental algorithm is applied to H� using this lexicographic ordering�

then the number of steps taken is much larger than size�P ���

Considering dwarfed cubes and dwarfed products of polygons as speci�c families of dwarfed
polytopes one gets the following explicit statements�

Theorem �� Although the size of a dwarfed cube DKd is only size�DKd� � d� � 
d� � 
d� the
�expected	 number of steps taken by in incremental algorithm to enumerate the vertices of DKd is

at least

� 
d� if an ordering is used that considers the dwar�ng constraint last� for instance forward

or backward lexicographic increasing order with respect to integer form�

� 
d��d � ��� if a random ordering is used�

� 
d��� if forward or backward lexicographic increasing order is used with respect to unit

form�

Theorem �� Although the size of a dwarfed product of polygons DPPd�s� is only size�DPPd�s�� �
d��s�
��
�
d��
d� the �expected	 number of steps taken by an incremental algorithm to enumerate

the vertices of DPPd�s� is at least

� sd��� if an ordering is used that considers the dwar�ng constraint last� for instance forward

lexicographic order with respect to unit form�

� sd����d� ��� if a random ordering is used�

� sd����� if forward lexicographic increasing order is used with respect to reduced integer form�

and

� �s � ��d��� if backward lexicographic decreasing order is used with respect to unit or also

reduced integer form�

The bounds in Theorem �� are provided by the size of the polytope that has been built up by
the time the dwar�ng constraint is inserted�

The �rst point follows directly from the properties of dwarfed polytopes� Let halfspace H dwarf
polytope P to Q � P � H� If an incremental algorithm considers H last� then by that time a
description of P must have been built up� which must have taken at least size�P � steps� But by
the de�nition of families of dwarfed polytopes we have size�P � is much larger than size�Q��

The second point about random orderings follows from the following lemma	

��



Lemma 
 Let P �
TH be an m�faceted d�polytope with n vertices that is dwarfed by halfspace H

to Q � P �H� Let C be the polytope formed by the intersection of the halfspaces in H that precede

the dwar�ng constraint H in a random ordering of the halfspaces in H � fHg�
Then the expected number of facets of C is at least m�
 �which is m��d� �� at least	� and the

expected number of vertices of C is at least n��d� ���

Proof� Note that if a halfspace in H induces a facet of P and it appears in the ordering before
the dwar�ng halfspace H� then it also induces a facet of C� Since in a random ordering every one of
the m facet�inducing halfspaces in H has a ��
 chance of appearing before the dwar�ng halfspace�
the expected number of facets of C is at least m�
�

Similarly� note that if d halfspaces in H induce a vertex of P and they all appear in the ordering
before the dwar�ng halfspace H� then they also induce a vertex of C� The d halfspaces appearing
before H is the same as saying that H has to be the last out of those d�� halfspaces� In a random
ordering this happens with probability ���d���� Thus every one of the n vertices of P has at least
a ���d��� chance of being a vertex of C and hence the expected number of vertices of C is at least
n��d� ���

The statement in Theorem �� about lexicographic order follows from the following lemmas	

Lemma �� Let P be any d�polytope and let F be a facet of P � Polytope P can be translated so

that� after possible renaming and negating of coordinates� among all facet de�ning constraints the

one de�ning F comes �rst �last	 in the lexicographic ordering with respect to unit form �for the

forward or backward case� as desired	�

Proof� Note that for constraints of the form a�x� � 
 
 
 adxd � �� forward lexicographic order
just re�ects the order in which the described hyperplanes intersect the x��coordinate axis� the order
starting at the origin� going towards �
 wrapping around through in�nity and coming back to
the origin �as in a shelling�� Ties are broken lexicographically by considering the intersection order
along the x��axis� x��axis� etc�

Now let i be such that F is not parallel to the xi�axis� Rename coordinates so that xi becomes
x�� Pick a line � that is parallel to the x��axis and that intersects F in its relative interior� Pick a
point u � � in the interior of P � and perform a translation so that u becomes the origin�

After this transformation all constraints describing P can be put in the form a�x��
 
 
 adxd � ��
the line � has become the x��axis� and �after possibly reversing the axis� direction� the hyperplane
containing F comes �rst �or last� in the described intersection order� and the corresponding con�
straint therefore is �rst �or last� in the lexicographic order�

To achieve the same for backwards lexicographic order let xd play the role of x��
Note that by picking u to be a rational point the transformed P can be described rationally

provided the original P can be so described�

Lemma �� If polytope P is described rationally and contains the origin in its interior� then it is

possible to scale the coordinate system so that lexicographic orders with respect to unit form and

reduced integer form agree�

Proof� Under these assumptions every facet de�ning constraint can be written as �b��c��x� �
�b��c��x� � 
 
 
 � �bd�cd�xd � �� with the bi�s integers and the ci�s positive integers� For each
i let Ci be the least common multiple of all denominators ci� ranging over all constraints� Let

��



ai � �bi�ci� 
 Ci and yi � xi�Ci� Then a�y� � 
 
 
 � adyd � � is equivalent to the constraint above�
and is in reduced integer form� since the ai�s are integers and the right hand side is �� As C� is
positive� the order among the coe�cients b��c� is the same as among the a��s�

The bounds stated in Theorems �� and �
 are simply provided by the �expected� number of
vertices of the polytope that has been created by the time the dwar�ng constraint is to be considered
in the respective ordering� This is clear for the case when the dwar�ng constraint is added last�
It follows from Lemma � for the random case� Regarding the various lexicographic orderings we
leave the checking of the details of the dwarfed cube case to the reader� This leaves us with the
lexicographic orderings for dwarfed products of polygons DPPd�s� � PPd�s� � Hd�s� Recall that
PPd�s� is speci�ed by

�yk � � for � � k � d�

�sxk � yk � � for � � k � d�


�
i � ��xk � yk � �
i� ���s� i�� i� � s� for � � k � d�
 and � � i � s� �
�
s� ��xk � yk � 
s�
s� �� for � � k � d�
�

Here we have normalized so that the right hand sides are upper bounds� The dwar�ng constraint
Hd�s is given by

x� � x� � ���� xd�� � 
s� ��

Note that all constraints are already in reduced integer form� since each contains some unit coe��
cient�
Let us arrange the coordinates as �x�� � � � � xd��� y�� � � � � yd����

Consider �rst forward lexicographic increasing ordering	 with respect to unit form the dwar�ng
constraint Hd�s comes last� i�e� all of PPd�s� has been built up and its sd�� vertices will have been
created� with respect to reduced integer form form only the s�
 constraints with positive coe�cient
for x� come after Hd�s� Thus by the time Hd�s is inserted sd���� vertices will have been generated�

In the backward lexicographic decreasing ordering with respect to both unit form and reduced
integer form only the d constraints of the form �yk � � and �sxk�yk � � come after the dwar�ng
constraint� This means that by the time dwar�ng halfspace H is inserted a polytope with �s���d��

vertices has been constructed�

��� Incremental algorithms with dynamic orders

Some dynamic orders commonly used in incremental algorithms are the following	

maxcuto� Insert the halfspace next that causes the maximum number of vertices and extreme
rays to become infeasible�

mincuto� Insert the halfspace next that causes the minimum number of vertices and extreme rays
to become infeasible�

mixcuto� Insert the halfspace next whose bounding hyperplane produces the least balanced cut
of the current vertices and extreme rays�

Note that using these dynamic orderings incurs overhead in that considerable computational
e�ort may have to be expended in order to determine the next halfspace in the ordering�

The reader will notice that we have �nally reached the point where we cannot continue to
completely ignore unboundedness� Recall that any polyhedron P can be written a Minkowski sum


�



P � B � C� where B is a polytope� and C is a cone �called recession cone� �see e�g� Theorem ��

in ������ �Vertex� enumeration for such a P in essence amounts to enumerating the vertices of the
bounded part B and enumerating the extreme rays of the recession cone C� Note that the number
of extreme rays of C may be much smaller than the number of extreme rays of P �

The orders de�ned above are not completely speci�ed yet since it is not indicated how possible
ties are to be broken� We will allow arbitrary resolution of ties� but with one exception� namely
the beginning of the ordering� We require that the �rst d halfspaces be explicitly speci�ed�

We have not been able to prove anything about mixcuto�� however for mincuto� and max�

cuto� we have the following	

Theorem �� Consider the 
d � � constraints � � xi � 
 for i � �� � � � � d and
P

��i�d xi � �
describing the dwarfed cube DKd�

In the mincuto� ordering with initial d constraints � � xi for i � �� � � � � d the dwar�ng

constraint
P

��i�d xi � � will come last�

Thus incremental vertex enumeration of DKd via such an ordering requires at least 
d steps�

which is much larger than size�DKd��

Theorem �� For d � 
	 � � and s � � consider the 	s� � constraints

yk � � for � � k � 	
sxk � yk � � for � � k � 	

�
i� ��xk � yk � �
i � ���s� i�� i� � s� for � � k � 	 and � � i � s� �
�
s� ��xk � yk � 
s�
s� �� for � � k � 	�

and

x� � x� � ���� x� � 
s� ��

that describe the dwarfed product of polygons DPPd�s��
In the mincuto� ordering with the initial d constraints yk � � and sxk�yk � � for i � �� � � � � 	

the dwar�ng constraint x� � x� � ���� x� � 
s� � will come last�

Thus incremental vertex enumeration of DPPd�s� via such an ordering requires at least s� steps�
which is much larger than size�DPPd�s���

These two theorems suggest a more general statement� which� however� we have been unable to
prove�

Conjecture � Let P be a dwarfed d�polytope described by the halfspaces in H� There is a choice

of d initial halfspaces so that in the ensuing mincuto� ordering the dwar�ng halfspace will come

last�

Proving something analogous for the maxcuto� ordering has turned out to be much more
di�cult� Obviously dwarfed polytopes are not fruitful candidates sincemaxcuto� will very quickly
cause the dwar�ng constraint to be considered� The only result we have been able to prove is the
following	

Theorem �� Consider the �
d��polyhedron R�d speci�ed by the 
d� d� constraints

xi � � for i � �� � � � � 
d ������

xi � xj � � for i � �� � � � � d and j � d� �� � � � � 
d� ����
�


�



The polyhedron R�d has only 
 vertices and 
d extreme rays� However� for maxcuto� order with

the initial d constraints given by ��
��	� the intersection of the �rst 
d�k halfspaces has 
k vertices
for k � �� � � � � d �and 
d extreme rays	�

Thus incremental vertex enumeration of R�d via such an ordering requires at least 
d steps�

which is much larger than size�R�d��

The polyhedron R�d is actually not a complete stranger� It is nothing but the dual of the
product of simplices TT�d � Td 	 Td� where Td is the d�simplex spanned by the origin and the unit
coordinate vectors� and the �facet� of R�d dual to the origin vertex of TT�d is at in�nity� We know
that the polytopes TT�d are intricate� We venture the following	

Conjecture � Assume an incremental vertex enumeration algorithm is applied to the dual of an

intricate d�polytope P using maxcuto� ordering and an arbitrary d initial halfspaces�

The number of steps taken by the algorithm will be much larger than size�P ��

Why should this conjecture be plausible' Consider the dual problem of incremental facet
enumeration� The maxcuto� rule dualizes to adding next the vertex that �sees� the most facets
of the current polytope� Now intricate d�polytope not only require �many� �d � ���simplices to
triangulate their boundary� their own triangulation naturally also requires �many� d�simplices�
Intuitively this means that d�simplices spanned by the vertices of an intricate polytope must have
�small� volume� In the incremental construction of such a polytope the dual maxcuto� rule adds
the point that �sees� the most facets ( and not necessarily facets of large volume� Thus it is likely
that most of those facets are actually �d � ���simplices� When the new point is added� most of
the pyramids it spans with the visible facets are d�simplices� and hence little volume is added�
Moreover� most of the new facets will be �d� ���simplices again�

Of course this intuition is still far away from a proof� However our experimental results for
products of cyclic polytopes �and also for dwarfed cubes� which happen to be an intricate polytope
family also� support this conjecture� Finally� there is reason to believe that random ordering is
similarly bad for intricate polytopes�

It remain to prove Theorems �� through ��	

Proof of Theorem ��� Let Q be the positive orthant� For i � D � f�� � � � � dg let ri be the ray
formed by the positive i�the coordinate axis and let H�i� be the halfspace speci�ed by the constraint
xi � 
� Finally let H be the dwar�ng halfspace speci�ed by

P
i xi � ��

For I � D consider the polyhedron KI � Q � TfH�i�ji � Ig� It has 
jIj vertices� namely all
those vertices of the d�cube Kd � ��� 
�d whose xi�coordinates are � for all i �� I� It has d � jIj
extreme rays� namely ri with i �� I�

Any halfspace H�j� with j �� I cuts o� one extreme ray of KI �namely rj� and no vertex�
The dwar�ng halfspace H cuts o� all d�jIj extreme rays� and also all but jIj�� of the vertices�
This implies that as long as I �� D the mincuto� rule will prefer every H�j� with j �� I over the

dwar�ng halfspace H�

Proof of Theorem ��� Let us write down once more the constraints for DPP� There is the
dwar�ng halfspace H given by

x� � x� � ���� xd�� � 
s� � �







and for each k � D � f�� � � � � 	g we have the constraint set Hk given by

yk � � ���
yk � sxk ���

�
i� ��xk � yk � �
i� ���s� i�� i� � s� for � � i � s� � �
�
�
s� ��xk � yk � 
s�
s� �� �
��

%From now on let Ik be a subset of Hk that contains at least the two constraints labelled ���� Fix
k� and consider the polygon P �Ik� in the xk�yk�plane formed by

T Ik� If jIkj � 
� then this polygon
is the cone spanned by the two extreme rays rk and r�k in the positive orthant supported by the
lines through the origin with slope � and s� respectively� Any constraint in Hk n Ik cuts o� both
those ray�

If jIkj � 
� then this polygon has jIkj edges and vertices� of which one is the origin� another has
x�coordinate at least 
s� and the remaining ones have x�coordinates between s and 
s � �� Any
constraint in Hk n Ik cuts o� exactly one vertex�

Let I � I�� � � ��I�� Note that
TI is the product of the polygons P �Ik� �or equivalently� their

Minkowski sum�� We can characterize
TI as follows	

Let K � D comprise those indices k for which jIkj � 
� The polyhedron
T I is given by

�)k�KP �Ik��� �z �
B

	 �)k��KP �Ik��� �z �
C

�

where B is a polytope with )k�K jIkj vertices and C is a cone with d� 
jKj extreme rays �namely
rk� r

�
k with k �� K�

Now consider a halfspace Ik � Hk n Ik with k � K	 It cuts o� no extreme ray� but it cuts o�
) j�K

j ��k

jIjj vertices�

Next consider a halfspace Ik � Hk n Ik with k �� K	 It cuts o� the two extreme rays rk and r�k
but no vertex�

Finally consider the dwar�ng constraint H	 It cuts o� all d� 
jKj extreme rays� Moreover� by
the same reasoning as in the proof of Theorem � it is a dwar�ng halfspace for B� Thus it cuts o�
all but �

P
k�K jIkj�� 
jKj� � vertices of B�

Thus if K �� D the mincuto� rule will prefer any halfspace in Hk n Ik with k �� K over the
dwar�ng halfspace H� If K � D then using that jIkj � � it is straightforward to conclude that the
mincuto� rule will prefer every other halfspace over the dwar�ng halfspace H�

Proof of Theorem ��� For � � k � d let Wk be the polyhedron speci�ed by the following 
d� k
constraints Hk	 the 
d non�negativity constraints in ������ and the k constraints xi � xd�i � � for
i � �� � � � k from ����
�� Let rj denote the ray formed by the positive xj axis�

Consider coordinate plane �i spanned by xi and xd�i� If k � i � d� then the constraints in Hk

that involve xi and xd�i specify the positive quadrant Qi in �i� which is a cone spanned by the two
extreme rays ri and rd�i�

If � � i � k� then the constraints in Hk that involve xi and xd�i specify an unbounded polygon
Pi in �i whose two vertices are the points ��� �� and ��� �� and whose two extreme rays are given by
ri and rd�i� In other words� Pi � Bi � Qi� where Bi is the two vertex polytope spanned by ��� ��
and ��� �� and the recession cone is Qi� the cone spanned by the extreme rays ri and rd�i�


�



Since Wk is the product of the polygons in the planes �i we can conclude that Wk can be
represented as Minkowski sum

Wk �
X

��i�k
�Bi �Qi� �

X
k�i�d

Qi �
X

��i�k
Bi

� �z �
Ck

�
X

��i�d
Qi

� �z �
Q

�

i�e� Wk is the Minkowski sum of the non�negative orthant Q� which is spanned by the 
d extreme
rays rj � and of the k�dimensional cube Ck� which has 
k vertices� Moreover� these vertices are
exactly the ��� vectors with exactly one � and one � in position i and d � i for i � �� � � � � k� and
with only ��s in position i and d� i for i � k � �� � � � � d�

We now want to argue inductively that for k � �� � � � � d maxcuto� order will produce exactly
those polyhedra Wk� This is clear for k � � since W� � Q� which is the polyhedron spanned by the
non�negativity constraints in ������� with we assume to be the initial constraints in the ordering�

Assume inductively that Wk has been produced� for k � d� No constraint from ����
� can cut
o� any extreme ray rj� A constraint xi � xj � � with i � f�� � � � � kg or j � fd � �� � � � � d � kg can
cut o� at most half of the vertices Wk� But any constraint xi � xj � � with i � fk � �� � � � � kg and
j � fd � k � �� � � � � 
dg cuts o� all vertices of Wk� Without loss of generality we may assume �by
relabelling of coordinate indices if necessary� that the maxcuto� strategy therefore chooses as next
constraint xk���xd�k�� � �� and the constraint set is extended from Hk to Hd��� i�e� we have Wk

intersected with the new constraint is Wk���

To complete the proof of the theorem it remains to show that R�d has indeed only 
 vertices
and 
d extreme rays�

It is clear that for � � j � 
d each rj is an extreme ray� since it satis�es 
d�� of the constraints
in ������ with equality and satis�es all other constraints� There can be no other extreme ray� since
otherwise the recession cone would be larger than the non�negative orthant Q� which is clearly
impossible because of the constraints in �������

We claim that ��� � � � � �� �z �
d

� �� � � � � �� �z �
d

� and ��� � � � � �� �z �
d

� �� � � � � �� �z �
d

� are the only two vertices of R�d� It is

easy to check that the matrix given by the constraints is totally unimodular� This implies that all
vertices of R�d must be integral� This means that all vertices must be ����vectors� since a larger
component would not allow to satisfy any of the constraints in ����
� with equality �which one
would need� since a vertex must satisfy 
d independent constraints�� Any ����vector that has a
� in in position i � d and in position j � d cannot be a vertex since it violates that constraint
xi�xj � �� So assume all positions in� say� the second half are � and some position i � d in the �rst
half is also �� In this case no constraint involving xi can be satis�ed with equality� which means
one cannot �nd 
d independent constraints that are satis�ed with equality� as would be necessary
for a vertex�

So this leaves as possible vertices only the two ����vectors that have all ��s in one half and all
��s in the other� It is easy to check that they indeed do satisfy 
d independent constraints with
equality� so therefore they are vertices�

� Experimental Results

Using the examples described in the previous sections� we tested one pivoting algorithm that
uses perturbation �lrs�� one insertion algorithm that uses triangulation �qhull� and two �pure�
insertion algorithms �cdd� and porta� based on the double description method �����


�



What Where

cdd� ftp	

ifor���ethz�ch
pub
fukuda
cdd
cdd������tar�gz

lrs ftp	

ftp�cgrl�cs�mcgill�ca
pub
polytope
soft
src
rs
lrs�c�Z
http	

www�cgrl�cs�mcgill�ca
polytope
soft


porta ftp	

elib�zib�berlin�de
pub
mathprog
polyth
porta

qhull ftp	

geom�umn�edu
pub
software
qhull�tar�Z
http	

www�geom�umn�edu
software
qhull


example polytopes ftp	

ftp�cgrl�cs�mcgill�ca
pub
polytope
examples
hgch
hgch input�tar�gz
http	

www�cgrl�cs�mcgill�ca
polytope
examples

Table �	 Availability of Software and Data by anonymous ftp and WWW�

All of the software and data �les described in this paper are available by anonymous ftp� and
on the world wide web� See Table � for details� cddf� and cddr� are version ���� of Fukuda�s
implementation of the double description method ����� compiled respectively to use �oating point
and exact rational arithmetic� porta is version ��
�� of Christof� Loebel� and Stoer�s implementation
of the double description method� qhull is Barber and Huhdanpaa�s implementation of �Quickhull�
�a variant of the beneath and beyond algorithm�� version 
�
 ���� lrs is Avis� implementation of
reverse search ��� using Edmonds Q�pivoting and lexicographic perturbation� version 
��i� We
compiled qhull to use double precision� cddf� uses double precision by default The option C�� was
used to force qhull to merge the generated simplicial facets� Random insertion order for cdd� was
simulated by permuting the order of constraints ��� times using the Combined Random Number

Generator of L�Ecuyer �
�� and reporting the average time�
In the following Vsize denotes the summed intermediate complexity for insertion algorithms�

In particular� for cdd� it denotes the sum of number of extreme rays at each stage of the double
description method� For qhull it denotes the summed number of untriangulated facets of interme�
diate polytopes� Tsize denotes the measured triangulation complexity of the polytope� For qhull
this the sum of the triangulation sizes of the intermediate polytopes� For lrs it is the number of
bases �and vertices� of the perturbed polytope� The notation memory limit on a graph indicates
that this was the last run of a series to complete due to memory limitations� Times are measured
in CPU seconds� All timings on a DEC����
��� Alpha with ��M of physical memory and ��
M
of virtual memory� running OSF
� ��� �except where noted�� Most of the examples were trans�
lated from those described in Section � so that the origin was contained in the interior in order to
facilitate the use of the same �les with both vertex and facet enumeration programs�

��� Rational versus Floating Point Arithmetic

The convex hull problem has the nice property that it is possible to perform all computations in ex�
act rational arithmetic� this is especially desirable in applications such as combinatorial optimization
where an exact answer is desired rather than just an approximation� One question currently being
investigated by several researchers is the relative cost of using exact rational arithmetic instead of
�oating point or some hybrid scheme� To minimize the number of variables in the experiment� we
used Fukuda�s program cdd� which can be compiled to use rational or �oating point arithmetic� In
examples where input numbers are very large such as the products of cyclic polytopes� cddr� was
thousands of times slower than cddf� on some inputs� Moreover� in the ratio between cddr� and
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cddf� gets worse as input size increases in the intricate polytope classes �products of simplices and
products of cyclic polytopes� tested� On the other hand for the dwarfed cubes� the performance
ratio is not nearly so bad� and tends to get better as the input size increases� probably because the
set theoretic operations involved in maintaining vertex facet adjacency in the double description
method begin to dominate the cost of computation�

In general porta far outperformed cddr� if both used the same insertion order� This is most
likely because cddr� uses the very general purpose GNU rational arithmetic package while porta
uses its own� presumably more highly tuned rational arithmetic library�

��� Products of Simplices

In this subsection we interpret the problem under consideration as a convex hull problem� As
expected from Theorem � the triangulation complexity of the products of simplices explodes rather
quickly �see Table 
�� The degeneracy of the facets of TT�d does not seriously e�ect the algorithms
based on the double description method since they represent the intermediate polytopes by the
extreme rays of a homogenization� in this case a �degenerate� polytope simply means that many
of these extreme rays happen to lie on a given facet� On the other hand� choosing the maxcuto�
insertion order does cause poor performance �see Figure 
�� This is not too surprising since in
transforming our input points for use as input to cdd�� we are just taking a dual that preserves
boundedness� as opposed to translating one facet to in�nity as in Theorem ���

Tsize
d facets vertices size qhull lrs

� � � �� 
� ��
� � �� ��� ��
 ��
� �� 
� 
�� �
� ���

�� �
 �� ��� ���� ���

�
 �� �� ��� ���� ����
�� �� �� ��
� ����� 
����
�� �� �� ���� �a� ������
�� 
� ��� 
��� ���
��

� 

 �
� 
��� 
��
���

�a� System thrashed�

Table 
	 Triangulation complexity for products of simplices

��� Dwarfed Cubes

In this subsection� the problems are interpreted as vertex enumeration problems� The data
�les for the dwarfed cubes have the dwar�ng constraint last in the �le so the minindex insertion
order is guaranteed to build the entire d�cube� The dwarfed cubes are simple� so the lone pivoting
algorithm �lrs� performs extremely well �see Figure ��� A comparison of Figures � and � shows that
the asymptotic performance of cddr� and cddf� appears di�erent� even though the number of rays
in the intermediate cones is the same �see Table ��� It appears that the intermediate polytopes
computed by qhull are not simple� since the triangulation complexity for qhull grows much
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Figure 
	 Timing results for products of simplices�
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Figure �	 CPU time for dwarfed cubes� �oating point arithmetic
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Figure �	 CPU time for dwarfed cubes� rational arithmetic

faster than the �untriangulated� intermediate complexity �see Table ��� The initial con�guration
of halfspaces chosen by cdd� �by lexicographic order� is exactly that speci�ed by Theorem ��� so
the poor performance of mincuto� on these polytopes is not a surprise� The only insertion order
that performs well on these polytopes is maxcuto��

��� Dwarfed products of polygons�

As in the dwarfed cube examples� maxcuto� works quite well and mincuto� performs ex�
tremely poorly on these polytopes �see Figure ��� Here again the initial con�guration chosen by
cdd� is lexicographic and matches that of Theorem ��� These polytopes are simple� so both qhull

and lrs perform quite well� As we have seen with dwarfed cubes� even if the �nal polytope is simple�
the intermediate polytopes are not necessarily simple� Here� however the intermediate polytopes
are also products of polygons� hence simple� In Figure � we show how the performance of cddf�
varies with dimension and number of input points for a �xed �bad� insertion order� Recall that in
terms of the parameters on the graph the dimension is 
	 and the number of input points is s	�

��� Products of Cyclic Polytopes

Products of cyclic polytopes provide families in �xed dimension �in our experiments� d � �� that
are hard for for lattice producing and triangulation producing algorithms� We did not have any
implementations of lattice producing algorithms to test� but our experience with the two triangu�
lation producing algorithms �lrs and qhull� bears out the theory �see Figure ��� These polytopes
also seem quite di�cult for insertion methods� It is interesting to note that numerical instability
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Figure �	 Performance of various insertion orders and programs on DDP���s��
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�a� Virtual Memory Exceeded�

�b� Intermediate sizes for completed cddr� runs are identical� although
each ray may take more space to store in cddr��

Table �	 Dwarfed cubes	 intermediate size for cdd��

problems caused by the coordinates on the moment curve seem to depend on insertion order�

��� Pierced Cubes

These examples are a historically earlier and somewhat more complicated class of polytopes that
establish some of the same results as dwarfed cubes �
�� In particular they show that maxin�
dex
minindex and lexicographic orders can be superpolynomial� In these examples� the cube con�
straints come last in the �les� so maxindex is guaranteed to build the entire d�cube� Unlike the
case of dwarfed cubes� maxcuto� does not perform well on these polytopes �see Table ���

��� Products of simplices and cubes

It is not di�cult to argue that taking the product of an intricate family of polytopes and a dwarfed
family of polytopes gives you a family that is both dwarfed and intricate� although not neccesarily
with exactly the same bounds� The polytopes tested in this subsection are the cross product
of a dwarfed d�cube and the product of two d�simplices� We abbreviate to SSC polytopes� for
simplex 	 simplex 	 cube� These polytopes are hard for the triangulation producing programs lrs
and qhull� and for the minindex insertion order �see Table ��� Note however that the product
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Table �	 Dwarfed cubes	 intermediate size and triangulation complexity for cdd� random insertion�
lrs� porta and qhull

construction does not necessarily preserve lexicographic order without additional transformations�
so the performance of lexicographic order on these polytopes is relatively better than that on the
dwarfed cubes �compare with Table ���

��	 Practical Problems

We conclude with some very recent practical experience using the codes cdd and lrs� In practice
one often has additional information about the polytope that allows an astute choice on insertion
order� In ���� the authors describe the so�called co�clique ordering� In the vertex enumeration
context� facets are grouped into maximal independent sets in the ridge graph of the polytope� and
entered in this order� �For the polytopes they study� the ridge graph is known�� Using this ordering
they were able to compute the 
������ vertices of the metric polytope� de�ned by ��� facets in 
�
dimensions with cdd� The computation took about � weeks on a Sony News NWS����� workstation
at TIT� The computation failed for the lexicographic� mincuto� and maxcuto� rules� due to the
large size of the intermediate polytopes� In ��� the same ordering produced excellent results for
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�a� These tests carried on under OSF�
 v�
�c

�b� Incorrect number of facets computed


�c� System thrashed


Table �	 Timing results for CC��n��

many of the polyhedra considered� The intermediate polyhedra always had sizes between ��
 and 

times that of the original polyhedron� �Interestingly� initial experiments suggest that our products
of cyclic polytopes provide a class of examples for which this co�clique ordering fares very badly��

The hardest problem solved in ��� was a polytope in �� dimensions with 
�� facets with ���
coe�cients and ��� ��� extreme rays� This could not be solved by cdd� but was solved in three
days by a parallel version of lrs implemented by Ambros Marzetta at ETH Zurich� This parallel
version runs on an NEC Cenju�� with �� processors� Very recently ������ this code completed
the enumeration of all bases of the con�guration polytope with �� facets in �� dimensions �see
����� which could not be solved by any other method� The polytope had � ��� ��� vertices� ��
��� ��� bases� and the computation took ��� days �estimated at ��� days on a single processor��
Many combinatorial polytopes� in particular the cut and metric polytopes� appear to have high
triangulation complexity� It would be interesting to try and prove this�
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Table �	 Pierced cubes	 summed intermediate size�
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Addendum� Products of cyclic polytopes are universally di�cult

Let C�s� d� denote the d�dimensional cyclic poltyope with s vertices� Let C����s� denote the
	�fold product of 	 cyclic polytopes C�s� 
	�� This polytope has s� vertices and also !�s�� facets�
It is highly degenerate and because of this facet enumeration is di�cult for pivoting
gift�wrapping
types of algorithms� as shown in the paper� It turns out to be also very di�cult for incremental
algorithms� Thus products of cyclic polytopes are di�cult for all known types of algorithms�

The following theorem implies that an incremental algorithm needs at least ��s������� steps�
irrespective of which insertion order is used�

For polytope P with vertex set V and v � V let g�v� P � denote the number of facets of Pv �
conv�V n fvg� that are visible from v� i�e� the facets of Pv that are not facets of P �

Theorem �	 For every vertex v of P � C����s� we have g�v� P � � !�s��������

Thus the removal of just one vertex from C����s�� no matter which one� causes the facet number
to jump from !�s�� to !�s�������� which is obviously catastrophic for the last step of an incremental
algorithm� no matter which insertion order is being used� In a sense every vertex of C����s�
acts like a �dwar�ng vertex��

Applying Lemma � to every one of the s� vertices implies that if a random insertion order is
used the expected number of steps is ��s�

�

��

The theorem follows readily from the following two lemmas� whose easy proofs are omitted�
Details will appear in a forthcoming paper by David Bremner�

Lemma �� Let P be the product polytope P� 	 
 
 
 	 Pk� and let v � �v�� � � � � vk� be a vertex of P �
where vi is a vertex of Pi� Then

g�v� P � �
Y
i

g�vi� Pi� �

Lemma �� For every vertex w of C � C�s� 
	� we have g�w�C� � !�s�����

��


