
Shelling (Bruggesser-Mani 1971) and Ranking

Let � � � � � � � � � 	 � 
 � � 
 � � � � � � � � � � � be a polytope.� has
such a representation iff it contains the origin in its interior. For a generic

� � � � , sort the inequalities so that � � � � � � � � � � � � � � � .

( � a ranking of vertices� 	 ’s in the dual by a linear function).

Geometrically, the line� � � � � � � � � � � � � meets each hyperplane

� 	 � � � . Let � 	 denotes the parameter value at the intersection. Thus,
� 	 � � 	 � and � 	 � 	 � � �

Consequently:

� � � � � � � � � � � � � � � � � � �

This ordering induces a shelling of� :

� �
 ! �

	 " � # 	 � $ #  is a topological� % & � � -ball for each

� 
 ' 
 � & � .
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Shelling and Ranking (cont.)
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Shelling in � � (Launching a Space Shuttle)
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Shelling in � � (cont.)
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The Double Description Method: Complexity?
� : an H-polytope represented by� halfspaces� � , � � � , � � in � � .

�  � $  
	 " � � 	 : ' th polytope (� � � � ).

�  � � � �  � : the vertex set computed at' th step.

(Pk-1, Vk-1) (Pk, Vk)

hk

newly
generated
for each adj
pair  (    ,   )

28



The Double Description Method: Complexity? (cont.)
� It is anincremental method, dual to the Beneath-Beyond Method.

� Practical for low dimensions and highly degenerate inputs.

� For highly degenerate inputs, the sizes of intermediate polytopes are

very sensitive to the orderingof halfspaces. For example, the

maxcutoff ordering (“the deepest cut”) may provoke extremely high

intermediate sizes.

� It is hard to estimate its complexity in terms of and the sizesof input

and output. The main reason is that the intermediate polytopes �  

can become very complex relative to the original polytope� � � � .

� D. Bremner (1999) proved that there is a class of polytopes for which

the double description method (and the beneath-beyond) method is

exponential.
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How Intermediate Sizes Fluctuate with Different Orderings
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The input is a� � -dimensional polytope with� � facets. The output is a list

of � � � vertices. The lexmin is a sort of shelling ordering.
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How Intermediate Sizes Fluctuate with Different Orderings
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The input is a� � -dimensional cross polytope with� � � facets. The output

is a list of � � vertices. The highest peak is attained by maxcutoff ordering,

following by random and mincutoff. Lexmin is the best among all and the

peak intermediate size is less than� � . (Too small too see it above.)
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Pivoting Algorithms for Vertex Enumeration

Basic Idea:Search the connected graph of an H-polytope� by pivoting
operations to list all vertices.

A polytope � and its graph (1-skeleton)

Advantage:Under the usual nondegeneracy (i.e. no points in� lie on
more than% facets), it is polynomial in the input size and the output size.

Space Complexity:Depends on the search technique. The standard
depth-first search requires to store all vertices found.
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Memory Free: Reverse Search for Vertex Enumeration

Key idea:Reverse the simplex method from theoptimal vertexin all
possible ways:

!!

!$

"*

#"

$"

min  x1 + x2 + x3

Complexity: � � � % � � � -time and� � � % � -space (under nondegeneracy).
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Reverse Search: General Description

Two functions� and � � � define the search:

A finite local search� for a graph� � � � � � � with a special node� � �

is a function: � � � � � � � satisfying

(L1) � � � � � � � � � � for each� � � � � � � , and

(L2) for each� � � � � � � , 	 ' � � such that�  
� � � � � .

Example:

� Let � � � � � � � � � � 
 
 � be a simple polytope, and�� � be any

generic linear objective function. Let� be the set of all vertices of

� , � the unique optimal, and� � � � be the vertex adjacent to� selected

by the (deterministic) simplex method.
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Reverse Search: General Description

A adjacency oracle� � � for a graph� � � � � � � is a function (where� a

upper bound for the maximum degree of� ) satisfying:

(i) for each vertex� and each number' with � 
 ' 
 � the oracle returns

� � � � � � ' � , a vertex adjacent to� or extraneous� (zero),

(ii) if � � � � � � ' � � � � � � � � '
�

� �
� � for some� � � , ' and ' � , then ' � ' � ,

(iii) for each vertex� , � � � � � � � ' � � � � � � � � ' � �
� � � � 
 ' 
 � � is exactly

the set of vertices adjacent to� .

Example:

� Let � � � � � � � � � � 
 
 � be a simple polytope. Let� be the set

of all vertices of� , � be the number of nonbasic variables and

� � � � � � ' � be the vertex adjacent to� obtained by pivoting on the' th

nonbasic variable at� .
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Reverse Search: General Description

procedure ReverseSearch(� � � , � , � , � );
� � � � ; 	 � � 
 ; (* 	 : neighbor counter *)

repeat
while 	 � � do

	 � � 	 � 
 ;

(r1) � � � � � � � � � � � � 	 � ;

if � � � � �� 
 then
(r2) if � � � � � � �

� � then (* reverse traverse *)

� � � � � � � ; 	 � � 

endif

endif
endwhile;

if � �� � then (* forward traverse *)

(f1) � � � � ; � � � � � � � ;

(f2) 	 � � 
 ; repeat 	 � � 	 � 
 until � � � � � � 	 �
� � (* restore	 *)

endif
until � � � and 	 � �
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Pivoting Algorithm vs Incremental Algorithm
� Pivoting algorithms, in particular the reverse search algorithm (lrs,

lrslib), work well for high dimensional cases.

� Incremental algorithms work well for low (up to� � ) dimensional
cases and highly degenerate cases. For example, the codes cdd/cddlib
and porta are implemented for highly degenerate cases and the code
qhull for low (up to � � ) dimensional cases.

� The reverse search algorithm seems to be the only method thatscales
very efficiently in massively parallel environment.

� Various comparisons of representation conversion algorithms and
implementations can be found in the excellent article:

D. Avis, D. Bremner, and R. Seidel. How good are convex hull
algorithms.ComputationalGeometry:TheoryandApplications,
7:265–302, 1997.
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Voronoi Diagram in � �

� : a set of� distinct points in� �

Voronoi diagram is the partition of� � into � polyhedral regions:

� � � � � � � � � �
�

� % 
 � � � � � � � 
 % 
 � � � � � � � � � � � &
� � � for � � �

where % 
 � � is the Euclidean distance function. Each region� � � � � is called

theVoronoi cell of � .
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Voronoi Diagram as Polyhedral Projection

For � in � , consider the hyperplane� � � � tangent to the paraboloid

( � � � � � � �
� � � � � � � �
� ) in �
� � � at � :

�
� " �

�
�

�
&

�
� " �

� � � � � � � � � � � � �

Replacing equation with inequality� for each� � � , we obtain the

polyhedron

� � � � � � � � � �
�

� " �
�
�

�
&

�
� " �

� � � � � � � � � � � � � � � � � � �

The key observation is that for two distinct points� and � , the intersection

of two hyperplanes� � � � and � � � � is in fact the equal separator hyperplane

of the two points.
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Voronoi Diagram as Polyhedral Projection

The Voronoi diagram is simply the orthogonal projection of� � �
� � �

onto the original space� � .

The projected vertices of� are called theVoronoi vertices.
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Delaunay Triangulation in � �

For each point� � �
� , thenearestneighborset � 
 � � � � � of � is the set of

points� � � which are closest to� in Euclidean distance.

The convex hull� � � � � � 
 � � � � � � of the nearest neighbor set of a Voronoi

vertex � is called theDelaunaycell of � . TheDelaunaytriangulation of�

is a partition of the convex hull� � � � � � � into the Delaunay cells of

Voronoi vertices. The one-to-one correspondence between the Voronoi

vertices and the Delaunay cells is duality that .
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Arrangement of Hyperplanes

A finite family � � � � 	 � 
 � � � � � � � � � � � of hyperplanes in� � is called
anarrangementof hyperplanes.
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Arrangement of Hyperplanes: Representation of Faces
�
�

	 � � � � � 	 � � 
 	 � � � �	 � � � � � 	 � � 
 	 � � �
!

	 � � � � � 	 � � 
 	 � �
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Central Arrangement of Hyperplanes

An arrangement of hyperplanes in which all its hyperplanes contain the

origin � is called acentralarrangementof hyperplanes.
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Central Arrangement and Sphere Arrangement
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Polyhedral Realization of Arrangements

Let � be an arrangement of hyperplanes represented by a matrix� , i.e,

� 	 � � � � � 	 � � � � � � 
 � � � � � � � � .

Consider the following polytope:
� � � � � � �
� � � 
 � � � � � � & � � � � �
�

�

Theorem 0.14. The face lattice of� is isomorphic to the face lattice of
the polytope� � .
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Dual of � � : A Zonotope

The polar of the polytope� � is the polytope (calledzonotope)

� � � �
� � � � � � � �
� � � � � � � � � & � � � � �
�

�

� � �
� � � � � � � � �
& � � � � �
�

�

� � � � � � � � � � � � � �

where eachgenerator� 	 is the line segment� & � 	 � � 	 � .

(P
A
)
*
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Dual of � � : A Zonotope

The polar of the polytope� � is the polytope (calledzonotope)

� � � �
� � � � � � � �
� � � � � � � � � & � � � � �
�

�

� � �
� � � � � � � � �
& � � � � �
�

�

� � � � � � � � � � � � � �

where eachgenerator� 	 is the line segment� & � 	 � � 	 � .

(P
A
)
*
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Examples of Zonotopes in � �

“Random” zonotopes with� and � � generators:
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