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Linear Programming

Given A ∈ R
n×d, b ∈ R

n, c ∈ R
d, solve

min
{

ctx : Ax ≤ b
}
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Linear Programming

Given a linear inequality system (a polytope)

and a linear objective function (“height”),

find the “lowest” vertex

Simplex Algorithm DANTZIG 1947

Ellipsoid Method: POLYNOMIAL KHACHIYAN 1979

Interior-Point Method: POLYNOMIAL KARMARKAR 1984

Algorithm in fixed dimension: LINEAR MEGIDDO 1984
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The Simplex Algorithm
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The Simplex Algorithm

simple polytope,
generic linear
objective function

pivoting in a tableau

which path: pivot rules

successful in practice

(strongly ) polynomial?
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Bounds for all rules

Maximal number f(d, n) of vertices
for a d-polytope with n facets? MOTZKIN 1957

Upper Bound Theorem:

f(d, n) =

(

n − dd
2e

bd
2c

)

+

(

n − 1 − dd−1
2 e

bd−1
2 c

)

= O(nbd/2c) for fixed d

MCMULLEN 1970

Equality achieved e. g. by duals of cyclic polytopes
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Bounds for all rules

Maximal number M(d, n) of vertices on a monotone path
for a d-polytope with n facets? KLEE 1966

The duals of cyclic polytopes have Hamilton paths. KLEE 1965

Monotone upper bounds:

M(3, n) = f(3, n)

M(4, n) = f(4, n) PFEIFLE 2003

but M(6, 9) < f(6, 9) PFEIFLE & Z. 2003

Indeed, 27 ≤ M(6, 9) < f(6, 9) = 30.
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Bounds for all rules

Is there always a short path to the minimal vertex? HIRSCH 1959

(Monotone) Hirsch Conjecture: (monotone) diameter ≤ n − d?

d = 3: monotone Hirsch Conjecture holds KLEE 1965

d > 3: monotone Hirsch Conjecture false TODD 1980

d > 3: strict monotone Hirsch Conjecture open
(start from highest vertex) Z. 1995
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Bounds for many rules

Is there a pivot rule that always finds a short path?
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Bounds for many rules

Is there a pivot rule that always finds a short path?

Worst-case analysis:
Dantzig’s rule exponential KLEE & MINTY 1970

Greatest decrease exponential
Bland’s Least index exponential
Steepest decrease exponential
Shadow vertex exponential
Smallest decrease exponential
etc. exponential AMENTA & Z. 1998

Zadeh’s Least entered ?
Random facet subexponential KALAI 1992

Random edge ???
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Outline

Random Monotone Paths on Polyhedra

A combinatorial model (for dimension three)

Worst-case analysis: “coefficient of linearity”

Random edge — lower and upper bound
Other pivot rules:

Greatest decrease
Random facet
Least entered
Bland, Dantzig
Steepest decrease
Shadow vertex

More remarks on Random edge
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STEINITZ’ Theorem (1922)

3-polytope P

planar, 3-connected graph G

(no loops, no parallel edges)
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MIHALISIN & KLEE (2000)

vmin

vmax

ϕ

3-polytope P

generic linear function
ϕ : R

3 → R

vminvmax

3-polytopal graph G STEINITZ

acyclic orientation with unique
sink, source in every face (AOF)

three vertex-disjoint monotone
paths from vmax to vmin
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Combinatorial Model

P ⊂ R
3 simple polytope, n facets, ϕ : R

3 → R generic linear function

v0 = vmin
v1v2

v3· · ·

vstart
vmax

embedded planar graph, 3-regular, n faces
vertices decreasingly ordered from left to right

unique sinks, three disjoint vmax-vmin paths

2n − 4 vertices (Euler’s formula)

# (out-degree-) 1-vertices = n − 3

# (out-degree-) 2-vertices = n − 3
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The “Coefficient of Linearity”

For a pivot rule R:

Λ(R) := lim sup
n→∞

worst-case running time on polyhedron with n facets
n

= min{Λ : R needs Λn + const. steps in worst case}

=: the linearity coefficient of R

1 ≤ Λ(R) ≤ 2 for every pivot rule



15/33

Results

pivot rule R Λ(R) dimension d

Random edge ≥ 1.3473
≤ 1.4943

unknown, could be quadratic!

Greatest decrease 1.5 exponential

Random facet 2 subexponential KALAI 1992

Least entered 2 unknown: $1,000 reward ZADEH 1980

Bland’s Least index 2 exponential

Dantzig’s rule 2 exponential

Steepest decrease 2 exponential

Shadow vertex 2 exponential

Smallest decrease 2 exponential: long paths!
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Results: Random edge

At any non-optimal vertex, the random edge pivot rule takes a step
to one of its improving neighbors, chosen uniformly at random.

vmin

vstart
vmax

THEOREM

1.3473 ≤ Λ(RE) ≤ 1.4943

Lower bound Construction of a family of polytopes

Upper bound Induction on the number of 1- and 2-vertices “ahead”
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Random edge: lower bounds I

For n ≤ 12, we enumerated all the 3-connected cubic graphs with n

faces (using plantri) . . . BRINKMANN & MCKAY

. . . and all the “abstract objective functions” on each of these . . .

. . . to see what worst-case examples look like:

vstart
v0
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Random edge: lower bounds II

the backbone:
v0 = vmin

v1v2vk−1 vk−2 vk−3
vmax

a configuration:
vi,min

vi,start

4

4

62

2

6
3

3

5
8

flow costs per configuration:
43

8
facets per configuration: 3 + 1

=⇒ Λ(RE) ≥
43

8 · 4
=

43

32
≈ 1.3437
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Random edge: lower bounds III

a worse configuration:

flow costs per configuration:
1897

128
facets per configuration: 10 + 1

=⇒ Λ(RE) ≥
1897

1408
≈ 1.3473
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Random edge: upper bound I

Recursion formula for the expected number of pivot steps E(v)
“starting from v”:

E(v) = 1 +
1

| δ+(v)|

∑

u:(v,u)∈δ+(v)

E(u),

vmin

vstart
vmax

01
3
2

5
2

7
2

13
4

35
8
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Random edge: upper bound II

v0 = vminv1v2vvmax

1- and 2-vertices not higher than v

N1(v) = # {1-vertices not higher than v} ≤ n − 3

N2(v) = #{2-vertices not higher than v} ≤ n − 3

N(v) = N1(v) + N2(v) = #{vertices below v} ≤ 2n − 6

Find feasible values for α and β such that E(v) ≤ αN1(v) + βN(v)
holds and thus Λ(RE) ≤ α + 2β.

Induction on N(v) rests on linear inequalities on α and β.

Solve LP minimizing α + 2β on feasible region. The optimal solution
is α = 46

87 , β = 42
87 and thus

Λ(RE) ≤ 46
87 + 2 42

87 ≤ 1.4943
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Random edge: upper bound III

v

v′

1
2

1
2

1
4

1
4

3
4

3
4

E(v) = 5
2 + E(v′)

≤ 5
2 + αN1(v

′) + β N(v′)
!
≤ αN1(v) + β N(v)

⇐⇒ 5
2 ≤

(

N1(v) − N1(v
′)
)

α +
(

N(v) − N(v′)
)

β

We have N1(v) − N1(v
′) = 2 and N(v) − N(v′) = 3, thus

this case is o.k. if 5
2 ≤ 2α + 3β.
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Greatest decrease

Move to the neighbor with the smallest objective function value.

vminvstartvmax

Example using all (n − 3) 1-vertices and
half of the (n − 3) 2-vertices

For every 2-vertex, one vertex is skipped v

vi

vj

THEOREM

Λ(GD) = 1.5
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Random facet I

Choose a facet that contains v uniformly at random, and solve by
applying (RF) recursively.

vmax

vstart

v′

vf

vmin

f

f1 f2 f3
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Random facet II

THEOREM

Λ(RF) = 2

vmax

vstart

v′

vf

vmin

f

k facets

k 2
facets

E(vstart) ≥
(

1 −
(

1
2

)k
)

(2k2 + k + 1) and n = k2 + k + 4

=⇒ Λ(RF) ≥ 2
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Random facet - type B I

At a 1-vertex, follow the outgoing edge.
Otherwise choose a facet that contains v uniformly at random, and
solve by applying (RF-B) recursively.

vmax

vstart

v′

vf

vmin

f

f1 f2 f3

follows path of 1-vertices deterministically

cut off the first k 1-vertices
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Random facet - type B II

At a 1-vertex, follow the outgoing edge.
Otherwise choose a facet that contains v uniformly at random, and
solve by applying (RF-B) recursively.

vmax

vstart

v′

vf

vmin

f

∆1 ∆2 ∆3
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Zadeh’s Least entered (with Greatest decrease)

Choose an edge that leaves a facet which was entered least often
in previous moves. (A tie-breaking rule is needed.)

Greatest decrease as tie-breaking rule

vmax

vstart

vmin

f



29/33

ZADEH’s Least entered (with Random edge)

Random edge as tie-breaking rule

vmax

vstart

v′

vf

vmin

f

∆1 ∆2 ∆3
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BLAND’s Least index rule

Choose the edge that leaves the facet with the smallest number.

vmax

vstart

vmin

f∞
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DANTZIG’s Smallest coefficient rule

The original rule proposed by Dantzig:

Select the edge according to the best “reduced cost coefficient” in
the simplex tableau.

Observation: DANTZIG’s rule isn’t better than BLAND’s rule.
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Steepest decrease

Move along steepest decreasing edge vw, with 〈c,w−v〉
‖w−v‖ ‖c‖ minimal

vmax
= vstart

vmin

x2

x1
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Remarks on Random edge

Best general upper bound: O
( f0√

d

)

KAIBEL 2004

Klee–Minty cubes: Θ(d2) GÄRTNER, HENK, Z. 1998

PEMANTLE & BALOGH 2004

Linear assignment: polynomial TOVEY 1986

n = d + 1: Θ(log d)

n = d + 2: Θ(log2 d) GÄRTNER ET AL. 2001

d-cube AOF’s: Ω
(

c
3
√

d
)

MATOUŠEK & SZABO 2004

Conjecture: On polytopes O(nd) ???
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