Shelling (Bruggesser-M ani 1971) and Ranking

letP={zcR: A, 2 <1,i=1,2,...,m} be apolytopeP has
such a representation iff it contains the origin in its irderFor a generic
c € RY, sort the inequalities sothat A, ¢ > Ay ¢ > -+ > A,, c.

(= aranking of verticesi;’s in the dual by a linear function).

Geometrically, the lind.(A\) = {\ ¢ | A € R} meets each hyperplane
A; x = 1. Let \; denotes the parameter value at the intersection. Thus,

zz=MNc and A, z =1.
Consequently:
L/ A >1/Aa > >1/\p.

This ordering induces a shelling &

(UFZ!F;) N Fy is a topologicald — 2)-ball for each
2< k<m-—1.
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Shelling and Ranking (cont.)
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Shelling in R? (Launching a Space Shuttle)
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Shellingin R? (cont.)
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The Double Description Method: Complexity?

P : an H-polytope represented by halfspaces, . . ., h,, in R
P, = ﬂ’?: h; : kth polytope P = P,,).

Vip = : the vertex set computed ath step.
newly
generated
for each adj

pair (@ )
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The Double Description Method: Complexity? (cont.)

It is anincremental methqadlual to the Beneath-Beyond Method.
Practical for low dimensions and highly degenerate inputs.

For highly degenerate inputs, the sizes of intermediatgtpopés are
very sensitive to the orderingf halfspaces. For example, the
maxcutoff ordering (“the deepest cut’) may provoke extrgnmagh
Intermediate sizes.

It is hard to estimate its complexity in terms of and the s@asput
and output. The main reason is that the intermediate podgtBp
can become very complex relative to the original polytépe P,,.

D. Bremner (1999) proved that there is a class of polytopew/fiach
the double description method (and the beneath-beyondjaues
exponential

29



How Intermediate Sizes Fluctuate with Different Orderings

Si ze | NTERMEDI ATE SI ZES FOR CCP6
P maxcut of
1500 |
f mi ncut of f
1250 |

1000 |

750 |

T 2 lteration

The input is al5-dimensional polytope witB2 facets. The output is a list
of 368 vertices. The lexmin is a sort of shelling ordering.
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How Intermediate Sizes Fluctuate with Different Orderings

Size
Maxcutoff

30000 |
25000 |
20000 |
15000 |
10000 |

5000 Mincutoff

: : : — Iteration
200 400 600 800 1000

The input is al0-dimensional cross polytope with® facets. The output

IS a list of20 vertices. The highest peak is attained by maxcutoff orderin
following by random and mincutoff. Lexmin is the best amoligad the
peak intermediate size is less th#n (Too small too see it above.)
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Pivoting Algorithmsfor Vertex Enumeration

Basic ldea:Search the connected graph of an H-polytéply pivoting
operations to list all vertices.

Advantage:Under the usual nondegeneracy (i.e. no pointB ire on
more thand facets), it is polynomial in the input size and the outpugsiz

Space ComplexityDepends on the search technique. The standard
depth-first search requires to store all vertices found.
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Memory Free: Reverse Search for Vertex Enumeration

Key idea:Reverse the simplex method from thetimal vertexn all
possible ways:

min xI +x2 +x3

i

Complexity: O(mdfy)-time andO(md)-space (under nondegeneracy).
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Reverse Search: General Description

Two functionsf andadj define the search:

A finite local searcly for a graphG = (V, E') with a special node € V
Is a function:V '\ {s} — V satisfying

(L1) {v, f(v)} € Eforeachw € V' \ {s}, and
(L2) foreachv € V' \ {s}, 3k > 0 such thatf*(v) = s.
Example:

o LetP = {z ¢ R?: A x < b} be asimple polytope, and = be any
generic linear objective function. L&t be the set of all vertices of
P, s the unique optimal, and(v) be the vertex adjacent toselected
by the (deterministic) simplex method.
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Reverse Search: General Description

A adjacency oracled; for a graphG = (V, F) is a function (wheré a
upper bound for the maximum degree(®f satisfying:

(i) for each vertex and each numbérwith 1 < k£ < ¢§ the oracle returns
adj(v, k), a vertex adjacent to or extraneou$ (zero),

(ii) if adj(v, k) = adj(v, k") # 0 for somev € V, k andk’, thenk = £/,

(iii) for each vertex, {adj(v, k) : adj(v,k) # 0,1 < k < 4§} is exactly
the set of vertices adjacent o

Example:

o LetP = {z c R?: A x < b} be asimple polytope. Ldt be the set
of all vertices ofP, § be the number of nonbasic variables and
adj (v, k) be the vertex adjacent toobtained by pivoting on thith
nonbasic variable at.
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Reverse Search: General Description

procedure ReverseSearahf,d,s,f);
v:=s; 7 :=0; (* 7. neighbor counter *)
repeat
whilej < é do
Ji=J+1
(r1) next := adj(v, j);
if next # 0 then
(r2) if f(next) = vthen (* reverse traverse *)
v:=mnext; 7 :=0
endif
endif
endwhile;
If v # s then (* forward traverse *)
(f1) u:=v; wv:= f(v);
(f2) j:=0; repeatyj:=j+ 1Luntil adj(v,j) = u (* restore; *)
endif
untilv = sandj = §
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Pivoting Algorithm vsIncremental Algorithm

e Pivoting algorithms, in particular the reverse search ratiga (Irs,
Irslib), work well for high dimensional cases.

¢ Incremental algorithms work well for low (up ) dimensional
cases and highly degenerate cases. For example, the catlegdidb
and porta are implemented for highly degenerate cases arubtie
ghull for low (up to10) dimensional cases.

e The reverse search algorithm seems to be the only methoddhlais
very efficiently in massively parallel environment.

e Various comparisons of representation conversion algostand
Implementations can be found in the excellent article:

D. Avis, D. Bremner, and R. Seidel. How good are convex hull
algorithms. Computationalceometry.TheoryandApplications,
7:265-302, 1997.
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Voronoi Diagram in R?

S: a set ofn distinct points inR?

Voronoi diagram is the partition d&¢ into n polyhedral regions:
vo(p) = {x € RYdist(x,p) < dist(x,q) Vge S—p}, forpe S

wheredist is the Euclidean distance function. Each regiofp) is called
theVoronoi cell of p.
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Voronoi Diagram as Polyhedral Projection

Forpin S, consider the hyperplarigp) tangent to the paraboloid
(xgr1 = x% R w?l) in RA+1 atp:

d

d
Zp? — Z 2pjx; +xq41 = 0.
j=1

i=1

Replacing equation with inequality for eachp € S, we obtain the
polyhedron

P:{xGRdH Zp] 22p3x3+xd+1>OVp€S}
1=1

The key observation is that for two distinct poiptandg, the intersection
of two hyperplane&(p) andh(q) is in fact the equal separator hyperplane
of the two points.
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Voronoi Diagram as Polyhedral Projection

The Voronoi diagram is simply the orthogonal projectionfoE R3H1
onto the original spaci®.

The projected vertices d? are called th&oronoi vertices.
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Delaunay Triangulation in R4

For each point € R?, thenearesheighborsetnb(S, v) of S is the set of
pointsp € S which are closest to in Euclidean distance.

The convex hulkonv(nb(S,v)) of the nearest neighbor set of a Voronoi
vertexv is called theDelaunaycell of v. TheDelaunaytriangulation ofS
IS a partition of the convex hutlonv(S) into the Delaunay cells of
Voronol vertices. The one-to-one correspondence betweseXdronoi
vertices and the Delaunay cells is duality that .
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Arrangement of Hyperplanes

A finite family A = {h; : i = 1,2,...,m} of hyperplanes ifR? is called
anarrangemenof hyperplanes.

hs
hy hy

42



Arrangement of Hyperplanes. Representation of Faces

hif={z: Ajx<b;}, hi={z:A;x=0}, h; ={z:A; z>0b}
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Central Arrangement of Hyperplanes

An arrangement of hyperplanes in which all its hyperplaregain the
origin 0 is called acentralarrangemenof hyperplanes.
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Central Arrangement and Sphere Arrangement
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Polyhedral Realization of Arrangements

Let A be an arrangement of hyperplanes represented by a mjtrig,
si={x:A;x=0}LVi=1,...,m.

Consider the following polytope:

Pa={z:y" Az <1,Vye{-1,+1}"}

Theorem 0.14. The face lattice of4 is isomorphic to the face lattice of
the polytopeP,4.
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Dual of P4: A Zonotope

The polar of the polytop#’,4 is the polytope (calledonotope)

(Pa)* = comv{yTAcR?:yc {-1,+1}"}
= {y"AeR?:ye[-1,+1]"}
= L1+ Lo+ -+ Lp,

where eaclyeneratotl; is the line segment-A;, A;].
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Dual of P4: A Zonotope

The polar of the polytop#’,4 is the polytope (calledonotope)

(Pa)* = comv{yTAcR?:yc {-1,+1}"}
= {y"AeR?:ye[-1,+1]"}
= L1+ Lo+ -+ Lp,

where eaclyeneratotl; is the line segment-A;, A;].

48



Examples of Zonotopesin R3

“*Random” zonotopes with and10 generators:
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