
FROM POLYTOPES TO ENUMERATION

ED SWARTZ

1. Preview

What should the d-dimensional analogues of polygons be? The short answer is
“convex d-polytopes”. We may not know what these are yet, but that does not
stop us from asking a number of questions about them.

Example 1.1. The cube and the octahedron. The cube has 8 vertices, 12 edges and
6 faces, while the octahedron has 6 vertices, 12 edges and 8 faces. Is this reversal
in the number of faces in each dimension common?

In the problem session you saw that v-e+f=2 for 3-polytopes. Is something
similar true in higher dimensions? Are there other restrictions on the number of
faces of each dimension? What is the most number of faces in each dimension if we
fix the number of vertices and dimension? The least? What if we fix other numbers
of faces in random dimensions?

Notice that all of these questions involve counting faces of various dimensions.
Another situation where these types of questions occur comes is hyperplane ar-
rangements. A hyperplane of R

d is any set of the form l−1
v

(c) = {x : v · x = c},
where v is a fixed vector in R

d and c ∈ R.
Consider the arrangement of 5 lines in Figure 1. How are they different? How

are they the same? Is there a connection between hyperplane arrangements and
polytopes?

An apparently unrelated topic...
Let G be an undirected graph. If we imagine G as a computer program, then

the program gives us a directed graph called an orientation of G. In order to avoid
infinite loops G should not have any directed circuits. How many acyclic orienta-
tions of G are there? What does this have to do with hyperplane arrangements?
What does this have to do with graph coloring?

Figure 1. Two arrangements of 5 lines in general position
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Figure 2. Four pentagons

The answers to the last several questions revolve around the Möbius function of
a partially ordered set. This is an important and powerful tool for analyzing many
combinatorial questions.

2. Polytopes

Recall that a convex d-polytope is a generalization of an n-gon. What exactly
should that be? Before we answer that, perhaps we should examine what a polygon
is!

In figure 2 we see four pentagons. All of these pentagons are combinatorially
identical. What does that mean? The first pentagon is not convex. The others are
all convex, but affinely inequivalent. What does that mean?

Definition 2.1. A subset K of R
d is convex if for all x and y in K, the line

segment from x to y is in K. Equivalently, for all t ∈ [0, 1], tx + (1 − t)y ∈ K.

For a variety of reasons, we will only consider convex polygons and their gener-
alizations. The dimension of a convex set is the dimension of its affine hull. There
are several points of view one might take toward finding the analogue of a convex
polygon. One is linear programming.

Example 2.2. In Figure 3 we see the diamond as the feasible region in linear
programming. Let x be the number of compact cars and y the number of SUV’s that
a factory makes in a given month. x + y ≥ a, otherwise the factory is not making
enough cars. x+y ≤ b, since there are only so many workers in the plant. x−y ≤ c
since the VP is really pushing SUV’s. x − y ≥ d because of California emissions
laws.

Here is one possible generalization of polygons.

Definition 2.3. P is a polyhedron if it is the intersection of a finite number of
closed half-planes in R

d. Equivalently, there exist v1, . . .vm ∈ R
d and c1, . . . , cm ∈

R such that P = {x ∈ R
d : vi · x ≤ ci for all 1 ≤ i ≤ m.}

Even in dimension two this allows unbounded regions.

Definition 2.4. An H-polytope is a bounded polyhedron.

Problem 2.5. Show that the intersection of an H-polytope with any hyperplane is
an H-polytope.

Is this the right idea? Here is another possibility based on the notion of convex
hull.
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Figure 3. A diamond as a feasible region.

Figure 4. A V-polytope

Definition 2.6. Let A ⊆ R
d. The smallest convex set containing A is called the

convex hull of A.

We use ch(A) for the convex hull of A. Does this definition make sense? Yes, we
can see that ch(A) is the intersection of all convex sets K which contain Z.

Problem 2.7. Let A = {x1, . . . ,xm}. Show that ch(A) = {y : y =

m
∑

j=1

cjxj ,

m
∑

j=1

cj =

1, and every cj ≥ 0.} Show that in R
d one need only take convex sums of d points.

What if A is not finite?

It is easy to see that an n-gon is the convex hull of its vertices.

Definition 2.8. P is a V-polytope if it is the convex hull of a finite set of points.

As can be seen in Figure 4, we do not insist that all of the points in the above
definition be on the boundary.
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Problem 2.9. Let T : R
d → Rd′

be an affine map. Prove that if P is a V-polytope,
then T (P ) is also a V-polytope. Prove that every V-polytope is the affine image of
the simplex.

Which definition is correct? Is it obvious that problems 2.5 and 2.9 hold for the
other definition?

Theorem 2.10. P is an H-polytope if and only if P is a V-polytope.

We postpone the proof of this fundamental result until Section 4.

Example 2.11. The simplex, ∆d is the convex hull of e1, . . . , ed+1 in Rd+1. The
convex hull of any d+1 affinely independent points is combinatorially equivalent to
∆d.

The dimension of a polytope is the dimension of its affine hull. When P is d-
dimensional we say P is a d-polytope. Every bounded closed d-dimensional convex
set is homeomorphic to a d-ball, so the boundary of such a set is homeomorphic to
a (d − 1)-dimensional sphere. (What does this mean? How would you prove it?)

In order to discuss higher dimensional faces rigorously we introduce the im-
portant notion of a supporting hyperplane. Affine hyperplanes can be examined
from several different points of view. The most obvious is as a point set, i.e.,
H = {(x1, . . . , xd) ∈ R

d : c1x1 + . . . cdxd = a}, where a, c1, . . . , cd are all scalars.
We can also think of this H as the inverse image of a linear functional. Our previous
H is l−1

v
(a), where lv(x) ≡ v · x,v = (c1, . . . , cd). In addition, H can be written

as y + H ′, where y ∈ R
d and H ′ is a linear hyperplane. Which, if any, of these

descriptions are unique?

Definition 2.12. Let H = l−1
v

(a) be an affine hyperplane. Then H is a supporting
hyperplane of a polytope P if lv(x) ≤ a for all x ∈ P and P ∩ H 6= ∅. A face of P
is ∅, P or any set of the form P ∩ H, where H is a supporting hyperplane of P.

This definition makes sense for any closed convex set K. For instance, all of the
boundary points of a closed disk are faces of that disk.

Problem 2.13. The d-cube is {(x1, . . . , xd) ∈ R
d : −1 ≤ xi ≤ 1.} What are the

faces of the d-cube? How many faces are there in each dimension? What are the
faces of ∆d?

From problem 2.5 and Theorem 2.10 every face of a polytope is a polytope. The
dimension of a face is its dimension as a polytope. The empty set (dimension =
−1) and P are always faces of P. They are the improper faces of P. The highest
dimensional proper faces of P are called the facets of P. Every face of P other than
P is also a face of some facet and every face of a facet is also a face of P. The
f -vector of a d-dimensional polytope P is (f0, f1, . . . , fd−1), where fi is the number
of i-dimensional faces of P. Sometimes we think of f−1 = fd = 1 and fi = 0 for
i < −1 and i > d. One of our main goals is to answer “What can you tell me about
the f -vector of polytopes?”

3. Cyclic polytopes

Let x(t) = (t, t2, . . . , td) be the moment curve in R
d. Choose n ≥ d + 1 points

t1 < t2 < · · · < tn in R. Define xi = x(ti) and let Cd(n) ≡ ch({x1, . . . ,xn}). For
now, we will suppress the dependence of Cd(n) on the ti. We call Cd(n) a cyclic
polytope. Figure 5 shows a cyclic polytope in R2.
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Figure 5. Cyclic polytope in R2.

Proposition 3.1. Every d + 1-subset of X = {x1, . . . ,xn} is affinely independent.

Proof. - The proof is by induction on d, with d = 1 being obvious. Suppose the
proposition holds for d−1. For notational simplicity we will show that x1, . . . ,xd+1

are affinely independent. The argument we give will clearly apply to any (d + 1)-
subset of X. Consider the matrix,

(1)















1 1 . . . 1
t1 t2 . . . td+1

t21 t22 . . . t2d+1
...

...
...

td1 td2 . . . tdd+1















.

It is sufficient to show that the rank of this matrix is d+1. For each i > 1, multiply
row i − 1 by t1 and subtract it from row i. We obtain this matrix:



















1 1 . . . 1
0 (t2 − t1) · 1 . . . (td+1 − t1) · 1
0 (t2 − t1)t2 . . . (td+1 − t1)td+1

...
...

...

0 (t2 − t1)t
d−1
2 . . . (td+1 − t1)t

d−1
d+1

0 (t2 − t1)t
d
2 . . . (td+1 − t1)t

d
d+1



















.

Now use the induction hypothesis to see that the lower right-hand d×d matrix has
rank d and hence the entire matrix has rank d + 1. �
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Problem 3.2. Matrix (1) is known as the Vandermonde matrix. Compute its
determinant.

Corollary 3.3. Every proper face of Cd(n) is a simplex.

Definition 3.4. A polytope is simplicial if every proper face is a simplex.

Example 3.5. The d-crosspolytope is the convex hull of ±e1, . . . ,±ed. It is a sim-
plicial polytope. What are its faces? Can you compute fk for this polytope?

What are the facets of Cd(n)? Since this is a simplicial d-polytope we want to
know which subsets of cardinality d of X = {x1, . . . ,xn} are the vertices of a facet.
(Why?) For any S ⊆ [n] let XS be the corresponding subset of X.

Theorem 3.6. [7] If S ⊆ [n] and |S| = d, then ch(XS) is a facet of P if and only
if for every 1 ≤ i < j ≤ n not in S,

|k : i < k < j, k ∈ S|

is even.

Problem 3.7. Using this, show that if |S| ≤ d/2, then ch(XS) is a face of P .
Determine all of the faces of P.

Notice that the combinatorial structure of P does not depend on the choice of the
ti. We also note that the above problem says that the f -vector for P is as large
as possible for i ≤ d/2. What about the number of higher dimensional faces of
Cd(n)? Amazingly, we will see that for any simplicial d-polytope, once we know
f0, . . . , fbd/2c, we know all of the fi.

Proof. (Gale) Let XS = {xi1 , . . . , xid
}. Let lS(x) be defined by

lS = det

[

1 1 1 . . . 1
x x(ti1 ) x(ti2 ) . . . x(tid

)

]

.

Using the permutation formula for determinants, we see that lS = lv − c, where
lv is a linear functional and c ∈ R. Furthermore, lS = 0 on XS. (Why?) So, the
only possible supporting hyperplane for a simplex with vertices XS is the affine
hyperplane lS = 0. When do all the points of P lie on one side of lS? Consider the
following polynomial.

fS(t) = det

[

1 1 1 . . . 1
x(t) x(ti1) x(ti2) . . . x(tid

)

]

.

Now, fS(t) is a polynomial of degree at most d with d distinct zeros ti1 , . . . , tid
.

Therefore, fS(t) changes sign every time it passes through one of the tij
. So, in

order for lS = 0 to be a supporting hyperplane it is necessary and sufficient that
the number of points in S be even between every pair of points in X − XS .

�

Problem 3.8. Verify that C3(6) and the octahedron have the same f -vector. Are
they combinatorially equivalent?
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x

Figure 6. Uniqueness of projection of x to K.

4. Proof of main theorem

First, several preliminary results. We use δ(x,y) for the distance between two
points. Our proof closely follows the relevant sections of “Convex Polytopes”, B.
Grünbaum.

Lemma 4.1. Let K be a closed convex set and suppose x /∈ K. Then there exists
a unique point y ∈ K which minimizes δ(x,y) over all y ∈ K.

Proof. Since K is closed there is at least one y1 with the stated property. Suppose
y2 is another point of K which minimizes the distance to x. Then, convexity of
K implies that the midpoint of the line segment from y1 to y2 is in K, while
elementary geometry shows that this point would be closer to x. �

Proposition 4.2. Let K and K ′ be closed convex sets in R
d with K bounded. If

K ∩ K ′ = ∅, then there exists a hyperplane which separates K and K ′.

Proof. For each y ∈ K let δK′(y) be the distance from y to K ′. Since δK′ is
continuous and K is compact, there is a y0 ∈ K which minimizes δK′(y) on K. By
the above lemma, there is a unique point x0 ∈ K ′ such that δK′(y0) = δ(x0,y0).
Let Hx and Hy be the hyperplanes perpendicular to the line segment [x0,y0] which
intersect at x0 and y0 respectively. Claim: Any hyperplane H parallel to Hx and
Hy which intersects the open line segment works. This is clear as long as there are
no points of K or K ′ in the open slab between Hx and Hy. Let z be such a point.
As can be seen in Figure 7, if z ∈ K, then points near y0 on the line segment from
y0 to z will be closer to K ′ than y0. Similarly, if z ∈ K ′ then points near x0 on the
line segment from x0 to z will be closer to y0 than x0. �

Problem 4.3. What if K is unbounded?

Problem 4.4. Prove that every closed convex set is the intersection of all the closed
half-spaces which contain it.

Proposition 4.5. Let x be in the boundary of a d-dimensional closed convex set
K ⊆ R

d. Then x is contained in a face of K.

Proof. W.L.O.G. we assume that 0 is in the interior of K. Let Kε = {εx : x ∈ K}.
Since x ∈ ∂K,x /∈ K(1−ε) for 0 < ε < 1. (Why? - This is a point fudged by
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K’
K

H Hx y

x

z

y0 0

Figure 7

just about everyone...) By the previous proposition, for each such ε there exist
a hyperplane Hε which separate x and K(1−ε). The colleciton of all the Hε must
have at least one limit plane H which will satisfy the proposition. (What is a limit
hyperplane? Why does one exist? Why does it work?) �

Just as in the two- and three-dimensional cases, we will call a zero-dimensional
face of K a vertex. Not surprisingly, the vertices of P play a critical role in the
proof of Theorem 2.10. However, it turns out that it is easier to work with the
closely related notion of extreme points.

Definition 4.6. x is an extreme point of a convex set K if x is never in the relative
interior of a line segment contained in K. We denote the extreme points of K by
extK.

Lemma 4.7. Let K be convex.

• Every vertex of K is an extreme point of K.
• If K = ch(A), then extK ⊆ A.
• If F is a face of K, then extF = F ∩ extK.

Problem 4.8. Prove the lemma.

While vertices and extreme points are the same in polyhedra, this is not true for
general convex sets. For example, in Figure 8, F2 is a face of F1 and F1 is a face of
K, but F2 is not a face of K.

Theorem 4.9. If K is a compact convex set, then ch(extK) = K.
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F1

K

F2

Figure 8. Faces of faces may not be faces!

Proof. Evidently, ch(extK) ⊆ K. We prove the reverse inclusion by induction on
the dimension of K. Dimension one is obvious.

Suppose that x ∈ K. If x is an extreme point then obviously x ∈ ch(extK). So,
let [y0, z0] be a line segment in K containing x in its relative interior. Extend this
segment in both directions. It will intersect the boundary of K at two points, y

and z. By the previous proposition there exist faces Fy and Fz which contain y and
z respectively. Each of these faces has dimension less that K, so by the induction
hypothesis, Fy = ch(extFy) and Fz = ch(extFz). As x ∈ ch(extFy ∪ extFz) and
the lemma tells us that extFy ∪ extFz ⊆ extK, we are done.

K

y= Fy

Fz
z

z

x

y

0

0

Figure 9. ch(extK) = K

�

We are finally ready to prove Theorem 2.10.
Let P be an H-polytope. We prove P is a V-polytope by induction on dimension.

As usual, dimension one is trivial.
Write P as a minimal intersection of closed half-spaces P = ∩m

i=1Hi. By minimal
we mean that if we set Pi = ∩j 6=iHj , then Pi 6= P for any i. Minimality guarantees
that the boundary of P is contained in the union of the (d − 1)-dimensional faces
of P and there are m of these. (Why?) By induction, each such face has a finite
number of extreme points. All of the extreme points of P are on the boundary.
Hence, the previous lemma and the last theorem imply that P has a finite number
of extreme points and must be a V-polytope.
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Figure 10. P = ∩Hi

Now suppose that P is a d-dimensional V-polytope in R
d. Write P = ch(V ), |V | =

n. By the previous theorem, we might as well assume that V = extP. Any k-face of
P is determined by (k +1) affinely independent points in the face. Hence, for every

k, fk ≤
(

|V |
k+1

)

. Let Fi enumerate the facets (the (d − 1)-dimensional faces) of P
and let Hi be the closed half-spaces of their corresponding supporting hyperplanes.
The proof is complete once we show the following.

Claim: P = ∩Hi.

Proof. (of claim) Certainly P ⊆ ∩Hi. Suppose x /∈ P. For each face Gj of P of
dimension d − 2 or less, let Aj be affine hull of Gj and x. The Aj form a finite
collection of affine subspaces each of which has dimension at most d− 1. Therefore
their union does not cover the interior of P. So, there exists y in the interior of P so
that y is not in the union of the Aj . Consider the line segment from y to x. Since
y ∈ P and x /∈ P there exists z on the boundary of P and the line segment from
y to x. By Proposition 4.5 there is a supporting hyperplane of P which contains z.
As y is not in any of the Aj , it must be the case that z is in one of the Hi. Hence,
x /∈ ∩Hi. �

5. Shelling

The boundary of a d-polytope is homeomorphic to the (d − 1)-sphere. It turns
out that this boundary can be built up by gluing the facets together in a “nice”
way. This will lead us to some remarkable enumerative results for the f -vector of
the polytope, especially when P is simplicial. Until further notice, P is a simplicial
d-polytope in Rd.

A shelling of P is an ordering F1, . . . , Fm of the facets of P such that for all
j ≥ 2, Fj ∩ (∪j−1

i=1 Fi) is a nonempty union of facets of Fj . If P has a shelling order,
then we say P is shellable. Figure 11 shows a shelling of the boundary of the
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Figure 11. A shelling of the boundary of the octohedron

Figure 12. The beginning of a non-shelling of the boundary of the octohedron

octrahedron, while figure 12 shows an ordering of the four facets of the boundary
of the octohedron which is not the beginning of any shelling.

Now view the ordering of the facets as a way of building up ∂P. Each facet adds
new faces of ∂P as we take the union of the facet with the previous ones. The
shelling condition insures that there is a unique new minimal face added at each
step. Indeed, at the jth step Fj ∩ (∪j−1

i=1 Fi) is a union of facets of Fj . The minimal
face is Mj = ch({vj1 , . . . , vjm

}), where the vjk
are the vertices opposite the facets

of Fj in the intersection. Figure 13 shows the minimal new faces of the shelling in
Figure 11.

The concept of shellability is very important and extends to a number of sit-
uations including abstract simplicial complexes. An abstract simplicial complex
consists of a set V, the vertices of the complex, and a set of faces ∆ ⊆ 2V The faces
must be closed under subsets. If F ∈ ∆ and G ⊆ F, then G ∈ ∆. The maximal
faces of ∆ are the facets of the complex. The dimension of a simplex G ∈ ∆ is
|G| − 1.

Example 5.1. Some examples of abstract simplicial complexes.

(1) Boundaries of simplicial polytopes.
(2) Simple graphs.
(3) Let V be a subset of vectors in a vector space and let ∆ be the subsets of

V which form independent subsets of vectors. What are the facets of this
complex?
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(empty set)

Figure 13. Minimal new faces of the shelling

Every abstract simplicial complex has a geometric realization |∆|. Let [n] = |V |.
Then |∆| is the subset of R

n defined by

|∆| = ∪F∈∆ch({ei}i∈F ).

The definition of shellable for an abstract simplicial complex is exactly the same
as for simplicial polytopes; for j ≥ 2, Fj ∩ (∪j−1

i=1 Fi) must be a union of facets of the
boundary of Fj .

Problem 5.2. Show that connected graphs and the complexes described in (3) are
shellable.

Example 5.3. Let G be the graph in Figure 14. Let the vertices of ∆ be the edges
of the graph. The faces of ∆ are those subsets of edges whose removal does not
disconnect the graph. Specifically, ∅, all singleton, and all doubletons except {a, b}
and {c, d} are the faces of ∆. We can project |∆| down to R

2 to get the complex in
Figure 14. Ordering the facets as shown, we see that ∅ is the minimal new face for
1, and the minimal new face is a single vertex for faces 2, 3, 4 and an edge for faces
5, 6, 7, 8.

Suppose that G above represents a network and each edge has equal and indepen-
dent probability of failing p, 0 < p < 1. What is the probability that that network
will remain connected? Directly checking each possible subset of edges which keep
the graph connected we see that this probability is

(1 − p)5 + 5p(1 − p)4 + 8p2(1 − p)3 = (1 − p)3[1 + 3p + 4p2].

Hmmm....the coefficient in each degree i of the last factor is the number of steps in
the shelling in which we added a minimal new face of cardinality i.

For each i, let hi be the number of facets whose unique new minimal face has
cardinality i. The h-vector of ∂P is (h0, . . . , hd).

Example 5.4. The shelling in Figure 11 gives h-vector (1, 3, 3, 1).

The shelling polynomial of the shelling F1, . . . , Fm is

(2) h∂P (x) = h0x
d + h1x

d−1 + · · · + hd−1x + hd.
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Figure 14. G and |∆|

The shelling polynomial appears to depend on the shelling. We can also encode the
f -vector of P in a polynomial. Define the face polynomial of ∂P to be

f∂P (x) = f−1x
d + f0x

d−1 + f1x
d−2 + · · · + fd−1.

Theorem 5.5. h∂P (x + 1) = f∂P (x).

Proof. Suppose that at a particular shelling step the minimal new face has cardi-
nality i. Then this step adds

(

d−i
0

)

to fi,
(

d−i
1

)

to fi+1 and in general
(

d−i
j

)

to fi+j

up to j = d− i. This has the same effect as adding (x + 1)d−i to f∂P (x). Summing
up over all the shelling steps gives the required formula. �

Corollary 5.6. The h-vector of ∂P does not depend on the shelling order.

Problem 5.7. Write down formulas for hi in terms of fj and vice versa. Which
fj does hi depend on (and vice versa)? Show that if P is a collection of simplicial
d-polytopes and P ∈ P has the property that hi(∂P ) ≥ hi(∂P ′) for all 0 ≤ i ≤ d
and P ′ ∈ P, then fi(∂P ) also maximizes all fi(∂P ′) in P. Is this still true if we
reverse the role of the f - and h-vector?

Even if ∂P does not have a shelling we can still define h∂P (x) = f∂P (x− 1) and
define the h-vector according to (2). For instance, for any simplicial 3-polytope we
know that f2 = 2/3f1 and f0 − f1 + f2 = 2, so f0 − f1 +2/3f1 = 2 → f1 = 3 · f0− 6
and f2 = 2 · f0 − 4. This implies that h0 = 1, h1 = f0 − 3 = h2 and h3 = 1.

Does every polytope have a shelling? In fact something even better is true.
Every polytope has a line shelling. These were introduced by Bruggesser and Mani
[3]. This shelling can be described as follows. Let x be a point in the interior of P.
Now choose a line r through x with the following two properties:

(1) r intersects every supporting hyperplane of the facets of P.
(2) r does not intersect any non-trivial intersection of the supporting hyper-

planes of the facets of P.

Why is it obvious we can always choose such a line? Now imagine you are in
a rocket ship inside the planet P heading along the line r in a chosen positive
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1
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Figure 15. Line shelling of a polygon

direction. Initially you can not see anything as you are inside the planet. By (2)
you will emerge at a facet, F1. As you travel away from P you will see one new
facet each time you pass through its corresponding supporting hyperplane. The
shelling order for these facets is the same as the order you see them. By (2) you
will never see two (or more) new facets simultaneously. Eventually you will go
far enough towards “+∞” so that you can see as many facets as possible in that
direction. Now begin your return to P coming from the “−∞” direction. At this
point you can see all the facets you could not see from the “+∞” direction. As
you pass through each of their supporting hyperplanes the corresponding facet will
disappear from your vision. The shelling order continues from before in the order in
which the facets disappear from your vision. By (1) each facet of P occurs exactly
once in your shelling order.

Problem 5.8. Show that this is a shelling of P . Where did you use convexity?

The fact that every simplicial polytope is shellable already shows there are strong
restrictions on their f -vectors. For instance, (6, 15, 18, 7) is not the f -vector of any
simplicial 3-polytope. Indeed, this would give (1, 2, 3, 2,−1) as its h-vector, and
this is impossible. In fact, for the same reason, (6, 15, 18, 7) is not the f -vector
of any shellable abstract simplicial complex. (What is the f -vector of an abstract
simplicial complex?)

What happens if we travel along r in the opposite direction? This simply re-
verses the shelling order. But now, each facet which originally contributed to hi,
contributes to hd−i. Since the h-vector is independent of the shelling order we obtain
the Dehn-Sommerville equations.

Theorem 5.9. [6], [15] If P is a simplicial d-polytope, then hi = hd−i.

This is an even stronger restriction on the h-vector of P. Combining this theorem
with Problem 5.7, we now see why once we know f0, . . . , fbd/2c, we know the entire
f -vector of P.
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Are there any other restrictions on the h-vectors of simplicial polytopes? In
order to discuss this we must introduce some notation.

Let a, i be natural numbers. Then there is a unique way of writing

a =

(

ai

i

)

+

(

ai−1

i − 1

)

+ · · · +

(

aj

j

)

, ai > ai−1 > · · · > aj ≥ j.

Problem 5.10. Prove the above statement.

Example 5.11. a = 14, i = 3. Then 14 =
(

5
3

)

+
(

3
2

)

+
(

1
1

)

.

With a decomposed as above define

a<i> =

(

ai + 1

i + 1

)

+

(

ai−1 + 1

i

)

+ · · · +

(

aj + 1

j + 1

)

.

Example 5.12. So, 14<3> =
(

6
4

)

+
(

4
3

)

+
(

2
2

)

= 15 + 4 + 2 = 21.

In 1971 P. McMullen conjectured that necessary and sufficient conditions for
(h0, . . . , hd) to be the h-vector of the boundary of a simplicial d-polytope are

• hi ≥ 0.
• hi = hd−i.
• h0 ≤ h1 ≤ · · · ≤ hbd/2c.

• For i ≤ d/2, define gi = hi − hi−1. Then for i ≤ d/2, gi+1 ≤ g<i>
i .

Stanley [18] proved necessity, while Billera and Lee [1] proved sufficiency. These
results give a complete characterization of h-vectors (and hence f -vectors) of the
boundary of simplicial polytopes. For instance, here are two problems that are now
fairly easy.

Problem 5.13. Show that Cd(n) maximizes every fi among all possible simplicial
d-polytopes with n vertices. What is fewest number faces in dimension i that a
simplicial d-polytope with n vertices can have?

Looking at many examples, it appears that the f -vector of a simplicial polytope
is unimodal. A sequence (f0, f1, . . . , fd) is unimodal if there exists i such that
f0 ≤ f1 ≤ · · · ≤ fi ≥ fi+1 ≥ · · · ≥ fd). By Stanley’s proof of the necessity
of McMullen’s conditions, the h-vector of a simplicial polytope is symmetric and
unimodal. It can be shown that the f -vector of a simplicial d-polytope is unimodal
when d ≤ 19. Shortly after Billera and Lee proved the sufficiency of McMullen’s
conditions, Björner [2] and Lee [13] gave examples of 20-dimensional simplicial
polytopes with trillions of vertices with f11 > f12 < f13.

What about non-simplicial polytopes?
First we extend the definition of shelling to arbitrary polytopes as follows. An

ordering F1, . . . , Fm of the facets of P (an arbitrary polytope) is a shelling of ∂P if

for each j ≥ 2, Fj ∩ (∪j−1
i=1 Fi) is a union of facets of Fj which is an initial segment

of a shelling of ∂Fj . Figure 16 shows the beginning of a shelling of the boundary of
the cube.

The line shelling from before also gives a shelling of an arbitrary polytope with
properties similar to the simplicial case. These new shellings allow us to prove
Euler’s formula for all polytopes.

Problem 5.14. Prove that a line shelling is a shelling of an arbitrary polytope.
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Figure 16. Shelling the boundary of a cube.

Definition 5.15. The Euler characteristic of P is χ(P ) =

d
∑

j=0

(−1)jfj .

Consider the situation when P is simplicial. From the Dehn-Sommerville equa-
tions we know that hd = 1. Therefore,

1 = h∂P (0) = f∂P (−1) = (−1)d + (−1)d−1[χ(P ) − (−1)d].

This easily reduces to χ(P ) = 1.

Problem 5.16. Show that χ(P ) = 1 for all polytopes. (Hint: Induction on di-
mension and on the line shelling. Along the way, show that until the last facet is
included, partial shellings of ∂P also have Euler characteristic one. )

There is an analogue of the Dehn-Sommerville equations for arbitrary polytopes.
We will not discuss it here, other than to say that it involves more than just the
f -vector of the polytope. It also includes the combinatorics of the faces of P as
expressed in the face lattice of P.

The search to understand f -vectors of various complexes is an ongoing and exten-
sive area of research. We mention just two results of Stanley which arise naturally
in our setting. The Dehn-Sommervile equations hold for any simplicial complex
whose geometric realization is homeomorphic to a sphere. Also, hi+1 ≤ h<i>

i for
any shellable simplicial complex. On the other hand, a major open question is
whether or not McMullen’s g-conditions hold for h-vectors of arbitrary simplicial
complexes whose geometric realizations are homeomorphic to a sphere.

6. The face poset

One of the fundamental concepts in combinatorics (mathematics?) is a partially
ordered set.

Definition 6.1. A poset, or partially ordered set, is a set L with a binary relation
≤ which is anti-symmetric, transitive and reflexive.

As usual, we use x < y to indicate that x ≤ y and x 6= y.

Example 6.2. Some examples

• Usual ≤ on R or Z.
• a ≤ b if and only if a|b in Z

+.
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a

b

c

d

0

a        b        c        d

ab        ac        ad        bc        bd        cd

abcd

abc        abd        acd        bcd        

Figure 17. Hasse diagram of F(∆3)

• F any collection of subsets of any fixed set S. Define A ≤ B iff A ⊆ B.
When F is the faces of a polytope P, we call it the face poset of P and
denote it F(P ).

When the binary relation ≤ is unambiguous we will suppress it and simply write L
is a poset.

Two posets (L,≤L) and (M,≤M ) are isomorphic if there is a bijection φ : L → M
such that x ≤L y if and only if φ(x) ≤M φ(y). In this case φ is called a poset
isomorphism. Two polytopes P and Q are combinatorially equivalent if F(P ) is
isomorphic to F(Q).

Finite posets can be represented by their Hasse diagram. An edge between two
elements x and y of the poset in the Hasse diagram indicates that the upper element
(say x) covers the lower element. That is, y ≤ x and there is no z in the poset such
that z 6= x, z 6= y and y ≤ z ≤ x. Figure 17 shows the Hasse diagram of F(∆3).

What can we say about F(P )?

Proposition 6.3. If F ∈ F(P ) and G ∈ F(F ), then G ∈ F(P ).

Proof. Let HF be a supporting hyperplane of F. Let HG be a supporting hyperplane
of G in HF . Now rotate HF along HG in a direction away from the vertices of F
not in G as in Figure 18. �

Thus, the lower interval [∅, F ] = {G ∈ F(P ) : ∅ ⊆ G ⊆ F} equals F(F ). What do
you think upper intervals, [F, P ] = {G :∈ F(P ), F ⊆ G ⊆ P}, look like?

Here are some other properties of F(P ) you should try to prove.

Proposition 6.4. Let P be a d-polytope.

(1) If F is a (d − 2)-face of P, then F is the intersection of two facets of P.
(2) If F is a (d − k)-face of P, then F is the intersection of k facets of P.
(3) The intersection of two faces of P is a face of P.
(4) If F is a face of P other than P, then F is a face of some facet of P.

A chain in a poset L is a sequence c = x0 < x1 < · · · < xr in L. The length of c
is r. A poset is ranked (also called graded) if every maximal chain in L has the same
length. If L is ranked, then the rank of x ∈ L is the length of the longest chain in
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F

G

P

H

HF

G

��

Figure 18

L in which x is the last element. From the above Proposition we see that F(P ) is
ranked and that the rank of a face in F(P ) is its dimension plus one.

Let x, y ∈ L. Their meet is their greatest lower bound and is denoted x ∧ y.
Similarly, their join is their least upper bound and is denoted x ∨ y. Of course,
there is no reason that L should contain a meet or join for x and y. We can see
that the face poset of a polytope contains the meet of any two faces, namely their
intersection. What about the join?

Proposition 6.5. Let L be a finite poset with a greatest element. Suppose that
x ∧ y exists in L for every pair of elements x, y in L. Then, x ∨ y exists for every
pair of elements in L.

Proof. By induction every finite subset of L has a greatest lower bound. Given
x, y ∈ L, let U = {z ∈ L : x ≤ z, y ≤ z.}. Since L has a greatest element, U is finite
and not empty. Now check that the greatest lower bound of U is x ∨ y. �

Any poset which contains x∨ y and x∧ y for all x and y in the poset is called a
lattice. For this reason F(P ) is also called the face lattice of P .

Problem 6.6.

(1) Find an infinite poset with a greatest element such that x∧y exists for every
x, y, but x ∨ y does not exist.

(2) Which of the following posets are lattices? Which are ranked?
(a) Subspaces of a fixed vector space with ⊆ .
(b) Subsets of an m × n chess board which are the squares of consecutive

knight moves which begin in the lower left-hand corner and do not
repeat any square. Include the lower left-hand corner as the square
visited by a sequence of zero knight moves.
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P*

{y : y (1 1) < 1}

P

(1 1)

Figure 19. Polar of the square

(3) Let P be a d-polytope in R
d. Embed P in R

d+1 by embedding all of R
d in

the first d-coordinates. A pyramid of P is the convex hull of P and any
single point not in the xd+1 = 0 hyperplane. Determine the face poset of
a pyramid of P in terms of F(P ). A bipyramid of P is the convex hull of
P and two points on opposite sides of the hyperplane xd+1 = 0 whose line
segment goes through the relative interior of P. What is the h-vector of a
bipyramid of P?

Given any poset (L,≤) we can define the dual poset L? by reversing the inequality
sign. Formally, x ≤L? y if and only if y ≤L x. Face posets of polytopes have the
following remarkable property: (F(P ))? is isomorphic to the face poset of some
(usually different) polytope.

7. Polarity

One of the most useful way to construct polytopes is the polar or dual polytope.
Let (Rd)? be the vector space of all linear functionals, i.e., linear maps l : R

d → R.
The space of linear functionals is a d-dimensional vector space, so it makes sense
to talk about convexity in (Rd)?. If fact, v → lv(x), where lv(x) = v · x is an
isomorphism from Rd to (Rd)?. There is a natural isomorphism between R

d and
((Rd)?)? = (Rd)??. It is given by “evaluation”. Given x ∈ R

d, define x?? : (Rd)? →
R by x??(l) = l(x) for any l ∈ (Rd)?. Looking at the expression v · x we can either
imagine fixing v and allowing x ∈ R

d to vary, giving an element of (Rd)?, or we
can imagine fixing x, and letting v ∈ (Rd)? vary, giving an element of (Rd)??. In
either case, the equation v · x = c is a hyperplane in the corresponding space.

Example 7.1. Let v = (1, 2, 3, 4) ∈ (R4)? and x = (5, 6, 7, 8) ∈ R
4. In R

4 the
equation v · x = 9 is the hyperplane x1 + 2x2 + 3x3 + 4x4 = 9. In (R4)? the
hyperplane is 5v1 + 6v2 + 7v3 + 8v4 = 9.

Let K be a closed and bounded convex subset of Rd such that 0 is in the interior
of K. The polar set of K is

K? = {l ∈ (Rd)? : ∀x ∈ K, l(x) ≤ 1}.

Figure 19 shows that in R
2 the polar of the square is the diamond.

Theorem 7.2. Let K and K? be as above.
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(1) K? is a closed and bounded convex set which contains 0 in its interior.
(2) K = K??.
(3) Let F be a face of K. Define Ψ(F ) = {l ∈ K? : l(x) = 1 for all x ∈ F.}

Then Ψ(Ψ(F )) = F and Ψ is an inclusion reversing bijection from the faces
of K to the faces of K?.

Proof. We leave 1 and the fact that K ⊆ K?? as an exercise. Suppose x /∈ K. Then
there exists l ∈ (Rd)? such that l(x) > 1 and l(y) ≤ 1 for all y ∈ K. By definition,
such an l is in K?. Therefore, x?? /∈ K??.

It is clear that Ψ is inclusion reversing. (Right?) We still need to show that
Ψ(F ) is a face of K? and that Ψ(Ψ(F )) = F. Let y be in the relative interior of
F. Let F ? = {l ∈ K? : l(y) = 1.} Evidently, Ψ(F ) ⊆ F ?. Suppose l0 ∈ F ?, but
l0 /∈ Ψ(F ). Then there exists z ∈ F, l0(z) < 1. As y is in the relative interior of F,
there exists w ∈ F such that y = λz + (1 − λ)w, 0 < λ < 1. This means that y is
on the line segment in F from z to w. But l0(z) < 1 and l0(y) = 1, so l0(w) > 1,
contrary to the choice of l0 ∈ F ? ⊆ K?.

{x : l(x) < 1}

x

y

z

Figure 20

Finally, Ψ(Ψ(F )) = {x?? : l(x) = 1 for all l ∈ Ψ(F ).} Hence, F ⊆ Ψ(Ψ(F )). For
the reverse inclusion, suppose that x /∈ F and x ∈ K. Let lv = 1 be a supporting
hyperplane of F. As x ∈ K − F, lv(x) < 1. Since lv = 1 is a supporting hyperplane
of F, lv ∈ Ψ(F ). Therefore, x?? /∈ Ψ(Ψ(F )). �

When P is a polytope, P ? is known as the dual polytope. Why is it a polytope?
What are its vertices? In what sense are the H and V-polytope definitions dual?
What is the f -vector of P ?? Can you see that F(P ?) is isomorphic (as a poset) to
(F(P ))??

The dual of a simplicial polytope is called a simple polytope. It has the property
that every vertex is incident to exactly d edges, where d is the dimension of the
polytope. (Why?) Conversely, the dual of any d-polytope all of whose vertices are
incident to exactly d edges must be a simplicial polytope. (Why?)

Problem 7.3. What, if any, is the relationship between the face poset of the dual
of a pyramid of P and the face poset of a pyramid of the dual of P?

8. Zonotopes and Hyperplane arrangements

We have seen that any polytope is the affine projection of a simplex. Other
properties of polytopes can be described in terms of affine projections.
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Figure 21. Hexagon as a projection of a cube

Definition 8.1. A polytope P is centrally symmetric if x ∈ P if and only if −x ∈ P.

Cubes and cross polytopes are certainly centrally symmetric.

Problem 8.2. Show (directly) that P is centrally symmetric if and only if P is an
affine (in fact linear) image of a cross polytope. Show that P is centrally symmetric
if and only if P ? is centrally symmetric.

What about cubes?

Definition 8.3. A zonotope is any affine projection of the cube.

Any zonotope is just a translation away from being centrally symmetric, so we
will assume that this is the case. Zonotopes can also be described in terms of
Minkowski sums.

Definition 8.4. Let P, Q be subsets of R
d. Their Minkowski sum is

P + Q = {x + y : x ∈ P,y ∈ Q}.

+ = + =

+
=

Figure 22. Cube, translation and prism as a Minkowski sum

In order to analyze the connection between zonotopes and hyperplane arrange-
ments we must first discuss fans and cones.

Problem 8.5. If P and Q are polytopes in R
d is P + Q a polytope? Show that a

P is a zonotope if and if it is a translation of the Minkowski sum of line segments
of the form [−xi,xi].

Definition 8.6. A subset C of R
d is a cone if for all x ∈ C and t ≥ 0, tx ∈ C.
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(++0)

Figure 23. Several sign vectors

For any A ⊆ R
d we can form the conical hull of A, the smallest cone which contains

A. You can check that the conical hull of A is {tx : x ∈ A, t ≥ 0}.
Let A = {H1, . . . , Hn} be a collection of linear hyperplanes (the origin is in every

hyperplane) in R
d. For each Hi let vi be one of the two unit vectors normal to

Hi. Choosing vi is equivalent to deciding which half of the complement of Hi will
be designated positive. There is a natural set of cones associated with the vi. For
every x ∈ R

d we associate a sign vector s(x) ∈ {+, 0,−}n depending on whether
vi · x is positive, zero or negative. The set of all {s(x) ∈ {+, 0,−}n : x ∈ R

d} is
called the set of covectors of A and encodes a great deal of the information about
the combinatorics of A. Figure 23 shows several sign vectors of an arrangement of
three lines in R2.

If we fix a sign vector s ∈ {+, 0,−}n then we define C(s) = {x ∈ R
d : vi · x ≥

0 if si = +,vi · x ≤ 0 if si = −, and vi · x = 0 if si = 0.} For every sign vector
s, C(s) is a polyhedral cone. Of course, there may be no vectors with a particular
sign vector s. In that case, C(s) = {0} = C({0, . . . , 0}). The cones C(s) are
usually called the faces of the arrangement. The collection of all of the cones C(s)
is a complete fan in R

d.

Definition 8.7. A collection Fn = {C1, . . . , Cm} of cones in R
d is a complete

fan if,

• ∪Ci = R
d.

• Every cone in Fn is a polyhedron.
• If F is a face of Ci, then F is also in Fn.
• If C1 and C2 are in Fn, then C1 ∩ C2 is in Fn.
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Figure 24. Face fan of a polygon

Normally a fan is defined as above without the first condition and a complete
fan is a fan which satisfies all four conditions. As we will only consider complete
fans, we will just say fan for any collection of cones which satisfy all of the above
conditions. The covectors of A determine the face lattice of the fan of the hyper-
plane arrangement. Indeed, C(s) is a face of C(t) if and only if s can be obtained
from t by changing some number of signs to zeros.

Another example of a fan is the face fan of a polytope. Suppose P is a d-polytope
in R

d with the origin it its interior. For each face other than P, let C(F ) be the
conical hull of F. The collection of all such cones (where we set the connical hull of
∅ equal to 0) is a fan.

The connection between hyperplane arrangements and zonotopes is best seen
through the normal fan of a polytope. One point of view of the normal fan is
through the lens of linear programming. The goal is to maximize the value of an
objective function on a polytope. An objective function is always a linear functional
lv. The maximum (or minimum) of such a function will always occur along faces of
P. See Figure 25.

For each face of P other than ∅, let NF = {v ∈ (Rd)? : F ⊆ {x ∈ P : v · x =
maxv · y,y ∈ P}}. Each NF is a polyhedral cone and all together they form the
normal fan of P.

Proposition 8.8. Suppose that P has 0 in its interior. Then the face fan of P is
the normal fan of P ? and the normal fan of P is the face fan of P ?.

Proof. By duality it is sufficient to prove that the face fan of P is the normal fan
of P ?. To see that the face fan of P is contained it the normal fan of P ? we show
that for x ∈ F, F a face of P,x ∈ NΨ(F )(P

?). (Why is this enough?) But this is
immediate - Ψ(F ) is exactly the elements l of P ? for which l(x) = 1 on F and less
than one on P − F.

We leave the other inclusion as an exercise.
�
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−1
l  (0)v

−1
l  (1)v

−1
l  (2)v

max{l (x) : x in P}v

Figure 25. Maximizing lv on P.

Figure 26. Preparing the normal fan of a pentagon

Let Z be a zonotope. We know that Z is a Minkowski sum of intervals [−vi,vi].
Let Hi be the corresponding perpendicular hyperplanes and let A be the arrange-
ment consisting of these hyperplanes. An arrangement of hyperplanes is essential
if ∩Hi = {0}. This is equivalent to Z containing 0 in its interior.

Theorem 8.9. Let Z and A be as above. Suppose that A is essential. Then the
normal fan of Z is the fan of the hyperplane arrangement A.

Proof. Fix y and suppose that you want to maximize y · x over all x ∈ Z. This is
the same as maximizing over linear combinations
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Figure 27. The normal fan of a hexagon, the face fan of its dual
and the corresponding arrangement.

y · {
n

∑

i=1

λivi,−1 ≤ λi ≤ 1}.

We can do this over each summand. This achieves a maximum on the set

Zy =
n

∑

i=1

λivi ∈ Z :











λi = 1 if y · vi > 0

λi = −1 if y · vi < 0

−1 ≤ λi ≤ 1 if y · vi = 0.

But this is the same as having the corresponding sign vector in A.
�

The Euler characteristic of an arrangement A is defined in the same way it was
defined for polytopes. Now fi(A) is the number of cones of dimension i in the fan
of the arrangement.

Theorem 8.10. If A is an essential arrangement of hyperplanes in R
d, then

χ(A) = (−1)d.

Proof. The fan of the arrangement is the normal fan of Z, where Z is the zonotope
associated to A. By Proposition 8.8 this is the face fan of Z?. Therefore, fi(A) =
fi−1(Z

?) for i ≥ 1. Also, f0(A) = fd(Z
?) = 1. Hence, when d is even, χ(A) =

−χ(Z?) + 2 = 1. When d is odd, χ(A) = −χ(Z?) = −1. �

9. Introduction to the Möbius function

In the next section we will derive a formula for fi(A), where A is an essential
arrangement and all we know is the dimension of the intersection of any subset of
hyperplanes in A. Our main tool is the Möbius function of a poset.

Definition 9.1. Let L be a finite poset. The Möbius function of L is the unique
function µ : L × L → Z such that

• If x 6≤ y, then µ(x, y) = 0.
• µ(x, x) = 1.

• If x < y, then
∑

x≤z≤y

µ(x, z) = 0.

Using the above definition it is possible to determine µ(x, y) recursively for any
pair (x, y) ∈ L × L. For instance, Figure 28 shows µ(x, z) for a fixed x.
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Figure 28. µ(x, z)

Frequently it is not easy to find “nice” formulas for µ(x, y) in L. The Boolean
algebra is an important exception. The poset of all subsets of [n] = {1, 2, . . . , n}
is known as the Boolean algebra and we denote it by Bn. By definition, if S 6⊆ T,
then µ(S, T ) = 0 in Bn.

Proposition 9.2. Let S, T ∈ Bn. If S ⊆ T, then µ(S, T ) = (−1)|T−S|.

Proof. Since [S, T ] ∼= Bm, where m = |T − S|, the proposition is equivalent to
proving that µ(∅, [n]) = (−1)n in Bn. We do this by induction on n, with n = 1
being obvious. So, assume that the proposition holds for n − 1. By the definition
of µ, the induction hypothesis, and the fact that [∅, S] ∼= [∅, [|S|]],

µ(∅, [n]) = −
∑

S⊂[n]

µ(∅, S) = −
n−1
∑

i=1

(

n

i

)

(−1)i = (−1)n.

The last equality comes from the binomial formula for (x − 1)n with x = 1. �

Another poset for which we can easily compute µ is the poset Z
+ with binary

relation a ≤ b if and only if a|b. Now, Z
+ is not finite. However, µ(a, b) only depends

on the finite number of elements in [a, b]. (Remember, this interval is not the same
as [a, b] in Z

+ with the usual order!) Once we realize that [a, b] ∼= [1, b/a] we only
have to compute µ(1, n) for all n.

Suppose that n is a product of distinct primes, n = p1 · p2 · · · pm. Then [1, n] ∼=
Bm. So, µ(1, n) = (−1)m. What if the prime factorization of n contains a square
(or higher) power of a prime?

Problem 9.3. Prove that if the prime factorization of n contains a square (or
higher) power of a prime, then µ(1, n) = 0.

The function µ(n) = (−1)m, when n is a product of m distinct primes, and 0
otherwise, has been known as the Möbius function in classical number theory since
the middle of the nineteenth century.
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The main value of the Möbius function of a poset is the Möbius inversion formula.
Before stating it we introduce a useful convolution algebra. Let I(L) = {α : L×L →
Z, α(x, y) = 0 if x 6≤ y.} Define

(α ◦ β)(x, y) =
∑

x≤z≤y

α(x, z) · β(z, y).

If x 6≤ y, then (α ◦ β)(x, y) = 0. Let δ be the usual Dirac delta function and define
ζ(x, y) = 1 if x ≤ y, 0 otherwise.

Lemma 9.4. Let α, β, γ ∈ I(L).

(1) (α ◦ β) ◦ γ = α ◦ (β ◦ γ).
(2) δ ◦ α = α ◦ δ = α.
(3) (ζ ◦ α)(x, y) =

∑

x≤z≤y α(z, y) and (α ◦ ζ)(x, y) =
∑

x≤z≤y α(x, z)

(4) µ ◦ ζ = δ = ζ ◦ µ.

Proof. For (1) we note that both sides of the equation are equal to
∑

x≤y≤z≤w

α(x, y)β(y, z)γ(z, w).

Each of (2),(3) and the left-half of (4) are immediate consequences of the definitions.
We leave the right-hand side of (4) as an exercise. �

Given a function f : L → Z and α ∈ I(L) define fα(y) =
∑

x≤y f(x)α(x, y). It

is easy to check that (fα)β = f(α ◦ β).

Theorem 9.5 (Möbius inversion). Let f and g be functions from L to Z. Then,

g(y) =
∑

x≤y

f(x) ↔ f(y) =
∑

x≤y

g(x)µ(x, y).

Proof.

g(y) =
∑

x≤y

f(x) ↔ g = fζ ↔ gµ = f(ζ ◦ µ) = fδ = f.

�

If we define αf(x) =
∑

x≤y α(x, y)f(y), then the same reasoning as above proves
a dual version of the above formula.

Theorem 9.6. Let f and g be functions from L to Z. Then,

g(x) =
∑

x≤y

f(y) ↔ f(x) =
∑

x≤y

g(y)µ(x, y).

Here is a typical use of Möbius inversion. Let φ(n) be the number of integers
i, 1 ≤ i ≤ n such that n and i are relatively prime. So, φ(6) = 2 and φ(p) = p − 1
for any prime p.

Proposition 9.7.
∑

a|n

φ(a) = n.

Proof. Write down the fractions 1/n, 1/n, . . . , (n− 1)/n, n/n. Now reduce each one
to lowest terms. Each a|n will appear in the denominator exactly φ(a) times. �

As noted above, in number theory µ(n) ≡ µ(1, n) in the poset (Z+, |).
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Corollary 9.8.
∑

a|n

a · µ(n/a) = φ(n).

Proof. Apply the last proposition and Möbius inversion to the poset (Z+, |) f(a) =
φ(a) and g(n) = n. �

10. Characteristic polynomial and hyperplane arrangements

The other ingredient for determining the number of faces in every dimension in
the fan of a hyperplane arrangement is the intersection poset of the arrangement.

Definition 10.1. Let A = {H1, . . . , Hn} be an arrangement of hyperplanes in R
d.

The intersection poset of A, denoted by L(A), is the poset of intersections of
members of A ordered by reverse inclusion. The whole space (equal to the empty
intersection) is always the least element of L(A). If A is an affine arrangement,
then ∅ is never in L(A).

The elements of L(A) are called the flats of the arrangement. The intersection
poset is always a ranked poset. The rank of X ∈ L(A) is always d− dimX. Figure
29 shows a simple example of L(A).

CB

A

D

  R^2

   A    B    C     D

Figure 29. An example of L(A)

An arrangement is central if the intersection of all the hyperplanes is non-empty.
Equivalently, L(A) has a maximal element. A central arrangement is essential if this
intersection is a point. All non-central arrangements are considered to be essential.
Every arrangement of linear hyperplanes is central and an affine arrangement is
central if and only if it is a translation of a linear arrangement.

Problem 10.2. For each i ∈ [n] let vi be a non-zero vector orthogonal to Hi and
let E = {v1, . . . ,vn}. Define L′(A) = {E ∩ W : W is a subspace ofR

d.} Order
L′(A) by inclusion. What is the relationship between L(A) and L′(A)?

For any ranked poset with a minimum element 0̂, we can collect information
about the Möbius function µ(0̂, X) sorted by rank as follows.
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Figure 30. Four affine lines in general position, χL(A) = λ2 − 4λ + 6.

Definition 10.3. Let L be a finite ranked poset with minimum element 0̂ with
rank(L) = d. The characteristic polynomial of L is

χL(λ) =
∑

X∈L

µ(0̂, X)λd−rk(X).

Example 10.4. Let A be four (linear) planes in R
3 in general position. Then

χL(A) = λ3 − 4λ2 + 6λ − 3.

Theorem 10.5. Let A be an arrangement in R
d. Then the number of d − i-

dimensional faces in the fan of the arrangement is

∑

rk X=i,Y ≥X

µ(X, Y )(−1)d−rk(X).

So, if A is essential, then the number of d-dimensional faces is (−1)dχL(A)(−1).

Proof. Each X ∈ L(A) is an affine subspace of R
d. Each hyperplane of A either

contains X or intersects X in a hyperplane of X. So, we can define AX to be the
hyperplane arrangement on X consisting of all the intersections Hj ∩ X, where
X 6⊆ Hj . Let σ(X) be the number of top-dimensional faces in AX . Now define
f(X) = (−1)dim Xσ(X) = (−1)d−rk Xσ(X). Every (d − i)-dimensional face of the
fan of the arrangement occurs as a top-dimensional face in exactly one flat (its
affine span). Hence, Euler’s formula tells us that

∑

Y ≥X

f(Y ) = (−1)dim X = (−1)d−rkX .

The theorem now follows from Möbius inversion.
�

It is not difficult to reconstruct L(A) just from the knowledge of the dimension of
the intersection of any subset of hyperplanes in A. The above formula is originially
due to Zaslavsky [23]. Although his proofs were not published until five years later
[12], at the same time Las Vergnas gave a formula which is logically equivalent to
Zaslavsky’s [11]. However, neither was the first to prove that the number of faces
in the top dimension only depended on the combinatorics of the intersection poset.
This was due to Winder [22] - a bit of history that is still virtually unknown to
many.



30 ED SWARTZ

Problem 10.6. What is the maximum number of d-dimensional faces that an
arrangement with n hyperplanes in R

d can have?

Problem 10.7. What is the fewest number of d-dimensional faces that an essential
central arrangement with n hyperplanes in R

d can have?

For affine arrangements we could count only the bounded regions. One way
to obtain affine arrangements is through central arrangements. Given a central
arrangement, choose one hyperplane to be the “hyperplane at infinity”. This leaves
the remaining hyperplanes as an affine arrangement. An equivalent point of view is
to intersect the arrangement with the unit sphere. This partitions the sphere into
various cells corresponding to the faces of the fan of the arrangement. Now cut the
sphere along any of the equators and flatten it out to obtain an affine arrangement.
Figure 31 shows that choosing different hyperplanes at infinity may lead to different
affine arrangements. Nonetheless......

H1

H2

H3

H4
H5

H4 H5

H3

H2

H

H

1

3

H4H5

With H2 at infinity:With H1 at infinity:

Figure 31. Two distinct affine arrangements associated to five
hyperplanes in R

3.



FROM POLYTOPES TO ENUMERATION 31

Figure 32. Non-Pappus pseudoline arrangement

Theorem 10.8. Let A be an essential central arrangement in R
d. Let A′ be any

affine arrangement obtained by choosing one of the hyperplanes to be the hyperplane
at infinity. Then the number of d-dimensional bounded regions in A

′ is

χ′
L(A)(λ)|λ=1.

Like the previous theorem, this was proved simultaneously by Zaslavsky and Las
Vergnas.

Example 10.9. The characteristic polynomial of the above arrangement is λ3 −
5λ2 + 8λ − 4. Direct computation shows that χ′

L(A)(λ)|λ=1 = 1.

The results of this section can be generalized in several directions. One direction
is to consider complex hyperplane arrangements. Now the complement of such an
arrangement is connected, hence it does not make sense to start counting regions.
However, the coefficients (or more precisely their absolute value) of the character-
istic polynomial of the intersection poset have a natural topological interpretation.
They are the dimension of a cohomology group of the complement.

Another direction is to allow “wavy” hyperplanes in R
d. By putting reasonable

restrictions on these pseudo-hyperplanes and how they intersect we can obtain
combinatorically new arrangements, all of whom still satisfy the last two formulas.
An example of this is the non-Pappus pseudoline arrangement in Figure 32.

11. From hyperplanes to graphs

Let G be a connected simple graph with vertices {v1, . . . , vd}. Recall in the
introduction that an acyclic orientation of G is an assignment of a direction to each
edge so that there are no directed circuits. We label an edge between vi and vj by
eij . For each eij let Hij be the hyperplane xi − xj = 0 in R

d. We can think of Hij

as saying that the ith and jth coordinates are the same. The graph arrangement
associated to G is AG = {Hij : eij an edge in G.}

Proposition 11.1. The number of d-dimensional regions in the hyperplane fan for
AG equals the number of acyclic orientations of G.
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Proof. Let x be in the interior of a d-dimensional face F in the fan of A. The
interiors of the highest dimensional faces are in the complement of ∪Hi. Therefore,
xi 6= xj for every edge eij in G. If xi < xj , then orient the edge eij from vi to vj .
Otherwise orient eij the other direction. Call this orientation OF . This must be
an acyclic orientation. As F is a cone, the orientation is independent of the choice
of x in F. Conversely, given an acyclic orientation O of G it is not difficult to find
x ∈ R

d such that xi < xj for each edge eij ∈ G which is oriented from vi to vj .
Such an x must be in a d-dimensional face of the fan. Call this face FO. The two
maps, F → OF and O → FO are inverses of each other. �

Corollary 11.2. The number of acyclic orientations of G is (−1)dχL(AG)(−1).

The above formula is originally due to Stanley [16]. As stated, it is somewhat
unsatisfactory as it requires us to go through AG instead of directly appealing to
G. We do this in two (apparently) different ways.

Definition 11.3. Let λ ∈ Z+ and let G be a graph (not necessarily simple). pG(λ)
is the number of ways to properly color G with λ colors.

pG(λ) is called the chromatic polynomial of G. It was introduced by Birkhoff in
1912 in an attempt to solve the four-color problem.

Let e be an edge of G. The deletion of e from G is the graph obtained by deleting
the edge. It is denoted G − e. The contraction of e in G is the graph obtained by
removing e and identifying its two vertices to one. The contraction of e is denoted
G/e If e is a loop, then G − e = G/e.

G G−e G/e

e

Figure 33. Deletion and contraction at e.

Proposition 11.4. Let e be an edge of G. If e is a loop, then pG(λ) = 0. Otherwise,
pG(λ) = pG−e(λ) − pG/e(λ).

Proof. Identify colorings of G/e with colorings of G whose colors on the identified
vertices are the same. Then proper colorings of G correspond to proper colorings
of G− e which are different on the vertices of e, i.e, those which do not correspond
to a proper coloring of G/e. �

Corollary 11.5. pG(λ) is a monic polynomial of degree equal to the number of
vertices of G.

Proof. Apply deletion/contraction and induct on the number of edges of G. �

Theorem 11.6. [16] The number of acyclic orientations of G is (−1)dpG(−1).

Proof. Induction on d and deletion/contraction. For e a non-loop edge, this requires
us to prove that the number of acyclic orientation of G equals the number of acyclic
orientation of G − e plus the number of acyclic orientations of G/e. We leave this
as an exercise. �
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Figure 34. Flats of a graph

A different approach to the chromatic polynomial is via Möbius inversion. A flat
or closed subgraph of G is any subgraph induced by a partition of the vertices.
The poset of flats of G ordered by inclusion is a lattice of rank d − k, where k is
the number of components of G, and is called the lattice of flats of G and we will
denote it L(G). In fact,.....

Problem 11.7. Show that L(G) ∼= L(AG).

Any coloring of the vertices of G induces a natural partition of G whose blocks
are the vertices of a single color. Thus, each coloring is associated to a unique flat
X ∈ L(G). Proper colorings are exactly those which correspond to the minimum
flat of L(G). For each flat X define f(X)λ to be the number of colorings with λ

colors associated to X. Therefore, pG(λ) = f(0̂)λ.

Theorem 11.8. Let G be a simple graph with k components. Then,

pG(λ) = λkχL(G)(λ).

Proof. What is
∑

X≤Y f(Y )λ? Evidently, this is all possible colorings of X. Let

k(X) be the number of components of X. Hence,
∑

X≤Y f(Y )λ = λk(X). Now
apply Möbius inversion to obtain

pG(λ) = f(0̂)λ =
∑

Y

µL(G)(0̂, Y )λk(Y ) =
∑

Y

µL(G)(0̂, Y )λk · λd−rk(Y ).

�

Problem 11.9. pG(−1) can be interpreted as the number of acyclic orientations
of G. Can you find a combinatorial interpretation for the chromatic polynomial
evaluated at other negative integers?

Problem 11.10. Let Πn be the partition lattice. Members of Πn are partitions of
[n] ordered by refinement. Compute χΠn

(λ).

As observed earlier, the coefficients of χL(G(λ) alternate in signs. It seems logical
that there should be a combinatorial interpretation for the coefficients. It is also
true that the coefficients of χL(A) alternate in sign for any hyperplane arrangement.
Is there a combinatorial interpretation for these coefficients?
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Figure 36. A different order

12. Broken circuits

The broken circuit concept was introduced by H. Whitney [20] as a method for
analyzing the coefficients of pG(λ). In order define broken circuits we must first
order the edges of G. Given such an order, a broken circuit of G is a circuit with its
least edge removed. The broken circuits of the graph of Figure 35 are {2, 3}, {4, 5}
and {3, 4, 5}. Obviously, if we choose a different order for the edges we will have
different broken circuits. For instance, if we reorder the previous graph as in Figure
36, the broken circuits are {2, 5}, {4, 5} and {2, 3, 4}.

Since any subset of a set which does not contain a broken circuit will not contain
a broken circuit, the collection of all subsets of edges of G which do not contain a
broken circuit is an abstract simplicial complex. It is is called the broken circuit
complex or the NBC-complex. While the broken circuit concept is due to Whitney,
the idea of forming a simplicial complex out of the broken cricuit-free set is originally
due to Wilf [21]. “Naturally” our first reaction is to check the f -vector of the
complex. Even though the complexes for the two different orderings above are
different, their f -vectors are (1, 5, 8, 4). Checking the chromatic polynomial of G we
find that pG(λ) = λ(λ3 − 5λ2 + 8λ− 4). Whitney’s remarkable result is that this is
not just a coincidence.
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Theorem 12.1. [20] Let G be a graph with d vertices and k components. Then

pG(λ) = λk(f−1λ
d−k − f0λ

d−k−1 + f1λ
d−k−2 − · · · + (−1)d−kfd−k−1),

where (f−1, f0, . . . , fd−k−1) is the f -vector of any broken circuit complex of G.

Notice that if G has a loop, then ∅ is a broken circuit. Hence, every set (including
the empty set) contains a broken circuit and all the fi are zero.

At first sight Whitney’s theorem looks very unlikely. We will give Whitney’s orig-
inal proof. Before this, we recall the principle of inclusion-exclusion. Let A1, . . . , An

be subsets (not necessarily distinct) of S. For each J ⊆ [n], let AJ = ∩j∈JAj . Fi-
nally, let Si = ∪|J|=iAJ . As usual, A∅ = S, so S0 = S. Then,

|S − ∪jAj | = |S0| − |S1| + · · · + (−1)n|Sn|.

Problem 12.2. Prove this using Möbius inversion on a Boolean algebra.

Proof: [Whitney’s theorem] Let E = {e1, . . . , en} be any ordering of the edges
of E. Let S be the set of all λ-colorings of G. For each j ∈ [n], let Aj be the set
of all λ-colorings of the vertices of G such that the two vertices of edge ej have
the same color. Thus, pG(λ) = |S − ∪jAj |. By inclusion-exclusion this is equal to
|S0| − |S1| + · · · + (−1)n|Sn|, where Si is ∪|J|=iAJ and AJ = ∩j∈JAj . Now, the

cardinality of AJ is λk(J), where k(J) is the number of components in the subgraph
of G whose edges are EJ = ∪j∈Jej . How big is |Si|? Who knows. So we look for
some cancellation.

Let C1, . . . , Ck be an arbitrary, but fixed, ordering of the circuits of G. For each
m, let Ĉm be the broken circuit associated to Cm. In each EJ let lJ be the least l
such that EJ contains either Cl or Ĉl. If EJ does not contain any broken circuits
then we set lJ = 0. All of the subsets of edges EJ for which lJ > 0 come in pairs.
One, say EM which contains the least element of ClM and EM ′ , which is EM with
the least element of lM removed. While we do not know |AM |, we do know that
it is the same as |AM ′ | since the number of components will not change when we
complete a circuit. As the cardinality of M and M ′ differ by one, the contributions
of AM and AM ′ will cancel in the alternating sum of the Si.

Putting these cancellations into our previous formula allows us to write

(3) pG(λ) = |S′
0| − |S′

1| + · · · + (−1)n|S′
n|,

where S′
i is the union of all AJ such that |J | = i and EJ does not contain a broken

circuit. What is |S′
i|? Consider AJ with |J | = i. Certainly, AJ does not contain

any circuits since it does not contain any broken circuits. An elementary fact from
graph theory tells us that the number of components of AJ is d− i. (If you have not
seen this try and prove it.) Therefore, |AJ | = λd−i and |S′| = fi−1λ

d−i. Since any
subset with more that d− k edges contains a broken circuit,S′

i = ∅ when i > d− k.
Hence, we are done. �

All of these ideas can be generalized to the situation in Problem 10.2 and even
more generally to what are known as geometric lattices. Sticking to the situa-
tion in Problem 10.2, let E = {v1, . . . ,vn} be vectors in a vector space V. Define
L(E) = {E ∩ W : W a subspace of V }. Then L(E) is a lattice of rank d, where d
is the dimension of < E > and χL(E)(λ) is a monic degree d polynomial whose
coefficients alternate in sign. Suitably interpreted, Whitney’s theorem also holds in
this situation. A circuit of L(E) is a minimal dependent set in E. After ordering
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E, a broken circuit is a circuit with its least element removed. The broken circuit
complex of L(E) consists of all subsets of E which do not contain a broken circuit.
Once again, the f -vector of the broken circuit complex determines the coefficients
of the characteristic polynomial χL(E)(λ).

As mentioned earlier, Wilf introduced the broken circuit complex in an effort to
understand the coefficients of pG(λ). The title of this paper is,“What polynomials
are chromatic?” The fact that the coefficients of the chromatic polynomial must
be the f -vector of a simplicial complex already restricts the possibilities. These
restrictions are known as the Kruskal-Katona theorem [9], [10]. The name is for
the usual reason, Schützenberger [14] was the first to prove it. Surprisingly, (or
maybe not) broken circuit complexes are always shellable. This implies that if
we transform the f -vector to the h-vector using our previous prescription then
the h-vector must be non-negative. Now, this had been known for a long time
via deletion/contraction and you can try and prove it yourself, but the fact that
hi+1 ≤ h<i>

i was new and followed from recent work of Stanley [17]. Despite a
vast literature concerning chromatic polynomials of graphs these are almost all of
the completely known general facts concerning the coefficients of pG(λ). There are
many unsolved problems concerning these invariants.

13. Problems and connections

The characteristic polynomial χL(E)(λ) and hence the f - and h-vectors of broken
circuit complexes appear in a number of problems. Here are some examples.

(1) (Tutte) Let G be a connected graph with d vertices. Orient the edges
in any fashion. A nowhere-zero n-flow is a function from the edges of G
to Z/nZ − {0} such that the sum at every vertex is zero. The number
of nowhere-zero n flows does not depend on the chosen orientation. It is
χL(G)?(n). The lattice L(G)? is known as the dual lattice in the sense of
geometric lattices. This is not the same as our previously defined dual
partial order. While we will not define it here, it is of the form L(E) for an
easily defined set of vectors.

(2) (Crapo-Rota) Let E be a finite set of vectors in a finite vector space V over
a (finite) field F, with < E >= V. Then the number of linear hyperplanes
H such that H ∩E = ∅ is χL(E)(|F |). In fact, there is a subspace W of V of

dimension k which avoids E if and only if χL(E)(|F |(d−dim(W ))) 6= 0, where
d = dimV.

(3) In addition to the complements of hyperplane arrangements we have already
seen, the f - and h-vector of broken circuit complexes for L(E) occur as
topological invariants of quotient spaces defined by various torus actions
(real or Zp) on spheres and other spaces.

There are remarkably few general facts known about the f - and h-vectors of
broken circuit complexes. Here are some sample questions all of which are open.

(1) Is the f -vector unimodal?
(2) Is the f -vector log concave, i.e., is fi−1fi+1 ≤ f2

i ?
(3) Is the h-vector unimodal?
(4) Is the h-vector log concave?
(5) Let r be the greatest integer such that hr > 0. Is h0 ≤ h1 ≤ · · · ≤ hbr/2c?

Is hi ≤ hr−i for i < r/2?
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Figure 37. |F(∆2) − ∅|

Positive answers to some of these questions imply positive answers to others. (2)
implies (1), and (4) implies the first three all hold. All of these problems have
been open a long time and many, many special cases are known. For instance, if
dim < E >= |E| − 2, then the h-vector of the broken circuit complex for L(E) is
log concave.

Problem 13.1. What if dim < E >= |E| − 3? What if we restrict our attention
to E a set of vectors in a vector space in a “small” field? What if we restrict
our attention to broken circuit complexes of graphs with only two more edges than
vertices? Or planar graphs with this property?

We saw earlier that given a connected graph G, the h-vector of the abstract
simplicial complex of edges which do not disconnect the graph directly determines
the reliability of the graph. The first four questions concerning the broken circuit
complex are also open for these complexes. The answer to fifth question is positive
(Chari [4]) and in fact (g0, g1, . . . , gbr/2c), where gi = hi − hi−1, is known to satisfy

gi+1 ≤ g<i>
i (Hausel and Sturmfels [8], Swartz [19]). A positive answer to these

questions might allow better estimates of network reliability.
Perhaps the most important question concerning f - and h-vectors was mentioned

earlier. Does the conclusion of the g-theorem for simplicial polytopes hold for any
simplicial complex whose geometric realization is homeomorphic to a sphere?

Recall that a simplicial complex is pure if all of its facets are the same dimension.
Here is a deceptively simple question. Characterize the f -vectors of pure complexes.
Not much is known here and it should be possible to improve on the following type
of observation.

Proposition 13.2. If ∆ is a pure (d − 1)-dimensional simplicial complex, then
f0 ≤ f1 ≤ · · · ≤ fbd/2c.

Proof. Count incidences of the form i-simplex contained in an (i + 1)-simplex in
two different ways. �

There are strong connections between posets and topology. Face posets of poly-
topes and abstract simplicial complexes show that we can sometimes attach natural
posets to a geometric object when it has a combinatorial structure. It is also pos-
sible to reverse this process. Let L be a finite poset. The order complex of L is
∆(L). It is the abstract simplicial complex whose vertices are the elements of L and
whose simplices are chains in L. Figure 37 shows the order complex of F (∆2).
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Here are three facts which demonstrate the close relationship between order com-
plexes and geometric realizations.

Theorem 13.3. Let Σ be any abstract simplicial complex. Then |Σ| and |∆(F(Σ)−
∅)| are homeomorphic.

Theorem 13.4. Let P be a polytope. Then |∆(F(P ) − {∅, P})| is homeomorphic
to ∂P.

Theorem 13.5. Let L be any finite poset with minimal element 0̂ and maximal
element 1̂. Then µ(0̂, 1̂) = χ(∆(L − {0̂, 1̂})) − 1.

A recent connection between geometry and combinatorics is the Charney-Davis
conjecture. Beginning with a famous conjecture of Hopf concerning the Euler char-
acteristic of compact nonpositively curved manifolds, Charney and Davis were led
to a similar conjecture concerning cubical piecewise-linear non-positiviely curved
spaces. Remarkably this conjecture turned out to be equivalent to the following.

A simplicial complex is flag if for every clique of edges in the complex the corre-
sponding simplex is in the complex. Equivalently, the minimal non-faces of ∆ are
all of cardinality two.

Conjecture 13.6. [5] If ∆ is a flag (2n−1)-dimensional simplicial complex whose
geometric realization is homeomorphic to a sphere, then

(−1)n[h2n − h2n−1 + h2n−2 − · · · − h1 + h0] ≥ 0.

This is inequality is known to hold in several special cases including the order
complex of the face poset of the boundary of a polytope (Babson/Stanley).

Acknowledgement: These notes would not have been possible without Jay Schweig’s
tireless assistance.
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