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Abstract

A convex polytope P can be specified in two ways: as the convex hull of the vertex set V of
P, or as the intersection of the set 7 of its facet-inducing halfspaces. The vertex enumeration
problem is to compute V from H. The facet enumeration problem it to compute H from V.
These two problems are essentially equivalent under point/hyperplane duality. They are among
the central computational problems in the theory of polytopes. It is open whether they can be
solved in time polynomial in |H| + |V].

In this paper we consider the main known classes of algorithms for solving these problems.
We argue that they all have at least one of two weaknesses: inability to deal well with “degen-
eracies,” or, inability to control the sizes of intermediate results. We then introduce families of
polytopes that exercise those weaknesses. Roughly speaking, fat-lattice or intricate polytopes
cause algorithms with bad degeneracy handling to perform badly; dwarfed polytopes cause al-
gorithms with bad intermediate size control to perform badly.

We also present computational experience with trying to solve these problem on these hard
polytopes, using various implementations of the main algorithms.

1 Introduction

A d-dimensional convezx polyhedron is the intersection of a finite number m of non-redundant halfs-
paces H = { Hy, Ho,...,Hy } of R A bounded convex polyhedron is called a polytope. A classic
theorem from convexity states that every polytope P can be expressed as the convex hull of its
n extreme points (or vertices) V. These descriptions of P will be referred to as the halfspace and
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vertez descriptions, respectively. The size of a polytope, denoted size(P) = (m + n)d, is the space
required to store both descriptions of a polytope. There are three closely related computational
problems concerning the two descriptions of a polytope:

e The vertex enumeration problem asks to compute V from H.
e The facet enumeration problem asks to compute H from V.

e The polytope verification problem asks to decide whether a given vertex description V and
halfspace description H define the same polytope.

If redundant elements are allowed as inputs to the polytope verification problem, then
all three problems are polynomially equivalent. The first two problems are equivalent under
point/hyperplane duality. Either of the first two can be trivially used to solve the third. To
solve e.g. vertex enumeration using polytope verification, verify that all vertices have been found
for each facet of P. If not, recurse on that facet. In at most d|#| polytope verification calls, the
algorithm finds a new vertex.

This paper will not be concerned with the polytope verification problem per se, but with vertex
enumeration and facet enumeration. We already stated that these two problems are essentially
equivalent under point/hyperplane duality. Thus it would suffice if we restricted the discussion
to just one of those two. However, some aspects and phenomena are more easily described in the
context of facet enumeration, others more easily in the context of vertex enumeration. For that
reason we will feel free to switch back and forth between those two problems, with the understanding
that all examples and results stated for vertex enumeration also hold, appropriately dualized, for
the facet enumeration problem, and vice versa. However, most of the ensuing discussions will be
in terms of vertex enumeration.'

We are interested in the computational difficulty of vertex enumeration. When measuring the
efficiency of a vertex enumeration algorithm it is important to take into account the vast possible
variation in output size. By the upper and lower bound theorems of McMullen [29] and Barnette [6]
a polytope P specified as the intersection of m halfspaces in IR? can have as few as

B(d,m)=(m—d)(d—1)+2
vertices (in the non-simple case even fewer) and as many as

m— |(d+ 1)/2J> N (m— L(d+2)/zj>
[d/2] [(d=1)/2] )

This large possible range suggests that the performance of vertex enumeration algorithms be mea-
sured not only in terms of input size dm but also in terms of output size dn, where n is the number
of vertices produced.

An outstanding question from both a theoretical and a practical point of view is whether vertex
enumeration can be solved in time polynomial in input size dm and output size dn, or equivalently,
polynomial in size(P) = d(m + n). One of the central purposes of this paper is to show that all
known main types of vertex enumeration algorithms actually do have superpolynomial worst case

7(d7 m) = (

! Actually, in some ways it would be more elegant to apply homogenization and frame our discussion in terms of
extreme ray and facet enumeration for polyhedral cones. We will refrain from doing so, mainly since the affine setting
provides better intuition. For the most part we will ignore the issue of unboundedness and extreme rays, although it
has some aspects that are interesting in their own right.



running time. This is done by providing explicit example families of polytopes for which the various
algorithms perform poorly. We also corroborate those findings by computational experiments.

At this point a comparison to the situation in Linear Programming may be called for. Ob-
viously Linear Programming and vertex enumeration are closely related. The title of our paper
was inspired by the famous paper of Klee and Minty [26] where they showed that the simplex
algorithm with a certain natural pivoting rule can have superpolynomial running time. Our goal
is more ambitious in that we want to show superpolynomial running time not just for one specific
algorithm but for all known main classes of vertex enumeration algorithms. At the same time our
findings are more devastating, since in contrast to the simplex algorithm, which on problems arising
in practice essentially never exhibits its possible worst case behaviour, our experience suggests that
vertex enumeration algorithms do exhibit their superpolynomial worst case behaviour on problems
arising in practice (see e.g. [9, 21]). Fortunately vertex enumeration as a problem arises much less
frequently than linear programming. Still, we want to stress that contrary to prevailing opinions
in the computational geometry community, the current situation with respect to vertex and facet
enumeration is unsatisfying both in the practical and in the theoretical sense. In Linear Program-
ming the current state of affairs appears to be somewhat satisfactory for practical purposes (and
of course from a theoretical point of view there are polynomial algorithms for Linear Programming
in the bit model of computation).

1.1 The main algorithms

Geometrically the main vertex enumeration algorithms can all be viewed as not just generating all
vertices of a polytope P but actually the 1-skeleton of P, i.e. the graph formed by P’s vertices
and edges. Dually, facet enumeration algorithms can be viewed as generating the “facet graph,”
i.e. a graph whose nodes are the facets of the polytope and with two facets adjacent iff they share
a common ridge.

In essence there are only two main classes of algorithms for producing these graphs: graph
traversal algorithms and incremental algorithms.

The graph traversal algorithms first find some node of the graph in question and then attempt
to identify all nodes and edges of the graph by traversing it in some fashion. In the case of vertex
enumeration each vertex v of a d-polytope P can be identified by a basis, i.e. d facets that contain
v and whose spanning hyperplanes are affinely independent. Two vertices of P are connected by
an edge of P if they have bases that differ in exactly one member. Going from a vertex to an
adjacent one during the graph traversal amounts to changing this one member of the basis. This
operation is known as pivoting in the simplex algorithm for linear programming. For this reason
graph traversal algorithms for vertex enumeration are also known as pivoting algorithms. In the
context of facet enumeration going from one facet to a neighboring can be viewed as rotating a
supporting hyperplane about the common ridge. In analogy to a 3-dimensional physical realization
this operation is therefore known as a gift-wrapping step.

Representatives of this class of graph traversal algorithms are the gift wrapping algorithm
of Chand and Kapur [10], Seidel’s algorithm [35] and the reverse search algorithm of Avis and
Fukuda [4].

Incremental algorithms for the vertex enumeration problem compute the vertex description by
intersecting the defining halfspaces sequentially. An initial simplex is constructed from a subset of
d + 1 halfspaces and its vertices and 1-skeleton are computed. Additional halfspaces are introduced
sequentially and the vertex description and 1-skeleton are updated at each stage. Essentially such an
update amounts to identifying and removing all vertices that are not contained in the new halfspace,



introducing new vertices for all intersections between edges and the bounding hyperplane of the
new halfspace, and generating the new edges between these new vertices. Although the first explicit
description of such an algorithm, now widely known as the double description method, appeared
in the pioneering 1953 paper of Motzkin et al. [30], this paper seems to have been overlooked by
the Computational Geometry community. Many of the same ideas were rediscovered and refined
in the beneath and beyond method of Seidel [34] (in the facet enumeration setting), the randomized
algorithm of Clarkson and Shor [14] and the derandomized algorithm of Chazelle [11]. Finally we
should mention that so-called Fourier-Motzkin elimination can be viewed just as a dual formulation
of the double description method and thus falls in the class of incremental algorithms.

All incremental algorithms can employ different insertion orders. One can distinguish between
static insertion orders, which are determined from the inputs before the actual incremental algo-
rithm is started, and dynamic insertion orders, where the next halfspace (vertex) to be considered is
a function of the current polytope and the remaining halfspaces (vertices). Typical static orderings
are minindex (process in order as the input happens to be), lexicographic (process halfspaces in
lexicographic order of their suitably normalized coefficient vectors), and random. Typical dynamic
orderings are maxcutoff and mincutoff (as next halfspace choose the one whose complement con-
tains the most or least vertices of the current polytope). As we shall see, the same algorithm
applied to the same input can have vastly different running times when different insertion orders
are used. Thus choosing a good insertion order is crucial. As a manifestation of this consider the
incremental algorithms of Seidel [34] and of Chazelle [11]. If performance is measured only in terms
of input size and the dimension d is kept fixed, then these algorithms are asymptotically worst
case optimal (for even d in case of [34], and for general d in case of [11]). Seidel’s algorithm relies
crucially on the use of a lexicographic insertion order. The biggest part of Chazelle’s algorithms is
the determination of a very sophisticated dynamic insertion order.

One of the main obstacles to achieving polynomiality in size(P) is degeneracy. In the case of
vertex enumeration this means more than d facets contain a vertex and hence vertices do not have
a unique basis; the polytope is not simple and vertices can be incident to more than d edges. For
pivoting algorithms this creates problems since a non-simple polytope may have many more bases
than vertices, and a naive pivoting algorithm visits every basis. For facet enumeration, degeneracy
dualizes to having more than d vertices contained in a facet. Many incremental facet enumeration
algorithms (e.g. [34, 11, 33]) require that the intermediate polytopes be simplicial (or equivalently
triangulated) in order to efficiently (i.e. not just in polynomial time) find the new ridges.

There are two general methods to deal with degeneracy. They apply equally well to pivoting
and to insertion algorithms. The first method is to generalize the algorithm so that it generates
the entire face lattice of the polytope. We call such algorithms lattice producing. Examples are the
gift wrapping algorithm of Chand and Kapur [10], Swart [36], Seidel [34], [17], [35], and Rote [32].

The second method employs perturbations in order to simulate non-degeneracy. Since in the case
of facet enumeration perturbing the input vertices results in triangulating the facets we call such
algorithms triangulation producing. All algorithms that work correctly in the non-degenerate case
are amenable to the perturbation method. One advantage of triangulation producing algorithms
is that they can easily be adapted to compute the volume of a polytope. Using the reverse-search
technique of Avis and Fukuda [4] one can compute the volume of a polytope using space linear in
the input size.

The only exception to the classification “lattice producing” versus “triangulation producing”
appears to be the double description method of Motzkin et al. [30]. This incremental method does
not maintain an explicit description of the 1-skeleton, but maintains the incidence information
between facets and vertices, from which adjacency information between vertices can be recovered.



This method appears to deal surprisingly well with degenerate inputs.

In summary, we have classified algorithms along two lines. We have graph traversal algorithms
versus incremental algorithms (with various insertion orders). And we have lattice producing
algorithms versus triangulation producing algorithms, plus the special case of the double description
method (which happens to be an incremental algorithms).

1.2 The example polytope families

We consider three classes of polytopes: fat-lattice polytopes, intricate polytopes, and dwarfed
polytopes. Loosely speaking, a fat-lattice polytope P is one for which the total number of its faces
(of all dimensions) is “much larger” than size(P). An intricate polytope P is one for which the
number of simplices required to triangulate all of its facets is “much larger” than size(P). Finally,
a dwarfed polytope P is one that can be represented as Q N H, where P has one more facet than
@ but size(Q) is “much larger” than size(P).

We now make precise what we mean by the term “much larger”. Given some function A of
m = |H|, n = |V|, and the dimension d, we say that A is “much larger” than size(P) if it is
superpolynomial in size(P) i.e. if A is not bounded by any polynomial in m, n, and d, and hence
not by any polynomial in size(P).

For all three types of polytopes, fat-lattice, intricate, and dwarfed, we provide example families
of two kinds, uniparametric, and biparametric. A uniparametric family F comprises d-polytopes P
of arbitrarily large dimension d but with size(P) a function of d. A biparametric family contains
for infinitely many d € IN a subfamily F; that comprises d-dimensional polytopes P with size(P)
arbitrarily large.

Note that if for the individual subfamilies F; of a biparametric family F we have only the
polynomial bounds A = Q(size(P)%), then, considering all of F, it is still the case that “A is much
larger than size(P),” provided that ¢4 is arbitrarily large with d large enough. (Also note that the
asymptotic expression Q(size(P)) makes sense, since F, contains polytopes of arbitrarily large
size.)

It will be easy to argue that lattice producing algorithms behave badly on fat-lattice polytopes,
and triangulation producing algorithms behave badly on intricate polytopes. According to our clas-
sification this leaves only the double description method uncovered. However this is an incremental
method and we will show that incremental algorithm behave badly on our dwarfed polytopes, if they
employ one of the usual static insertion order or the dynamic mincutoff insertion order. If they use
the dynamic maxcutoff insertion order, then they seem to behave badly on our intricate polytopes,
although we can prove this only for one specific uniparametric family of intricate polytopes.

1.3 Previous work

There has been some work by Dyer [16] and by Swart [36], showing that incremental algorithms
can potentially have very bad behaviour. They built on examples of Kirkman [24] and Klee [25].
However, they did not pursue a detailed study of the various possible insertion orders, and in
particular ignored dynamic insertion orders. Moreover, our examples are more extreme and more
easily specified as the ones in those references. There is a sizeable literature on polytope degeneracy,
mostly in the context of linear programming. A “selected bibliography” by Gal [20] contains
123 references. Of particular interest from a vertex enumeration point of view are the following.
Provan [31] showed that there are network polytopes that yield a superpolynomial number of
perturbed vertices under lexicographic perturbation (and also provided a polynomial algorithm in
our sense for enumerating the vertices of network polytopes). Armand [1] showed that (in the



worst case), perturbing the m > d facets adjacent to a single vertex can yield y(d, m) — (m —d+1)
vertices. Here we consider classes of polytopes whose best perturbation is superpolynomial.

1.4 Organization of the paper

In Section 2 we briefly review basic properties of convex polytopes. In Section 3 we introduce
our example classes of polytopes and derive their properties. In Section 4 we discuss how those
example classes force bad behaviour on various algorithms. Our examples of hard polytopes apply
to computational models that include most published vertex and facet enumeration algorithms. A
number of these algorithms have been implemented by various people. But an implementation is
rarely completely faithful to the algorithm from which it is derived. For this reason we present and
discuss in Section 5 actual computational experience obtained by trying various implementations
on our hard polytope classes of the previous sections.

2 Preliminaries

For a set X C IR? a convex combination of X is a point Y zex Ao, where Ay > 0 for each z, and
Y zex Az = 1. The convex span of X is the set of all convex combinations of X. A point z € X is
called extreme iff it cannot be represented as a convex combination of X \ {z}.

A halfspace of IR? is a set representable as {x € R? | (z,n) < ¢}, where ¢ € R and n is a
non-zero vector. Such a halfspace is bounded by the hyperplane {z € R? | (z,n) = c¢}. An element
H of a set of halfspaces H is called irredundant if NH # N(H \ {h}). For a set X C RY let Hx
denote the set of halfspaces that contain X. The set (| Hx is called the convex hull of X.

It is one of the basic results of convexity theory that the convex span and the convex hull of X
are the same — usually denoted as convX. Moreover, if X is finite, then Hx has a finite number
of irredundant halfspaces. Similarly, if # is a finite set of halfspaces with (A bounded, then H
has a finite number of extreme points.

These definitions and results naturally lead to the following four computational problems:

Extreme point: Given a finite set X C IR?, determine its extreme points.
Irredundancy: Given a finite set H of halfspaces, determine its irredundant elements.
Facet enumeration: Given a finite set X C IR?, determine the irredundant halfspaces of H x.

Vertex enumeration: Given a finite set H of halfspaces with (| bounded, determine the ex-
treme points of " H.

The first two problems, which are related by duality, can be solved using |V| and |H| linear
programs respectively. Clarkson [13] has recently discovered a method to reduce the size of each
linear program to A by d where A is the number of elements of the result set and d is the dimen-
sion. A more sophisticated method for constant dimension has been presented by Matousek and
Schwarzkopf [28].

The last two problems are the subject of this paper. Their names derive from the combinatorial
structure of the boundary of polyhedra, i.e. sets representable as the intersection of a finite family of
halfspaces. Bounded polyhedra are called polytopes. By the discussion above convX is a polytope
for every finite X. Let P be a polytope and H a halfspace with bounding hyperplane h so that
P C H and PN h # 0. Hyperplane h is then called a supporting hyperplane of P, and P N h is
called a face of P. The empty set and P itself are also considered (improper) faces of P. The faces



of P are closed under intersection. They are themselves polytopes and their faces are also faces of
P. Thus the faces of P form a lattice, called the face lattice of P.

A face of dimension i is called an i-face. If P is a k-polytope (i.e. a polytope of dimension k),
then its faces of dimension £k — 1, kK — 2, 1, and 0 are respectively called its facets, ridges, edges,
and vertices. Note that the vertices of P are exactly the extreme points of P. We denote them
by V(P). The facets of P correspond to the irredundant halfspaces of Hp. They are denoted by
H(P).

For a point ¢ # 0 let H, denote the halfspace {z | (z,q) < 1}. Let P be a d-polytope in R?
that contains the origin in its interior. The dual of P is the set P* = ({H, | ¢ € P}. Since p € Q)
is extreme iff is H, irredundant in {H, | ¢ € Q} and since ¢ € H), iff p € H,, we get that P* is
a polytope with H, inducing a facet iff v € V(P) and p a vertex iff H, € H(P). More generally,
there is a 1-1 correspondence between i-faces of P and (d — 1 — i)-faces of its dual P*. Because of
this duality facet enumeration for P is equivalent to vertex enumeration of P*.

A d-polytope is called simple iff each of its vertices is contained in exactly d facets. Dually, a
d-polytope is called simplicial iff each of its facets contains exactly d vertices. In this case for ¢ < d
each i-face is an i-simplex, which is the convex hull of ¢ 4+ 1 affinely independent points.

For a polytope P let f;(P) denote the number of i-faces of P, and let f(P) = 3", fi(P). For a

k-simplex Sy we have f;(Sk) = (]:1'11) and f(Sy) = 2¥*! —1. Of considerable interest is the question
of the extreme possible values of f;(P) given that P is a d-polytope with m facets. McMullen [29]

has shown that | | |
FiP) < ldm) = Y <J> (m Tl ‘”) -

0<5<d ¢ mln{]ad _]}

This bound is realized by the duals of cyclic polytopes. This is a polytope whose m vertices lie
on a so-called d-th order algebraic curve ¢, which has the defining property that every hyperplane
intersects ¢ in at most d points. If S = {p1,...,pm} is a set of points ordered along such a curve
c,and J C M ={1,...,m} is an index set with |J| = d, then {p; | j € J} spans a facet of convS
iff for all k,¢ € M \ J the number of indices in J that lie between k and ¢ is even. This is known
as Gale’s evenness condition and it follows directly from the fact that if a d-th order algebraic
curve c intersects a hyperplane h in d points, then it must “cross” the hyperplane in those points.
Gale’s evenness condition implies that the face structure of a cyclic d-polytope with m vertices is
independent of the curve and of the choice of points along the curve. Thus we generically denote
a cyclic d-polytope with m vertices by Cy(m). Examples of d-th order algebraic curves are the
moment curve c(t) = (¢,t2,...,¢%), the binomial curve c(t) = ((}), (5),--.,(})), for even d = 24
Carathéodory’s curve c¢(t) = (cost,sint,cos2t,sin2t, ..., cos dt,sin t), and — for the numerically
courageous — c(t) = (1/(t +1),1/(t +2),...,1/(t + d)).
For simple m-faceted d-polytopes P Barnette [6] has shown the lower bound

(m—d)(d—1)+2 ifi=0
fi(P) > Bi(d,m) = { (m_d)(z'il) + (tzi) for1<i<d.

This bound is realized by so-called truncation polytopes, which can be defined inductively as
follows: a d-simplex is a truncation polytope with d 4 1 facets; an m-faceted truncation d-polytope
is obtained by intersecting an (m — 1)-faceted one with a halfspace that contains all but one of the
vertices in its interior and does not contain the remaining vertex. Cyclic polytopes with m facets
show that for non-simple P the face count may be considerably smaller than indicated by 5;(d, m).

Note that for d constant and m growing we have (3;(d,m) = ©(m), whereas ;(d, m) = @(mtdm)
for i < [d/2].



Of great importance in this paper is the product construction of polytopes. Let P be a polytope
in IR* and Q be a polytope in IR®. The product of P and Q is defined to be the set

PxQ={(p,q) | peP, g€ Q}.

We will view P x Q, which is a subset of IR* x IR?, as naturally embedded in IR***. The following
holds:

Lemma 1 Let P be a k-polytope and Q) be an £-polytope.
1. P xQ is a (k+¥)-polytope. If P and Q are simple, then so is P x Q.

2. If F is an i-face of P and G is a j-face of Q, with i,j >0, then F x G is an (i + j)-face of
P x Q. Moreover, this yields all non-empty faces of P x Q.

3. The vertex count of P x Q is the product of the vertex counts of P and ), whereas its facet
count is the sum of the facet counts. Finally, its total face count is the product of the total

face counts, i.e. f(P x Q)= f(P)-f(Q).

Note that the coordinate representation of a vertex (p, ¢) of P x @ can be obtained by concatenating
the coordinates of p and q. If a1z + -+ + arzp < ap defines a facet inducing halfspace of P and
biyr + -+ -beye < by defines a facet inducing halfspace of @), then each defines a facet inducing
halfspace of P x Q, if IR**¢ is considered coordinatized by (z1,..., Tk, y1,--.,Ye).

The product construction dualizes to forming the convex hull of P and ), where P and @) are
contained in orthogonal subspaces and each contains the origin in its interior.

Using the product construction it is easy to build up polytopes with many faces. If P(m) is a
convex polygon with m edges, then P(m) x P(m) is a 4-polytope with m? vertices and 2m facets.
More generally, the d-fold product P(m) x - - - x P(m) yields a 25-polytope with m® vertices and ém
facets, which thus has a face complexity that for fixed dimension is asymptotically worst possible
and the same as the one of dual cyclic polytopes.

More information on polytopes can be found in the books of Griinbaum [22], Brgndsted [8], and
Ziegler [37].

3 Polytope Families

In this section we introduce three types of polytopes, fat-lattice, intricate, and dwarfed. For each
type of polytope we give explicit infinite uniparametric and biparametric families. Recall that a
uniparametric family comprises polytopes P of arbitrarily large dimension d but with size(P) a
function of d. A biparametric family is the union of infinitely many families, F,4, each containing
d-dimensional polytopes P with size(P) arbitrarily large.

At the beginning of each of the three subsections we state theorems that introduce the various
families of polytopes. On first reading the reader may want to skip their proofs (although they are
not particularly difficult).

3.1 Fat-lattice polytopes

For us a family of fat-lattice polytopes consists of polytopes P with f(P), the total number of faces
of P, much larger than size(P). The existence of uniparametric fat-lattice families is well known
(see e.g. [16]). It may come as a surprise that biparametric fat-lattice families also exist.

We start with some simple examples.



Theorem 1 The set of simplices Ty forms a family of fat-lattice polytopes.

Proof: The d-simplex T,; has d+ 1 vertices and d+ 1 facets and hence size(Ty) = 2d(d+1). But

F(Ty) =241 — 1 > 2Vsze(Ta)/2 _ 1 and thus f(T}) is superpolynomial in size(Ty). ]

In general any polytope family with size polynomial in d and at least one “large dimensional”
simplex face (or, since duality preserves the size of the face lattice, a “small dimensional” face
whose face figure is a simplex) will be fat-lattice.

Concerning biparametric families let us first consider as an example the family CCg(n) =
Cy(n) x Cy(n) of 8-polytopes formed by taking the product of two 4-dimensional cyclic polytopes
with n vertices each. By Lemma 1 a polytope CCg(n) has n? vertices and 2y(4,n) = n(n — 3)
facets, and thus we have size(CCg(n)) = ©(n?). However, by the same lemma, for the total number
of faces we have

F(CCs(n)) = F(Ca(n))” = O(n") = O(size(CCs(n))?).

Thus in dimension 8 we can achieve a quadratic relationship between size and total face count.
By considering higher dimensions and using repeated products of cyclic polytopes any polynomial
relationship can be achieved as we will show now:

Let d be such that 2d > 4, let a = [\/E], b= |d/a], and ¢ = d mod a, and define

CCy(n) = pga(n) X o X CQQ(TL)J xCyc(n) .

b times

Thus, roughly speaking, CCyq(n) is the v/d-fold product of (2v/d)-dimensional cyclic polytopes
with n vertices each. We refer to this family of polytopes simply as products of cyclic polytopes.

Theorem 2 The products of cyclic polytopes CCaq(n) form a biparametric family of fat-lattice
polytopes.

root: et > e fixed and let a = , b= a|, and ¢ = a mod a, as delined belore.
Proof: Let 2d > 4 be fixed and 1 Vd|, b=|d d ¢ =dmod defined befi

Obviously for fixed 2d the family contains polytopes CCy4(n) of arbitrarily large size. By Lemma 1
the number of vertices of CCy(n) is n’*! (or n’ in the case ¢ = 0) and the number of facets is
b-v(2a,n) +v(2¢,n) = O(n*), and thus size(CCyq(n)) = O(n*). For the total face count we have

F(CCz(n)) = F(C2a(n))" - F(Coc(n)) = O((n")" - n) = O(n) = O(size(CCza(n))¥*).

Thus we have

f(CCa(n)) = Q(size(CCaa(n))™),

with coq = d/ [\/E-I, which is arbitrarily large if d is large enough, as required. [

Please note that the cyclic polytopes in this construction could be replaced by any other polytope
class with similar complexity, as for instance dual products of polygons. By using integral points
on parabolas as the corners of those polygons one can realize the n’! vertices of such an altered
CCoq(n) using integral coordinates of size not more than n?.

The smallest dimension for which this construction of products of cyclic polytopes yields a
non-trivial result is 2d = 6. It is an interesting open problem whether there exists a family of

4-dimensional polytopes with f(P) = w(size(P)).



3.2 Intricate polytopes

We define a family of intricate polytopes as one consisting of polytopes P for which the number of
(maximal) simplices required to triangulate all facets of P is much larger than size(P). In other
words, every triangulation of the boundary of P contains many more simplices than P has vertices
and facets.

Families of uniparametric intricate polytopes have been known for a long time. The family
Hgy = [0,1]% of unit hypercubes was pointed out to us by Giinter Rote, the family TTyy = Ty x Ty
of products of simplices by Bernd Sturmfels. It will turn out that any biparametric family of
fat-lattice polytopes is also intricate.

Theorem 3 1. Uniparametric families of intricate polytopes are provided by
o hypercubes Hy = [0,1]%, and
o products of simplices TToy = Ty X Ty.
2. A biparametric family of intricate polytopes is provided by
e products of cyclic polytopes CCoq(n).

This theorem follows from the following three lemmas:

Lemma 2 The number of (d — 1)-simplices required to triangulate all facets of Hy is superpolyno-

1
.. . . . ., - = loglogsg—1/2
mial in sq = size(Hg), in particular, it is at least s &8 / .

Proof:  The hypercube H, has 27 vertices and 2d facets. Thus we have
size(Hg) = d(2% + 2d) = 54 < 224 = uy.

A lower bound on the number of n-simplices necessary to triangulate H,, can be obtained using the
following volume-based argument (see e.g. [23]): Hj, has volume 1. Any n-simplex of a triangulation
of H, has all its vertices on a sphere of diameter /n, and the maximal possible volume of such
an inscribed n-simplex (realized by the equilateral one) is V,, = (n 4 1)(®*1)/2/(2"n!). Hence the
number of n-simplices in any triangulation of H,, is at least 1/V},.

Thus to triangulate the 2d facets of Hy (each of which is a (d — 1)-cube) requires at least

2d _2d-2¢71-(d—1)!  2¢.41  2¢.4d

d/2
Vi1 dd/? TR T i el (ar2y"

(d — 1)-simplices. But (d/2) = 1logug > 1logsy (here we use the binary logarithm) and thus
triangulating the boundary of Hy requires at least

1
1 = log sg 1 -~
(d/Z)d/Z > (Z log 3d> 1 . loglogsq—1/2
(d — 1)-simplices, as claimed. ]

The superpolynomiality achieved by hypercubes is only very slight. Products of simplices
achieve a much bigger bound.
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Lemma 3 The number of (2d — 1)-simplices required to triangulate all facets of TToq is superpoly-
nomial in sq = size(Hy), in particular, for d > 3 it is at least 254,

Proof: ;From Lemma 1 we know that TTyy = T x T, has (d + 1)? vertices and 2(d + 1) facets.
Thus for d > 3 we have

size(TTsq) = 2d(d 4+ 1)(d +3) = s4 < (2d — 1)* = uy.

Each facet of TTh4 is combinatorially equivalent to Ty x Ty_1. Now it is an interesting and useful
fact that every triangulation of T x T} requires exzactly (si't) simplices. For a volume based proof
see [23]. Thus triangulating the boundary of 1T, requires

2d — 1
%d+U< y >22M1

simplices — the inequality here follows from the fact that (2‘1(;1) is the largest of the 2d binomial
coefficients (del), which sum up to 22¢=!. But 2d — 1 = Yug > /34, and the lemma follows. m

The biparametric part of Theorem 3 is an easy consequence of the following lemma;:

Lemma 4 FEwvery biparametric family of fat-lattice polytopes is also a biparametric family of intri-
cate polytopes.

This follows directly from the following;:

Lemma 5 Any triangulation of the boundary of a d-polytope P contains at least (f(P) — 1)/2%
mazimal simplices.

Proof: Let A be a triangulation of the boundary of P, i.e. a set of (d — 1)-simplices. For
0 < i < d—1 every proper i-face of P must contain at least one i-face of a simplex of A. But
the total number of i-faces of simplices in A summed over all 4 is smaller than |A| - 2¢ since every
simplex has 2¢ faces. Thus
Al-2t> S AP =F(P) -1
0<i<d—1

and the lemma follows. [ |

3.3 Dwarfed polytopes

In this section the notion of a dwarfing halfspace or dwarfing constraint will be crucial. We say
a halfspace H (or its defining constraint) dwarfs a d-polytope P with m facets iff P N H is a
truncation d-polytope with m + 1 facets (and hence has a minimum possible number g(d,m + 1) =
(d—1)(m + 1 —d) + 2 of vertices).

A family of dwarfed polytopes is a family containing polytopes of the form P’ = PN Hp, where
Hp dwarfs P and size(P) is much larger than size(P'). In other words, P has many vertices but
the intersection with halfspace Hp removes most of the vertices, but no facet.

We will first state some families of uniparametric and biparametric dwarfed polytopes. Then
we state the Dwarfing Theorem, an easy characterization of dwarfing halfspaces. We apply this
theorem to show that we indeed have families of dwarfed polytopes, and then we finally prove the
Dwarfing Theorem.
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Theorem 4 (Dwarfed Cubes) Let K, be the d-dimensional cube specified by the 2d constraints
0<=z; <2 for1<:<d, and let Hy be the halfspace specified by > 1 <;<qi < 3.

The family DKy = KgN Hy is o family of dwarfed polytopes. In particular, we have
size(Ky) = d(2d + 29) and size(DKy) = d® + 2d* + 2d .

For biparametric families we first state a theorem showing that dwarfing can take on the most
extreme form, in that a d-polytope with m facets and a maximum possible number of ~(d, m)
vertices can be dwarfed to a d-polytope with m + 1 facets and a minimum possible number of
B(d,m + 1) vertices.

Theorem 5 (Dwarfed Dual Cyclic Polytopes) For every m-facet d-polytope P that is dual to
a cyclic polytope there is a dwarfing halfspace.

Although dwarfed dual cyclic polytopes are theoretically intriguing, they are somewhat prob-
lematic from a more practical point of view. The specification of cyclic polytopes (and their duals)
tends to require rather large numbers. The specification of the dwarfing constraint whose existence
we assert requires much bigger numbers yet. For this reason we consider another family of dwarfed
polytopes, namely dwarfed products of polygons, whose “dwarfing performance” is asymptotically
similar to the one of dwarfed dual cyclic polytopes.

The following is set in even dimension d = 2J. For convenience we will refer to the d coordinates
as x1,...,xs and yi,...,Ys-

Theorem 6 (Dwarfed Products of Polygons) For d = 2§ > 4 and s > 3 let PPy(s) be the
polytope specified by the constraints

Yy = 0 for1<k<56

stp—yr = 0 for1<k<6
2+ Dap+yr < (2i+1)(s+i)—i®+5? for1<k<dand0<i<s—3

(2s =3z +yr < 2s(2s—3) for 1 <k <9,

and let Hy s be the halfspace specified by the constraint
T+ a9+ ... +x5<2s—1.

The family DPPy(s) = PPq(s) N Hy s is a biparametric family of dwarfed polytopes. In particular,
we have (with § = d/2)

size(PPy(s)) = d(s° + ds) and size(DPPy(s)) = d*(0(s — 2) +2) +2d.
The preceding three theorems are all corollaries to the following dwarfing theorem.

Theorem 7 (Dwarfing Theorem) Let P be a simple d-polytope with m facets and H a halfspace
with no vertex of P on its boundary. If the vertices and edges of P that are contained in H form a
tree with m + 1 — d nodes, then H is o dwarfing halfspace for P.

Thus P' = PN H has m + 1 facets, f(d,m + 1) = (d — 1)(m + 1 — d) + 2 vertices, and
size(P') = d?*(m + 2 — d) + 2d.

12



Before we prove this Dwarfing Theorem, we apply it to prove Theorems 4 through 6. We will
refer to the vertices and edges of P that are contained in H as surviving and to edges of P that
are intersected by the bounding hyperplane of H as cut edges.

Proof (for dwarfed cubes): The polytope K, is a d-cube, which has 2¢ vertices and m = 2d
facets. Thus size(Ky) = d(2d 4 29).

The vertices of K, are the 2¢ points in IR? with all coordinates 0 or 2. The surviving vertices,
i.e. the ones contained in Hy, are the d + 1 points with at most one non-zero coordinate. The only
surviving edges are the d edges that connect the origin to the other d surviving vertices, giving as
graph of surviving vertices and edges a tree with d+ 1 nodes. Now apply the Dwarfing Theorem. m

Proof (for dwarfed dual cyclic polytopes): Suppose P has a 2-face F' that is a polygon
with m + 2 — d vertices. Let v be one of those vertices and let W be the remaining m + 1 —d
vertices. Clearly there is a hyperplane h that separates W from the remaining vertices of P (let £
be a line that separates v from W in the 2-plane aff ¥, and let h be a hyperplane containing ¢ that is
a suitably small perturbation of a hyperplane that supports P in the face F'). Let H be the closed
halfspace bounded by h that contains W. Then by construction there are m + 1 — d surviving
vertices strung together into a path by m — d surviving edges (the boundary of the polygon F
without v and its two incident edges). Now apply the Dwarfing Theorem.

It remains to show that polytope P has such a 2-face F' with m — d + 2 vertices. It turns out
that P has many such faces (actually v(d — 2,m) of them). Let @ be the cyclic polytope that is
the dual of P with vertices pi,ps,...,pm in their natural order along the curve used to generate
Q. Let U = {p1,...,p4—2}. Then, according to Gale’s evenness condition for each of the m+1—d
indices ¢ with d —2 < i < m the set U U {p;, pi+1} spans a facet of @Q; moreover, U U {p4_1,pm }
spans a facet of @, and this yields all facets containing U. Thus U spans a (d — 2)-face F* of Q
that is contained in m + 2 — d facets. Taking the dual we thus get a 2-face F' of P that contains
m + 2 — d vertices. ]

Proof (for dwarfed products of polygons): For any k one can easily check that the
constraints listed above describe an s-sided convex polygon Py(s) in the xp-yx-plane, whose s
vertices lie on the parabola y, = —(zx — s)? 4+ s2 and have integral coordinates with the z-
coordinates drawn from the set W(s) = {0,s,s + 1,5 +2,...,25 — 4,25 — 3,2s} (see Figure 3.3).
The polytope PPg4(s) is then the product P (s) x Py(s) X - -+ x Ps(s). Thus we know from Lemma 1
that PPy(s) is simple, that it has s° vertices and m = ds facets. Thus size(PPy(s)) = d(s® + ds),
as claimed.

By considering just the “z-coordinates” the vertex set can be identified with W (s)®. Moreover
that natural orthogonal lattice on W (s)® (with wrap-around between 2s and 0) yields the §s° edges
of PPy(s).

It is easy to see that considering halfspace Hy ; the only surviving vertices are the §(s —2) +1
vertices whose “z-coordinates” are all 0 except for possibly one, which however must not be 2s.
The surviving edges form § paths emanating from the origin with s — 2 edges each, one along each
“z-coordinate” direction.

Thus the surviving vertices and edges form a tree with §(s —2) +1 = m — d + 1 nodes. Now
apply the Dwarfing Theorem. [

Now it just remains to prove the Dwarfing Theorem. We do this in the following sequence of
lemmas.
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Figure 1: The polygon Py(6)

Lemma 6 Let P be a d-polyhedron and H a closed halfspace in R® with bounding hyperplane h so
that h contains no vertezx of P.

1. The vertex set of P' = PN H comprises (i) all surviving vertices of P, and (ii) all points of
the form e N h, where e is an edge of P.

2. The facet set of P' comprises (a) the “new facet” F' = P N h, and (b) the “old facets”
F' = F N H where F ranges over all facets of P that contain some surviving vertez.

Proof:  See [8], Theorem 11.11. ]

Lemma 7 If P is bounded, then the subgraph of the skeleton of P formed by the surviving vertices
and edges is connected.

Proof:  Define a linear program with the constraints #(P) U { H } and an objective function of
the inward normal of H. From the correctness of the simplex method with Bland’s pivot rule (see
e.g. [12]), there is a path in PN H to the optimum face F'. Since the simplex method monotonically
increases the value of the objective function (i.e. the distance from the bounding hyperplane of
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H), this path does not intersect the bounding hyperplane of H, hence is entirely along surviving
edges. By Balinski’s Theorem (see e.g. [7]), the skeleton of F' is connected, hence the graph formed
by surviving vertices and edges is connected. ]

Lemma 8 Let P be a simple d-polytope, and let H be such that h contains no vertex of P and so
that the graph G formed by the surviving vertices and edges forms a tree with t nodes.

Then P' = PN H is a truncation polytope with t + d facets (and B(d,t + d) = (d — 1)t + 2
vertices).

Proof:  We first show that P’ has the claimed number of vertices. ;From Lemma 6 we know
that every one of the t surviving vertices is a vertex of P’. It now suffices to show that there are
(d — 2)t + 2 cut edges, i.e. edges of P that are intersected by h, since they yield the remaining
vertices of P’. Each cut edge must be incident to exactly one surviving vertex. Since P is simple
the total number of incidences to the ¢ surviving vertices is dt. Since G is a t-node tree there are
exactly ¢ — 1 surviving edges, each of which is incident to two surviving vertices. Thus of the dt
incidences exactly 2(¢ — 1) are consumed by the surviving edges, leaving (d — 2)¢ + 2 incidences to
cut edges, as claimed.

Next we need to show that P’ has ¢ + d facets. According to Lemma 6 it suffices to show that
in total ¢ — 1 4 d facets of P are incident to surviving vertices.

Since P is simple every vertex is incident to exactly d facets. If two vertices are connected by
an edge of P, then the sets of incident facets differ by one.

Now root the tree G at any node v. With each node w # v in G associate the facet Fj, that
is incident to w but not to the parent of w. Thus we have ¢t — 1 + d facets associated to surviving
vertices: the t—1 facets F, and the d facets incident to the root v. All these facets must be distinct,
since G contains no cycle but, as a consequence of Lemma 7, the graph formed by the surviving
vertices and edges that lie in one facet must be connected.

Since h contains no vertex of P we thus have a simple d-polytope P’ with ¢t + d facets and
(d — 1)t + 2 vertices. By Barnette’s lower bound theorem [6] this vertex number is minimum
possible.

Finally, P’ is a truncation polytope. For d > 3 this is implied by Barnette’s theorem. However,
in our case it can be seen directly for all d: successively removing leaves w from the tree G and
listing the halfspaces defining the corresponding facets F,, in reverse order yields a “truncation
order.” ]

Obviously this last lemma immediately implies the Dwarfing Theorem.

4 Families of Algorithms

Now with our polytope classes in place it will be relatively easy to provide hard examples for the
various facet and vertex enumeration algorithms.

Recall that a lattice producing algorithm is a vertex (or facet) enumeration algorithm that
produces not just the vertices (facets) of the polytope in question but also computes all faces of
that polytope.

Theorem 8 If a lattice producing algorithm is used to enumerate the vertices (facets) of a fat-
lattice polytope P, then the number of steps taken by the algorithm is much larger than size(P).
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In particular, the number of steps taken for a polytope P with s = size(P) is at least
° 2V 5/2, if P is a simplex Ty, and
o Qs [‘/ﬂ) for every fixed d, if P is a product of cyclic polytopes CCy(n).

Proof: Immediate consequence of Theorems 1 and 2. [

Recall that a facet enumeration algorithm is triangulation producing if besides the facets of
a polytope it also produces a triangulation of those facets. A wertex enumeration algorithm is
considered triangulation producing if its dual interpretation is a triangulation producing facet
enumeration algorithm.

For any halfspace H = {z | (a,z) <1} containing the origin in its interior, and for any vector
€ let H(€) denote the halfspace {z | (a +¢€,x) < 1}. Given a set of halfspaces H = { Hy ... Hp, },
we say that a H' = { Hi(e1),... Hyn(em) } is a perturbation of H if the following conditions hold:

L. If { H; (ei,) ... Hi,(€i,) } is a basis of P' = (H', then { H;, ... H;, } is a basis of P = H.
2. If v is a vertex of P, there is some basis { H;, ... H;, } of v such that { H; (e;,)... H;,(€i,) }

is a basis of P.

The second condition is necessary in order to correctly enumerate the vertices of P by enumerating
the vertices of P’. The first is also useful, although not strictly necessary (since we could weed out
bad bases in a postprocessing step), but is implied by the usual requirement that a perturbation be
“sufficiently small”. When proving lower bounds on the number of bases of the perturbed polytope
(and thus on the performance of a pivoting algorithm that visits every basis) we may always assume
without loss of generality the we perturb onto a simple polytope. To see why, consider the dual
situation of perturbing the vertices of a polytope. If the resulting polytope is not simplicial, we
can always triangulate without increasing the number of bases.

All algorithms that perturb onto a simple polytope in order to deal with degeneracies are
triangulation producing (see [33] for a survey of perturbations). Perturbations have been reasonably
successful in practice even on highly degenerate examples (see e.g. Ceder et al. [9]) and there had
been some hope that by judicious choice of the perturbation the sizes of the produced triangulations
could be kept reasonably small. However, intricate polytopes show that this is in general not the
case.

Theorem 9 If a triangulation producing algorithm is used to enumerate the facets of an intricate
polytope P, then the number of steps taken by the algorithm is much larger than size(P). In

particular, the number of steps taken for a polytope P with s = size(P) is at least

1

loglogs—1/2
o g1loglog /7

if P is a hypercube Hy,
. 2%, if P is a product of simplices TTyy = Ty X Ty, and
. Q(sd/ [‘/ﬂ) for every fixred d, if P is a product of cyclic polytopes CCgy(n).

Proof: Immediate consequence of Theorem 3 and its following lemmas. ]

All currently known graph traversal based algorithms for vertex or facet enumeration are either
lattice producing or triangulation producing. The last two theorems show that they all definitely do
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not have polynomial worst case running time. We should stress, however, that this bad behaviour
of graph traversal based algorithms only happens in the presence of degeneracies. If the input is
non-degenerate, a reasonably implemented graph traversal based algorithm does have running time
polynomial in size(P). For instance, in order to enumerate the n vertices of a simple d-polytope
specified by m constraints the reverse search method [4] requires O(d*mn) time and only O(dm)
space.

4.1 Incremental algorithms with static orders

Let us now turn our attention to incremental algorithms. There is a fair number of such algorithms
that for the degenerate case are lattice producing or triangulation producing. For such algorithms
of course the lower bounds supplied by Theorems 9 and 8 apply, and thus polynomial worst case
running time is not achievable. There is at least one incremental method though, namely the dou-
ble description method of Motzkin et al. [30], that deals with degeneracies in an entirely different
manner. We will now show that, irrespective of how incremental methods address the issue of
degeneracy, they can have bad running times because they cannot control the sizes of the inter-
mediate polytopes during the incremental construction. Moreover, this can happen for a host of
natural insertion orders.

Consider enumerating the vertices of the d-polytope P = [|H. An incremental algorithm does
this by considering the halfspaces in A in some order Hy, Ho, ..., Hy,, and inductively computing
some description of P; = (;<,<; Hy from the description of P;_; and H;, for< =1,...,m. From the
description of the final P,,, the vertices of P = P, are then recovered. Typical “descriptions” of P;
are the skeleton of P;, or, in the case of the double description method, the incidence information
between the vertices and the facets of P;. Let us ignore for the time being the issue of how such
an algorithm gets off the ground and how it deals with unbounded P;’s.

In order for such an algorithm to be polynomial in size(P), the size of each of the intermediate
polytopes P; must be polynomial in size(P). Of course whether or not this is the case depends
very much on the ordering of the halfspaces in H.

There are several plausible insertion orders for insertion algorithms:

minindex Insert the halfspaces in the order given by the input.
random Insert the halfspaces in random order.

lex Insert the halfspaces in lexicographically increasing (or decreasing) order of coefficient vectors.

Such a lexicographic ordering is not canonical unless the inequalities describing the halfspaces are
brought into some canonical form. We will consider two such canonical forms. The first, unit form
requires inequalities a1z + - - agxq < ag41 with the largest indexed nonzero a; as +1; the second,
reduced integer form requires the a;’s to be relatively prime integers. Even after establishing
a canonical form one can distinguish two more subcases, the forward case, where one considers ag
the most significant component in (aq,...,aq,a4+1), and the backward case, where one considers
a4+1 most significant.

The orderings described so far are all static in the sense that the ordering can easily be precom-
puted before the actual incremental enumeration algorithm has started. Somewhat more sophis-
ticated are dynamic orderings in which the ¢-th halfspace to be inserted is some function of P;_4
and the not yet considered halfspaces. Before we go on to specific dynamic orderings we state our
results for the listed static orderings.

17



Theorem 10 Let P = (\H be a polytope from a family of dwarfed polytopes, and H € H 1is the
dwarfing constraint. Assume an incremental algorithm is used to enumerate the vertices of P.

minindex If an ordering of H is used that considers the dwarfing halfspace H last, then the number
of steps taken by the algorithm is much larger than size(P).

random If an ordering of H is chosen uniformly at random, then the expected number of steps
taken by the algorithm is much larger than size(P).

lex For any type of lexicographic ordering there is an affine transformation taking P = H to P' =
N H' so that if the incremental algorithm is applied to H' using this lexicographic ordering,
then the number of steps taken is much larger than size(P').

Considering dwarfed cubes and dwarfed products of polygons as specific families of dwarfed
polytopes one gets the following explicit statements.

Theorem 11 Although the size of a dwarfed cube DKy is only size(DKg) = d* + 2d? + 2d, the
(expected) number of steps taken by in incremental algorithm to enumerate the vertices of DKy is
at least

o 27, if an ordering is used that considers the dwarfing constraint last, for instance forward
or backward lexicographic increasing order with respect to integer form,

o 2¢/(d+1), if @ random ordering is used,
o 2071 if forward or backward lexicographic increasing order is used with respect to unit
form.

Theorem 12 Although the size of a dwarfed product of polygons DPPy(s) is only size(DPPy(s)) =
d®(5—2)/2+2d?+2d, the (expected) number of steps taken by an incremental algorithm to enumerate

the vertices of DPPy(s) is at least
o %2 if an ordering is used that considers the dwarfing constraint last, for instance forward
lexicographic order with respect to unit form,

e s¥2/(d+1), if arandom ordering is used,

o 521 if forward lezicographic increasing order is used with respect to reduced integer form,
and
o (s— 3)d/2, if backward lexicographic decreasing order is used with respect to unit or also

reduced integer form.

The bounds in Theorem 10 are provided by the size of the polytope that has been built up by
the time the dwarfing constraint is inserted.

The first point follows directly from the properties of dwarfed polytopes. Let halfspace H dwarf
polytope P to Q@ = P N H. If an incremental algorithm considers H last, then by that time a
description of P must have been built up, which must have taken at least size(P) steps. But by
the definition of families of dwarfed polytopes we have size(P) is much larger than size(Q).

The second point about random orderings follows from the following lemma:
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Lemma 9 Let P = (\H be an m-faceted d-polytope with n vertices that is dwarfed by halfspace H
to @ = PN H. Let C be the polytope formed by the intersection of the halfspaces in H that precede
the dwarfing constraint H in a random ordering of the halfspaces in H U {H}.

Then the expected number of facets of C' is at least m/2 (which is m/(d + 1) at least), and the
expected number of vertices of C is at least n/(d + 1).

Proof: Note that if a halfspace in H induces a facet of P and it appears in the ordering before
the dwarfing halfspace H, then it also induces a facet of C'. Since in a random ordering every one of
the m facet-inducing halfspaces in H has a 1/2 chance of appearing before the dwarfing halfspace,
the expected number of facets of C' is at least m/2.

Similarly, note that if d halfspaces in H induce a vertex of P and they all appear in the ordering
before the dwarfing halfspace H, then they also induce a vertex of C'. The d halfspaces appearing
before H is the same as saying that H has to be the last out of those d+ 1 halfspaces. In a random
ordering this happens with probability 1/(d + 1). Thus every one of the n vertices of P has at least
a 1/(d+ 1) chance of being a vertex of C' and hence the expected number of vertices of C is at least
n/(d+1). [ |

The statement in Theorem 10 about lexicographic order follows from the following lemmas:

Lemma 10 Let P be any d-polytope and let F' be a facet of P. Polytope P can be translated so
that, after possible renaming and negating of coordinates, among all facet defining constraints the
one defining F comes first (last) in the lexicographic ordering with respect to unit form (for the
forward or backward case, as desired).

Proof: Note that for constraints of the form ayz1 + -+ - aqzq < 1, forward lexicographic order
just reflects the order in which the described hyperplanes intersect the z;-coordinate axis, the order
starting at the origin, going towards —oo wrapping around through infinity and coming back to
the origin (as in a shelling). Ties are broken lexicographically by considering the intersection order
along the xs-axis, r3-axis, etc.

Now let z be such that F'is not parallel to the x;-axis. Rename coordinates so that z; becomes
x1. Pick a line £ that is parallel to the zi-axis and that intersects F' in its relative interior. Pick a
point u € £ in the interior of P, and perform a translation so that u becomes the origin.

After this transformation all constraints describing P can be put in the form a1 214 - agzg < 1;
the line £ has become the z1-axis, and (after possibly reversing the axis’ direction) the hyperplane
containing F' comes first (or last) in the described intersection order, and the corresponding con-
straint therefore is first (or last) in the lexicographic order.

To achieve the same for backwards lexicographic order let x4 play the role of ;.

Note that by picking u to be a rational point the transformed P can be described rationally
provided the original P can be so described. ]

Lemma 11 If polytope P is described rationally and contains the origin in its interior, then it is
possible to scale the coordinate system so that lexicographic orders with respect to unit form and
reduced integer form agree.

Proof: Under these assumptions every facet defining constraint can be written as (by/c1)z1 +
(b2/ca)za + -+ + (ba/cq)zq < 1, with the b;’s integers and the ¢;’s positive integers. For each
1 let C; be the least common multiple of all denominators ¢;, ranging over all constraints. Let
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a; = (b;j/c;) - C; and y; = z;/C;. Then a1y; + -+ + agyqg < 1 is equivalent to the constraint above,
and is in reduced integer form, since the a;’s are integers and the right hand side is 1. As (] is
positive, the order among the coefficients by /c; is the same as among the a;’s. [ ]

The bounds stated in Theorems 11 and 12 are simply provided by the (expected) number of
vertices of the polytope that has been created by the time the dwarfing constraint is to be considered
in the respective ordering. This is clear for the case when the dwarfing constraint is added last.
It follows from Lemma 9 for the random case. Regarding the various lexicographic orderings we
leave the checking of the details of the dwarfed cube case to the reader. This leaves us with the
lexicographic orderings for dwarfed products of polygons DPPgy(s) = PP4(s) N Hgs. Recall that
PP,(s) is specified by

-y < 0 for 1 <k<d/2

—sTp+yr < 0 for 1 <k <d/2
i+ VDo +yr < 2i+1)(s+i)—i?+s? for1<k<d/2and0<i<s—3

(2s =3z +yr < 2s(2s—3) for 1 <k <dj2.

Here we have normalized so that the right hand sides are upper bounds. The dwarfing constraint
H, is given by
A} +:L‘2+...+$d/2 <2s-—1.

Note that all constraints are already in reduced integer form, since each contains some unit coeffi-
cient.
Let us arrange the coordinates as (z1,...,Z4/2,91,---,Yd/2)-

Consider first forward lexicographic increasing ordering: with respect to unit form the dwarfing
constraint Hg s comes last, i.e. all of PPy(s) has been built up and its s%2 vertices will have been
created; with respect to reduced integer form form only the s —2 constraints with positive coefficient
for z1 come after Hy,. Thus by the time Hy , is inserted s%2-1 vertices will have been generated.

In the backward lexicographic decreasing ordering with respect to both unit form and reduced
integer form only the d constraints of the form —y; < 0 and —sz 4+ yr < 0 come after the dwarfing
constraint. This means that by the time dwarfing halfspace H is inserted a polytope with (s — 3)d/ 2
vertices has been constructed.

4.2 Incremental algorithms with dynamic orders

Some dynamic orders commonly used in incremental algorithms are the following:

maxcutoff Insert the halfspace next that causes the maximum number of vertices and extreme
rays to become infeasible.

mincutoff Insert the halfspace next that causes the minimum number of vertices and extreme rays
to become infeasible.

mixcutoff Insert the halfspace next whose bounding hyperplane produces the least balanced cut
of the current vertices and extreme rays.

Note that using these dynamic orderings incurs overhead in that considerable computational
effort may have to be expended in order to determine the next halfspace in the ordering.

The reader will notice that we have finally reached the point where we cannot continue to
completely ignore unboundedness. Recall that any polyhedron P can be written a Minkowski sum
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P = B + C, where B is a polytope, and C is a cone (called recession cone) (see e.g. Theorem 1.2
in [37]). “Vertex” enumeration for such a P in essence amounts to enumerating the vertices of the
bounded part B and enumerating the extreme rays of the recession cone C'. Note that the number
of extreme rays of C' may be much smaller than the number of extreme rays of P.

The orders defined above are not completely specified yet since it is not indicated how possible
ties are to be broken. We will allow arbitrary resolution of ties, but with one exception, namely
the beginning of the ordering. We require that the first d halfspaces be explicitly specified.

We have not been able to prove anything about mixcutoff, however for mincutoff and max-
cutoff we have the following:

Theorem 13 Consider the 2d + 1 constraints 0 < x; < 2 for i = 1,...,d and Y j<;cqzi < 3
describing the dwarfed cube DK . o

In the mincutoff ordering with initial d constraints 0 < z; for i = 1,...,d the dwarfing
constraint Y 1 c;icq i < 3 will come last.

Thus incremental vertex enumeration of DKy via such an ordering requires at least 2% steps,
which is much larger than size(DKy).

Theorem 14 For d =20 > 4 and s > 3 consider the ds + 1 constraints

ye = 0 for1<k<9§

st —yr > 0 for1<Ek<§
2+ Dap+yr < (2i+1)(s+i)—i2+5> for1<k<dand0<i<s—3

(2s =3z +yr < 2s(2s—3) for 1 <k <9,

and
:L‘1+:L‘2+...+$5§28—1,

that describe the dwarfed product of polygons DPPy(s).

In the mincutoff ordering with the initial d constraints yr, > 0 and sz —yr >0 fori=1,...,9
the dwarfing constraint x1 + 2o + ... + x5 < 2s — 1 will come last.

Thus incremental vertex enumeration of DPPy(s) via such an ordering requires at least s° steps,
which is much larger than size(DPPy(s)).

These two theorems suggest a more general statement, which, however, we have been unable to
prove.

Conjecture 1 Let P be o dwarfed d-polytope described by the halfspaces in H. There is a choice
of d initial halfspaces so that in the ensuing mincutoff ordering the dwarfing halfspace will come
last.

Proving something analogous for the maxcutoff ordering has turned out to be much more
difficult. Obviously dwarfed polytopes are not fruitful candidates since maxcutoff will very quickly
cause the dwarfing constraint to be considered. The only result we have been able to prove is the
following;:

Theorem 15 Consider the (2d)-polyhedron Ry specified by the 2d + d? constraints

x; =20 fori=1,...,2d (15.1)
zi+x; >1 fori=1,....,dandj=d+1,...,2d. (15.2)
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The polyhedron Rsq has only 2 vertices and 2d extreme rays. However, for maxcutoff order with
the initial d constraints given by (15.1), the intersection of the first 2d+k halfspaces has 2¥ vertices
for k=0,...,d (and 2d extreme rays).

Thus incremental vertex enumeration of Ry via such an ordering requires at least 2¢ steps,
which is much larger than size(Rag).

The polyhedron Ry, is actually not a complete stranger. It is nothing but the dual of the
product of simplices TTyq = Ty x Ty, where Ty is the d-simplex spanned by the origin and the unit
coordinate vectors, and the “facet” of Ryy dual to the origin vertex of TT54 is at infinity. We know
that the polytopes T'Ty; are intricate. We venture the following:

Conjecture 2 Assume an incremental vertex enumeration algorithm is applied to the dual of an
intricate d-polytope P using maxcutoff ordering and an arbitrary d initial halfspaces.
The number of steps taken by the algorithm will be much larger than size(P).

Why should this conjecture be plausible? Consider the dual problem of incremental facet
enumeration. The maxcutoff rule dualizes to adding next the vertex that “sees” the most facets
of the current polytope. Now intricate d-polytope not only require “many” (d — 1)-simplices to
triangulate their boundary, their own triangulation naturally also requires “many” d-simplices.
Intuitively this means that d-simplices spanned by the vertices of an intricate polytope must have
“small” volume. In the incremental construction of such a polytope the dual maxcutoff rule adds
the point that “sees” the most facets — and not necessarily facets of large volume. Thus it is likely
that most of those facets are actually (d — 1)-simplices. When the new point is added, most of
the pyramids it spans with the visible facets are d-simplices, and hence little volume is added.
Moreover, most of the new facets will be (d — 1)-simplices again.

Of course this intuition is still far away from a proof. However our experimental results for
products of cyclic polytopes (and also for dwarfed cubes, which happen to be an intricate polytope
family also) support this conjecture. Finally, there is reason to believe that random ordering is
similarly bad for intricate polytopes.

It remain to prove Theorems 13 through 15:

Proof of Theorem 13: Let ) be the positive orthant. For i € D = {1,...,d} let r; be the ray
formed by the positive i-the coordinate axis and let H®) be the halfspace specified by the constraint
x; < 2. Finally let H be the dwarfing halfspace specified by >, z; < 3.

For I C D consider the polyhedron K; = Q N(N{H®|i € I}. It has 2"l vertices, namely all
those vertices of the d-cube K, = [0,2]? whose z;-coordinates are 0 for all 4 ¢ I. Tt has d — |
extreme rays, namely r; with ¢ ¢ I.

Any halfspace H) with j ¢ T cuts off one extreme ray of K (namely ;) and no vertex.

The dwarfing halfspace H cuts off all d —|I| extreme rays, and also all but |I|+ 1 of the vertices.

This implies that as long as I # D the mincutoff rule will prefer every H9) with j ¢ I over the
dwarfing halfspace H. m

Proof of Theorem 14: Let us write down once more the constraints for DPP. There is the
dwarfing halfspace H given by

:El—i-(L‘Q—I-...-l-ZEd/ZSZS—l,

22



and for each k € D = {1,...,d} we have the constraint set Hj, given by

y, > 0 (1)
Y < sy (1)
(2i+Dap+yp < (2i+1)(s+i)—i2+s2 for0<i<s—3 (2)
(2s =3z +yr < 2s(2s—3) (2).

;From now on let Z;, be a subset of #j, that contains at least the two constraints labelled (1). Fix
k, and consider the polygon P(Zy) in the z;-yg-plane formed by (Z. If |Zx| = 2, then this polygon
is the cone spanned by the two extreme rays r; and 7, in the positive orthant supported by the
lines through the origin with slope 0 and s, respectively. Any constraint in Hy \ Z cuts off both
those ray.

If |Z);| > 2, then this polygon has |Zj| edges and vertices, of which one is the origin, another has
z-coordinate at least 2s, and the remaining ones have z-coordinates between s and 2s — 3. Any
constraint in Hy \ Zy cuts off exactly one vertex.

Let Z=7;U...UZs. Note that (Z is the product of the polygons P(Z}) (or equivalently, their
Minkowski sum). We can characterize (\Z as follows:

Let K C D comprise those indices k for which |Zx| > 2. The polyhedron NZ is given by

(Mker P(Zk)) x (g P(Ik)) ,
B c

where B is a polytope with IIixc i |Zx| vertices and C' is a cone with d — 2| K| extreme rays (namely
T, ), with k ¢ K.

Now consider a halfspace I}, € Hy \ Z with k& € K: It cuts off no extreme ray, but it cuts off
jex |Z;] vertices.
ik

Next consider a halfspace I € Hy \ Zj with k ¢ K: It cuts off the two extreme rays r and 7";;
but no vertex.

Finally consider the dwarfing constraint H: It cuts off all d — 2| K| extreme rays. Moreover, by
the same reasoning as in the proof of Theorem 6 it is a dwarfing halfspace for B. Thus it cuts off
all but (Xcx [Zk|) — 2|K| + 1 vertices of B.

Thus if K # D the mincutoff rule will prefer any halfspace in Hy \ Z;, with & ¢ K over the
dwarfing halfspace H. If K = D then using that |Zj| > 3 it is straightforward to conclude that the
mincutoff rule will prefer every other halfspace over the dwarfing halfspace H. [

Proof of Theorem 15: For 0 < k < d let W}, be the polyhedron specified by the following 2d + k
constraints Hy: the 2d non-negativity constraints in (15.1) and the k constraints x; + z44; > 1 for
i=1,...k from (15.2). Let r; denote the ray formed by the positive z; axis.

Consider coordinate plane m; spanned by z; and z44,. If £ < i < d, then the constraints in Hy
that involve z; and z4,; specify the positive quadrant (); in 7;, which is a cone spanned by the two
extreme rays r; and rq4;.

If 1 <14 <k, then the constraints in H that involve z; and z4.,; specify an unbounded polygon
P; in m; whose two vertices are the points (0, 1) and (1,0) and whose two extreme rays are given by
r; and r44;. In other words, P; = B; + Q;, where B; is the two vertex polytope spanned by (0, 1)
and (1,0) and the recession cone is @);, the cone spanned by the extreme rays r; and rq;.
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Since Wy, is the product of the polygons in the planes m; we can conclude that Wj can be
represented as Minkowski sum

We= > Bi+Q)+ Y, Qi= Y, Bi+ > @i,

1<i<k k<i<d 1<i<k 1<i<d
—_—— S———
Ck Q

i.e. Wy is the Minkowski sum of the non-negative orthant (), which is spanned by the 2d extreme
rays r;, and of the k-dimensional cube C}, which has 2F vertices. Moreover, these vertices are
exactly the 0-1 vectors with exactly one 1 and one 0 in position ¢ and d + 4 for ¢+ = 1,...,k, and
with only 0’s in position s and d +i for i =k +1,...,d.

We now want to argue inductively that for £ = 0,...,d maxcutoff order will produce exactly
those polyhedra Wj. This is clear for kK = 0 since Wy = @), which is the polyhedron spanned by the
non-negativity constraints in (15.1), with we assume to be the initial constraints in the ordering.

Assume inductively that W} has been produced, for k£ < d. No constraint from (15.2) can cut
off any extreme ray r;. A constraint z; +x; > 1 withé € {1,...,k} or j € {d+1,...,d+k} can
cut off at most half of the vertices Wj,. But any constraint z; + «; > 1 withi € {k+1,...,k} and
je{d+k+1,...,2d} cuts off all vertices of Wj. Without loss of generality we may assume (by
relabelling of coordinate indices if necessary) that the maxcutoff strategy therefore chooses as next
constraint g1 +441x+1 > 1, and the constraint set is extended from Hy to Hgi1, i.e. we have Wy,
intersected with the new constraint is Wy, ;.

To complete the proof of the theorem it remains to show that Ryy has indeed only 2 vertices
and 2d extreme rays.

It is clear that for 1 < j < 2d each r; is an extreme ray, since it satisfies 2d —1 of the constraints
in (15.1) with equality and satisfies all other constraints. There can be no other extreme ray, since
otherwise the recession cone would be larger than the non-negative orthant (), which is clearly
impossible because of the constraints in (15.1).

We claim that (1,...,1,0,...,0) and (0,...,0,1,...,1) are the only two vertices of Ryg. It is

d d d d

easy to check that the matrix given by the constraints is totally unimodular. This implies that all
vertices of Ryy must be integral. This means that all vertices must be 0-1-vectors, since a larger
component would not allow to satisfy any of the constraints in (15.2) with equality (which one
would need, since a vertex must satisfy 2d independent constraints). Any 0-1-vector that has a
0 in in position 7 < d and in position 7 > d cannot be a vertex since it violates that constraint
x;+x; > 1. So assume all positions in, say, the second half are 1 and some position ¢ < d in the first
half is also 1. In this case no constraint involving z; can be satisfied with equality, which means
one cannot find 2d independent constraints that are satisfied with equality, as would be necessary
for a vertex.

So this leaves as possible vertices only the two 0-1-vectors that have all 1’s in one half and all
0’s in the other. It is easy to check that they indeed do satisfy 2d independent constraints with
equality, so therefore they are vertices. ]

5 Experimental Results

Using the examples described in the previous sections, we tested one pivoting algorithm that
uses perturbation (1rs), one insertion algorithm that uses triangulation (ghull) and two “pure”
insertion algorithms (cdd+ and porta) based on the double description method [30].
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What Where

cdd+ ftp://ifor13.ethz.ch/pub/fukuda/cdd/cdd+-073.tar.gz

1rs ftp:/ /ftp-cgrl.cs.mcgill.ca/pub/polytope/soft /src/rs/Irs.c.Z
http://www-cgrl.cs.mcgill.ca/polytope/soft /

porta ftp://elib.zib-berlin.de/pub/mathprog/polyth/porta

ghull ftp://geom.umn.edu/pub/software/qhull.tar.Z

http://www.geom.umn.edu/software/qhull/

example polytopes | ftp://ftp-cgrl.cs.mcgill.ca/pu olytope/examples/hgc ch_input.tar.gz
ple polytopes | ftp://ftp-cgrl gill.ca/pub/polytope/examples/hgch/hgch_inp g

http://www-cgrl.cs.mcgill.ca/polytope/examples

Table 1: Availability of Software and Data by anonymous ftp and WWW.

All of the software and data files described in this paper are available by anonymous ftp, and
on the world wide web. See Table 1 for details. cddf+ and cddr+ are version 0.73 of Fukuda’s
implementation of the double description method [18], compiled respectively to use floating point
and exact rational arithmetic. porta is version 1.2.1 of Christof, Loebel, and Stoer’s implementation
of the double description method. ghull is Barber and Huhdanpaa’s implementation of “Quickhull”
(a variant of the beneath and beyond algorithm), version 2.2 [5]. lrs is Avis’ implementation of
reverse search [4] using Edmonds Q-pivoting and lexicographic perturbation, version 2.5i. We
compiled ghull to use double precision; cddf+ uses double precision by default The option C-0 was
used to force ghull to merge the generated simplicial facets. Random insertion order for cdd+ was
simulated by permuting the order of constraints 100 times using the Combined Random Number
Generator of L’Ecuyer [27] and reporting the average time.

In the following Vsize denotes the summed intermediate complexity for insertion algorithms.
In particular, for cdd+ it denotes the sum of number of extreme rays at each stage of the double
description method. For ghull it denotes the summed number of untriangulated facets of interme-
diate polytopes. Tsize denotes the measured triangulation complexity of the polytope. For ghull
this the sum of the triangulation sizes of the intermediate polytopes. For 1rs it is the number of
bases (and vertices) of the perturbed polytope. The notation memory limit on a graph indicates
that this was the last run of a series to complete due to memory limitations. Times are measured
in CPU seconds. All timings on a DEC3000/500 Alpha with 96M of physical memory and 342M
of virtual memory, running OSF/1 1.3 (except where noted). Most of the examples were trans-
lated from those described in Section 3 so that the origin was contained in the interior in order to
facilitate the use of the same files with both vertex and facet enumeration programs.

5.1 Rational versus Floating Point Arithmetic

The convex hull problem has the nice property that it is possible to perform all computations in ex-
act rational arithmetic; this is especially desirable in applications such as combinatorial optimization
where an exact answer is desired rather than just an approximation. One question currently being
investigated by several researchers is the relative cost of using exact rational arithmetic instead of
floating point or some hybrid scheme. To minimize the number of variables in the experiment, we
used Fukuda’s program cdd+ which can be compiled to use rational or floating point arithmetic. In
examples where input numbers are very large such as the products of cyclic polytopes, cddr+ was
thousands of times slower than cddf+ on some inputs. Moreover, in the ratio between cddr+ and
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cddf+ gets worse as input size increases in the intricate polytope classes (products of simplices and
products of cyclic polytopes) tested. On the other hand for the dwarfed cubes, the performance
ratio is not nearly so bad, and tends to get better as the input size increases, probably because the
set theoretic operations involved in maintaining vertex facet adjacency in the double description
method begin to dominate the cost of computation.

In general porta far outperformed cddr+ if both used the same insertion order. This is most
likely because cddr+ uses the very general purpose GNU rational arithmetic package while porta
uses its own, presumably more highly tuned rational arithmetic library.

5.2 Products of Simplices

In this subsection we interpret the problem under consideration as a convex hull problem. As
expected from Theorem 3 the triangulation complexity of the products of simplices explodes rather
quickly (see Table 2). The degeneracy of the facets of TT5; does not seriously effect the algorithms
based on the double description method since they represent the intermediate polytopes by the
extreme rays of a homogenization; in this case a “degenerate” polytope simply means that many
of these extreme rays happen to lie on a given facet. On the other hand, choosing the maxcutoff
insertion order does cause poor performance (see Figure 2). This is not too surprising since in
transforming our input points for use as input to cdd+, we are just taking a dual that preserves
boundedness, as opposed to translating one facet to infinity as in Theorem 15.

Tsize

d | facets | vertices | size | ghull Irs

4 6 9 60 25 18

6 8 16 | 144 102 80

8 10 25| 280 428 350
10 12 36 | 480 | 1768 1512
12 14 49 | 756 | 7414 6468
14 16 64 | 1120 | 31353 27456
16 18 81 | 1584 (a) | 115830
18 20 100 | 2160 486200
20 22 121 | 2860 2032316

(a) System thrashed.

Table 2: Triangulation complexity for products of simplices

5.3 Dwarfed Cubes

In this subsection, the problems are interpreted as vertex enumeration problems. The data
files for the dwarfed cubes have the dwarfing constraint last in the file so the minindex insertion
order is guaranteed to build the entire d-cube. The dwarfed cubes are simple, so the lone pivoting
algorithm (1rs) performs extremely well (see Figure 4). A comparison of Figures 3 and 4 shows that
the asymptotic performance of cddr+ and cddf+ appears different, even though the number of rays
in the intermediate cones is the same (see Table 3). It appears that the intermediate polytopes
computed by ghull are not simple, since the triangulation complexity for ghull grows much
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cpu time (s)

cpu time (s)

1e+06 ¢
L —+— cddf+ lexmin
——>— cddf+ maxcutoff m
L - cddr+ lexmin /
100000 | - cddr+ maxcutoff /
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Figure 2: Timing results for products of simplices.
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Figure 3: CPU time for dwarfed cubes, floating point arithmetic
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Figure 4: CPU time for dwarfed cubes, rational arithmetic

faster than the (untriangulated) intermediate complexity (see Table 4). The initial configuration
of halfspaces chosen by cdd+ (by lexicographic order) is exactly that specified by Theorem 13, so
the poor performance of mincutoff on these polytopes is not a surprise. The only insertion order
that performs well on these polytopes is maxcutoff.

5.4 Dwarfed products of polygons.

As in the dwarfed cube examples, maxcutoff works quite well and mincutoff performs ex-
tremely poorly on these polytopes (see Figure 5). Here again the initial configuration chosen by
cdd+ is lexicographic and matches that of Theorem 14. These polytopes are simple, so both ghull
and 1rs perform quite well. As we have seen with dwarfed cubes, even if the final polytope is simple,
the intermediate polytopes are not necessarily simple. Here, however the intermediate polytopes
are also products of polygons, hence simple. In Figure 6 we show how the performance of cddf+
varies with dimension and number of input points for a fixed (bad) insertion order. Recall that in
terms of the parameters on the graph the dimension is 29 and the number of input points is sd.

5.5 Products of Cyclic Polytopes

Products of cyclic polytopes provide families in fixed dimension (in our experiments, d = 8) that
are hard for for lattice producing and triangulation producing algorithms. We did not have any
implementations of lattice producing algorithms to test, but our experience with the two triangu-
lation producing algorithms (1rs and ghull) bears out the theory (see Figure 5). These polytopes
also seem quite difficult for insertion methods. It is interesting to note that numerical instability
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Figure 5: Performance of various insertion orders and programs on DDPy(s).
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Figure 6: Performance of cddf+ on DDPys(s) as d varies, minindex insertion order.
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Summed Intermediate Size, cddf+®)

d | size | minindex | maxindex | maxcutoff | mincutoff | lexmax | lexmin
3 51 10 10 13 11 17 11
4| 104 19 26 17 20 32 20
5| 185 36 43 31 37 29 37
6 | 300 69 38 37 70 38 70
7| 455 134 71 57 135 71 135
8| 656 263 136 65 264 136 264
91 909 520 265 91 521 265 521
10 | 1220 1033 522 101 1034 522 1034
11 | 1595 2058 1035 133 2059 1035 2059
12 | 2040 4107 2060 145 4108 2060 4108
13 | 2561 8204 4109 183 8205 4109 8205
14 | 3164 16397 8206 197 16398 8206 | 16398
15 | 3855 32782 16399 241 32783 | 16399 | 32783
16 | 4640 65551 32784 257 65552 | 32784 | 65552
17 | 5525 131088 65553 307 131089 | 65553 | 131089
18 | 6516 131090 325 262162 | 131090 | 262162
19 | 7619 262163 381 (a)
20 | 8840 (a) 401

(a) Virtual Memory Exceeded.

(b) Intermediate sizes for completed cddr+ runs are identical, although

each ray may take more space to store in cddr+.

Table 3: Dwarfed cubes: intermediate size for cdd+.

problems caused by the coordinates on the moment curve seem to depend on insertion order.

5.6 Pierced Cubes

These examples are a historically earlier and somewhat more complicated class of polytopes that
establish some of the same results as dwarfed cubes [2]. In particular they show that maxin-
dex/minindex and lexicographic orders can be superpolynomial. In these examples, the cube con-
straints come last in the files, so maxindex is guaranteed to build the entire d-cube. Unlike the
case of dwarfed cubes, maxcutoff does not perform well on these polytopes (see Table 6).

5.7 Products of simplices and cubes

It is not difficult to argue that taking the product of an intricate family of polytopes and a dwarfed
family of polytopes gives you a family that is both dwarfed and intricate, although not neccesarily
with exactly the same bounds. The polytopes tested in this subsection are the cross product
of a dwarfed d-cube and the product of two d-simplices. We abbreviate to SSC polytopes, for
simplex x simplex X cube. These polytopes are hard for the triangulation producing programs 1rs
and ghull, and for the minindex insertion order (see Table 7). Note however that the product
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Vsize Tsize

d size cddf+ cddr+ | porta | ghull | Irs | ghull
random random

3 o1 14.690 14.690 33 14| 10 14
4 104 27.060 26.910 65 22 | 17 22
5 185 44.840 46.640 118 32 | 26 32
6 300 74.480 73.730 208 44 | 37 44
7
8

455 124.330 123.470 367 58 | 50 o8
656 208.030 217.680 659 74| 65 74

9 909 349.200 377.270 1212 92 | 82 92
10 | 1220 682.070 652.820 2282 112 | 101 112
11 | 1595 | 1185.730 | 1229.830 4381 143 | 122 143
12 | 2040 | 2239.070 | 2251.010 8533 178 | 145 178
13 | 2561 | 4535.340 | 4670.980 | 16786 217 | 170 228
14 | 3164 | 8670.420 | 8448.000 | 33236 262 | 197 306
15 | 3855 | 16640.440 | 18004.790 | 66075 317 | 226 438

16 | 4640 | 34911.800 131687 390 | 257 676
17 | 5525 (a) | 497 | 200 | 1124
18 | 6516 670 | 325 | 1990
19 | 7619 973 | 362 | 3690
20 | 8840 1534 | 401 | 7056
21 | 10185 2609 13752
22 | 11660 4710 27106
23 | 13271 8861 53774
24 | 15024 (a) (a)

(a) Virtual Memory Exceeded.

Table 4: Dwarfed cubes: intermediate size and triangulation complexity for cdd+ random insertion,
1rs, porta and ghull

construction does not necessarily preserve lexicographic order without additional transformations,
so the performance of lexicographic order on these polytopes is relatively better than that on the
dwarfed cubes (compare with Table 3).

5.8 Practical Problems

We conclude with some very recent practical experience using the codes cdd and 1rs. In practice
one often has additional information about the polytope that allows an astute choice on insertion
order. In [15] the authors describe the so-called co-cliqgue ordering. In the vertex enumeration
context, facets are grouped into maximal independent sets in the ridge graph of the polytope, and
entered in this order. (For the polytopes they study, the ridge graph is known.) Using this ordering
they were able to compute the 275,840 vertices of the metric polytope, defined by 140 facets in 21
dimensions with cdd. The computation took about 3 weeks on a Sony News NWS-5000 workstation
at TIT. The computation failed for the lexicographic, mincutoff and maxcutoff rules, due to the
large size of the intermediate polytopes. In [3] the same ordering produced excellent results for
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CPU time
cddf+ cddr+
n | size | lexmin | maxcutoff | random | lexmin | maxcutoff | random lrs | porta | ghull
b} 280 0.112 0.155 0.104 4.35 159 4.03 1.62 | 0.135 | 0.134
6| 432 | 0.144 0.318 0.174 17.4 140 37 15.8 | 0.210 | 0.719
7| 616 | 0.206 2.24 0.657 65 1028 249 76 | 0.375 3.45
8| 832 | 0.382 17.1 (b) 225 5285 1126 266 | 0.750 11.7
9 | 1080 | 0.802 83.7 646 20010 920 1.59 40.9
10 | 1360 1.80 (b) 1683 70537 2652 3.43 108
11 | 1672 4.01 3859 6538 7.45 191
12 | 2016 8.64 8442 14186 16.1 499
13 | 2392 18.1 16563 28051 33.7 900
14 | 2800 38.0 31882 51677 86.5 | 1407
15 | 3240 70.7 90689 176 (c)
16 | 3712 128 310
17 | 4216 227 628
18 | 4752 391 1046
19 | 5320 679 1833
20 | 5920 1113 2982
21 | 6552 1797 5070
22 | 7216 3265 6909
23 | 7912 (b) 10389
24 | 8640 15358
25 | 9400 22455
(a) These tests carried on under OSF/1 v3.2¢
(b) Incorrect number of facets computed.
(c) System thrashed.

Table 5: Timing results for CCs(n).

many of the polyhedra considered. The intermediate polyhedra always had sizes between 1.2 and 2
times that of the original polyhedron. (Interestingly, initial experiments suggest that our products
of cyclic polytopes provide a class of examples for which this co-clique ordering fares very badly.)

The hardest problem solved in [3] was a polytope in 15 dimensions with 250 facets with 0-1
coefficients and 101 444 extreme rays. This could not be solved by cdd, but was solved in three
days by a parallel version of Irs implemented by Ambros Marzetta at ETH Zurich. This parallel
version runs on an NEC Cenju-3 with 64 processors. Very recently ([19]) this code completed
the enumeration of all bases of the configuration polytope with 71 facets in 60 dimensions (see
[9]), which could not be solved by any other method. The polytope had 3 149 579 vertices, 57
613 364 bases, and the computation took 4.5 days (estimated at 130 days on a single processor).
Many combinatorial polytopes, in particular the cut and metric polytopes, appear to have high
triangulation complexity. It would be interesting to try and prove this.
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Vsize

d size cddf+ cddf+ cddf+ cddf+ | cddf+ | cddf+ | qhull porta
minindex | maxindex | maxcutoff | mincutoff | lexmax | lexmin maxindex
3 105 30 54 33 26 39 32 51 170
4 248 45 54 55 65 129 62 135 552
5 485 101 200 159 261 151 269 301 1523
6 840 108 248 142 505 613 109 806 3444
7 1337 168 537 362 375 209 190 1561 6782
8 2000 213 1536 382 992 2028 210 | 4339 12454
9 2853 263 521 1418 2656 996 266 | 7968 20392
10 | 3920 318 1034 793 4483 1058 894 | 24277 31613
11 5225 398 2059 577 16119 1429 576 (a) 49236
12 | 6792 465 4108 808 39345 4107 571 72333
13 | 8645 537 8205 745 9601 799 103986
14 | 10808 614 16398 7177 31591 1503 154062
15 | 13305 696 32783 2329 1201 225727
16 | 16160 813 65552 8529 2338 336370
17 | 19397 875 131089 31043 1289 (a)
18 | 23040 1006 262162 62840 1121
19 | 27113 1110 19146

(a) Virtual Memory Exceeded.

(b) Intermediate sizes for completed cddr+ runs are identical to those for cddf+, although each

ray may take more space to store in cddr+.

Table 6: Pierced cubes: summed intermediate size.

Vsize Tsize
d size | porta | qhull cddf+ | cddf+ | cddf+ Irs | qhull
minindex | lexmin | lexmax

9 927 381 | 246 124 98 109 800 | 1120
12 2448 883 | 1338 180 210 188 5950 | 8471
15 5385 1824 | 6961 414 412 347 39312 | 53858
18 | 10440 | 3566 | (a) 938 | 602 586 | 239316 | (a)
21 | 18459 6855 2104 870 933 | 1372800
24 | 30432 | 13269 4680 1314 1432 | 7528950
27 | 47493 | 26178 10330 1928 2159
30 | 70920 | 52792 22638 2442 3254
33 | 102135 | 108502 49284 3082 4985
36 | 142704 (a) 106652 4082 4131
39 | 194337 (a) 5332 8230

(a) Virtual Memory Exceeded.

(b) Intermediate sizes for cddr+ are the same as for cddf+

Table 7: Intermediate size measurements and triangulation complexity for SSC polytopes.
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Addendum: Products of cyclic polytopes are universally difficult

Let C(s,d) denote the d-dimensional cyclic poltyope with s vertices. Let Cys2(s) denote the
é-fold product of § cyclic polytopes C(s,2§). This polytope has s° vertices and also ©(s°) facets.
It is highly degenerate and because of this facet enumeration is difficult for pivoting/gift-wrapping
types of algorithms, as shown in the paper. It turns out to be also very difficult for incremental
algorithms. Thus products of cyclic polytopes are difficult for all known types of algorithms.

The following theorem implies that an incremental algorithm needs at least Q(s°(—1) steps,
irrespective of which insertion order is used.

For polytope P with vertex set V and v € V let g(v, P) denote the number of facets of P, =
conv(V \ {v}) that are visible from v; i.e. the facets of P, that are not facets of P.

Theorem 16 For every vertex v of P = Cys2(s) we have g(v, P) = ©(s®=19),

Thus the removal of just one vertex from Cys2(s), no matter which one, causes the facet number
to jump from O(s?) to O(s°®=1), which is obviously catastrophic for the last step of an incremental
algorithm, no matter which insertion order is being used. In a sense every vertex of Cys2 ()
acts like a “dwarfing vertex.”

Applying Lemma 9 to every one of the s’ vertices implies that if a random insertion order is
used the ezpected number of steps is Q(s%").

The theorem follows readily from the following two lemmas, whose easy proofs are omitted.
Details will appear in a forthcoming paper by David Bremner.

Lemma 12 Let P be the product polytope Py X --- x Py, and let v = (v1,...,v;) be a vertex of P,
where v; is a vertex of P;. Then

g(v, P) = [T 9(vi, o).

Lemma 13 For every vertez w of C = C(s,20) we have g(w,C) = O(s°~1).
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