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“B problems” must be turned in.

Problem B1 (40 pts). (a) Given a rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
,

where 0 < θ < π, prove that there is a skew-symmetric matrix B such that

R = (I −B)(I +B)−1.

(b) If B is a skew-symmetric n×n matrix, prove that λIn−B and λIn+B are invertible
for all λ 6= 0, and that they commute.

(c) Prove that
R = (λIn −B)(λIn +B)−1

is a rotation matrix that does not admit −1 as an eigenvalue. (Recall, a rotation is an
orthogonal matrix R with positive determinant, i.e., det(R) = 1.)

(d) Given any rotation matrix R that does not admit −1 as an eigenvalue, prove that
there is a skew-symmetric matrix B such that

R = (In −B)(In +B)−1 = (In +B)−1(In −B).

This is known as the Cayley representation of rotations (Cayley, 1846).

(e) Given any rotation matrix R, prove that there is a skew-symmetric matrix B such
that

R =
(
(In −B)(In +B)−1

)2
.

Solutions.

B1(a). We are looking for a matrix

B =

(
0 −a
a 0

)
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such that

R =

(
cos θ − sin θ
sin θ cos θ

)
= (I −B)(I +B)−1.

A simple computation shows that

(I +B)−1 =

(
1 −a
a 1

)−1
=

1

1 + a2

(
1 a
−a 1

)
.

It follows that

(I −B)(I +B)−1 =
1

1 + a2

(
1 a
−a 1

)(
1 a
−a 1

)
=

1

1 + a2

(
1− a2 2a
−2a 1− a2

)
,

and thus, we must have

cos θ =
1− a2

1 + a2

sin θ =
−2a

1 + a2
.

In view of the well-known identities

cos θ =
1− tan2(θ/2)

1 + tan2(θ/2)

sin θ =
2 tan(θ/2)

1 + tan2(θ/2)
,

since 0 ≤ θ < π, we obtain the solution

a = − tan(θ/2).

B1(b). We proved in class that the eigenvalues of a skew-symmetric matrix are pure
immaginary or 0, in other words, of the form iµ, where µ ∈ R. If e is any eigenvector of B
for the eigenvalue iµ, then e is an eigenvector of λI+B for the eigenvalue λ+ iµ, and e is an
eigenvector of λI−B for the eigenvalue λ− iµ. Observe that λ+ iµ 6= 0 and λ− iµ 6= 0, since
λ 6= 0. Therefore, all the eigenvalues of λI +B are nonzero, and similarly all the eigenvalues
of λI −B are nonzero, which implies that λI +B and λI −B are invertible (if λ 6= 0).

We have

(λI −B)(λI +B) = λ2I + λB − λB −B2 = λ2I −B2

(λI +B)(λI −B) = λ2I − λB + λB −B2 = λ2I −B2,

which proves that
(λI −B)(λI +B) = (λI +B)(λI −B).
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(B1c). If e is an eigenvector of λI +B for the eigenvalue λ+ iµ, then e is an eigenvector
of (λI + B)−1 for the eigenvalue (λ + iµ)−1, and since e is also an eigenvector of λI − B
for λ − iµ, we deduce that e is an eigenvector of (λI − B)(λI + B)−1 for the eigenvalue
(λ− iµ)(λ+ iµ)−1. Now,

(λ− iµ)(λ+ iµ)−1 =
1

λ2 + µ2
(λ− iµ)2 =

λ2 − µ2

λ2 + µ2
+ i

2λµ

λ2 + µ2
.

Observe that the above complex number is never equal to −1, since λ 6= 0, so −1 is not an
eigenvalue of R = (λI −B)(λI +B)−1.

We have

R> =
(
(λI +B)−1

)>
(λI −B)>

= (λI +B>)−1(λI −B>)

= (λI −B)−1(λI +B),

using the fact that B is skew-symmetric. On the other hand,

R−1 =
(
(λI −B)(λI +B)−1

)−1
= (λI +B)(λI −B)−1.

In order to prove that R> = R−1, we have to prove that λI + B and (λI − B)−1 commute.
However, we know from B1(b) that λI+B and λI−B commute and we can use the following
simple fact:

Fact . In a monoid, if ab = ba and b is invertible, then ab−1 = b−1a.

This is because

a = a

a = abb−1

a = bab−1

b−1a = ab−1.

Applying this to a = λI + B and b = λI − B, we conclude that λI + B and (λI − B)−1

commute, and so R> = R−1. Therefore, R = (λI − B)(λI + B)−1 is an orthogonal matrix,
and since we showed that it does not admit −1 as an eigenvalue, it is a rotation matrix.

B1(d). Given a rotation matrix R that does not admit −1 as an eigenvalue, if a skew-
symmetric matrix B exists such that

R = (I −B)(I +B)−1,

then we must have
R(I +B) = I −B,
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which yields
R +RB = I −B,

and then
(I +R)B = I −R.

Now, since R is a rotation matrix, its eigenvalues are of the form eiθ, and so the eigenvalues
of I + R are of the form 1 + eiθ. Since we assumed that −1 is not an eigenvalue of R,
1 + eiθ 6= 0, and I +R is invertible. It follows that B is uniquely defined by

B = (I +R)−1(I −R).

Obviously,
(I +R)(I −R) = (I −R)(I +R) = I −R2,

and since I +R is invertible, by the Fact proved in B1(c), we get

B = (I +R)−1(I −R) = (I −R)(I +R)−1.

It remains to prove that B is skew-symmetric. We have

B> = (I −R)>
(
(I +R)−1

)>
= (I −R>)(I +R>)−1

= (R− I)R>
(
(R + I)R>

)−1
= (R− I)R>R(R + I)−1

= −(I −R)(I +R)−1

= −B,

as desired. Since we know from B1(c) (with λ = 1) that (I−B)(I+B)−1 is a rotation matrix
that does not admit −1 as an eigenvalue, we just proved that for every rotation matrix R
that does not admit −1 as an eigenvalue, there is a unique skew-symmetric matrix B such
that R = (I −B)(I +B)−1, and B is given by the same formula,

B = (I −R)(I +R)−1.

B1(e). Recall that for every orthogonal matrix R ∈ O(n), there is an orthogonal matrix
P and a block diagonal matrix D such that R = PDP>, where D is of the form

D =


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp


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such that each block Di is either 1, −1, or a two-dimensional matrix of the form

Di =

(
cos θi − sin θi
sin θi cos θi

)
where 0 < θi < π.

In particular, if R is a rotation matrix (R ∈ SO(n)), then R has an even number of
eigenvalues −1. So, they can be grouped into two-dimensional rotation matrices of the form(

−1 0
0 −1

)
,

i.e., we allow θi = π, and we may assume that D does not contain one-dimensional blocks
of the form −1.

Now, for every two-dimensional rotation matrix

T =

(
cos θ − sin θ
sin θ cos θ

)
with 0 < θ ≤ π, observe that

T
1
2 =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)

does not admit −1 as an eigenvalue (since 0 < θ/2 ≤ π/2) and T =
(
T

1
2

)2
. Thus, if we

form the matrix R
1
2 by replacing each two-dimensional block Di in the above normal form

by D
1
2
i , we obtain a rotation matrix that does not admit −1 as an eigenvalue, R =

(
R

1
2

)2
and the Cayley transform of R

1
2 is well defined.

Problem B2 (40). (a) Consider the map, f : GL+(n)→ S(n), given by

f(A) = A>A− I.

Check that
df(A)(H) = A>H +H>A,

for any matrix, H.

(b) Consider the map, f : GL(n)→ R, given by

f(A) = det(A).

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity
matrix). Then, prove that

df(A)(B) = det(A)tr(A−1B),
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where A ∈ GL(n).

(c) Use the map A 7→ det(A)− 1 to prove that SL(n) is a manifold of dimension n2 − 1.

(d) Let J be the (n+ 1)× (n+ 1) diagonal matrix

J =

(
In 0
0 −1

)
.

We denote by SO(n, 1) the group of real (n+ 1)× (n+ 1) matrices

SO(n, 1) = {A ∈ GL(n+ 1) | A>JA = J and det(A) = 1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A−1 = JA>J (this is
the special Lorentz group.) Consider the function f : GL+(n+ 1)→ S(n+ 1), given by

f(A) = A>JA− J,

where S(n+ 1) denotes the space of (n+ 1)× (n+ 1) symmetric matrices. Prove that

df(A)(H) = A>JH +H>JA

for any matrix, H. Prove that df(A) is surjective for all A ∈ SO(n, 1) and that SO(n, 1) is

a manifold of dimension n(n+1)
2

.

Solutions.

B2(a). If f(A) = A>A− I, we have

f(A+H)− f(A)− (A>H +H>A) = (A+H)>(A+H)− I − (A>A− I)− A>H −H>A
= (A> +H>)(A+H)− I − A>A+ I − A>H −H>A
= A>A+ A>H +H>A+H>H − A>A− A>H −H>A
= H>H.

It follows that

ε(H) =
f(A+H)− f(A)− (A>H +H>A)

‖H‖
=
H>H

‖H‖
,

and since it is clear that
lim
X 7→0

ε(H) = 0,

we conclude that
df(A)(H) = A>H +H>A,

for all A and H.

B2(b). Recall the following result from linear algebra: If A is any square matrix, then

det(λI + A) = λn + τ1(A)λn−1 + · · ·+ τk(A)λn−k + · · ·+ τn(A),
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with
τ1(A) = tr(A) and τn(A) = det(A).

In fact, τk(A) can be expressed as the sum of k× k determinants corresponding to principal
diagonal k × k minors of A. For any nonempty subset I ⊆ {1, . . . , n}, say I = {i1, . . . , ik},
let AI,I be the k × k submatrix of A whose jth column consists of the elements aih ij , where
h = 1, . . . , k. Then, we have

τk(A) =
∑

I⊆{1,...,n}
|I|=k

det(AI,I).

Since Rn2
is finite-dimensional, it doesn’t matter which norm we pick, so we can pick

‖A‖∞ = max{|aij| | 1 ≤ i, j ≤ n}.

Actually, if ‖A‖F denotes the Froebenius norm (where ‖A‖F =
√

tr(A>A)), observe that

‖A‖F ≤ n ‖A‖∞ and ‖A‖∞ ≤ ‖A‖F ,

so we can use ‖A‖F . Then, we see that for k ≥ 2, since the terms in all the det(AI,I) are at
least quadratic,

lim
A 7→0

τk(A)

‖A‖
= 0.

Now, setting λ = 1, we have

f(I +B)− f(I)− tr(B) = det(I +B)− det(I)− tr(B)

= 1 +
n∑
k=1

τk(B)− 1− tr(B)

=
n∑
k=2

τk(B).

Consequently,

ε(B) =
f(I +B)− f(I)− tr(B)

‖B‖
=

∑n
k=2 τk(B)

‖B‖
,

and from pour previous observation,

lim
B 7→0

ε(B) = 0,

which proves that
df(I)(B) = tr(B).

If A is invertible, then

f(A+B) = det(A+B) = det(A(I + A−1B)) = det(A) det(I + A−1B)
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and we get

f(A+B)− f(A)− det(A)tr(A−1B) = det(A) det(I + A−1B)− det(A)− det(A)tr(A−1B)

= det(A)

(
1 +

n∑
k=1

τk(A
−1B)

)
− det(A)

− det(A)tr(A−1B)

= det(A)

( n∑
k=2

τk(A
−1B)

)
.

If we write

ε(B) =
f(A+B)− f(A)− det(A)tr(A−1B)

‖B‖
= det(A)

∑n
k=2 τk(A

−1B)

‖B‖
,

the same reasoning as before shows that

lim
B 7→0

ε(B) = 0,

which proves that
df(A)(B) = det(A)tr(A−1B).

B2(c). Consider the map g : GL(n)→ R given by

g(A) = det(A)− 1.

Obviously g−1(0) = SL(n), so to prove that SL(n) is a manifold is suffices to prove that
g′(A) is surjective for every A ∈ SL(n). However, because 1 is a constant, by B2(b), we have

dg(A)(B) = det(A)tr(A−1B),

for all A ∈ GL(n) and all B. The linear map dg(A) is surjective for all A ∈ SL(n) because
for every λ ∈ R, if we let B = (λ/(n det(A))A, then

dg(A)(B) = det(A)tr(A−1(λ/(n det(A))A) = λ.

Since GL(n) has dimension n2 and R has dimension 1, the manifold SL(n) has dimension
n1 − 1.

B2(d). If A,B ∈ SO(n, 1), then A>JA = J , B>JB = J , det(A) = 1, and det(B) = 1,
which implies

det(AB) = det(A) det(B) = 1

and
(AB)>J(AB) = B>A>JAB = B>JB = 1.

8



Observe that J is symmetric and that J2 = I. If A ∈ SO(n, 1), then A>JA = J and
det(A) = 1, so A is invertible and by multiplying both sides of A>JA = J on the left by J ,
since J2 = I, we get

JA>JA = I,

which implies
A−1 = JA>J.

Now,
(A−1)>JA−1 = (JA>J)>JA−1 = JAJJA−1 = JAA−1 = J.

We also have

det(A−1) = det(JA>J) = det(J) det(A>) det(J) = det(J2) det(A) = 1,

which proves that A−1 = JA>J ∈ SO(n, 1). Therefore, SO(n, 1) is indeed a group.

Consider the function f : GL+(n+ 1)→ S(n+ 1), given by

f(A) = A>JA− J,

where S(n+ 1) denotes the space of (n+ 1)× (n+ 1) symmetric matrices. We have

f(A+H)− f(A)− (A>JH +H>JA) = (A+H)>J(A+H)− J − (A>JA− J)

− (A>JH +H>JA)

= (A> +H>)J(A+H)− A>JA− A>JH −H>JA
= A>JA+ A>JH +H>JA+H>JH − A>JA
− A>JH −H>JA

= H>JH.

If we write

ε(H) =
f(A+H)− f(A)− (A>JH +H>JA)

‖H‖
=
H>JH

‖H‖
,

then it is clear that
lim
H 7→0

ε(H) = 0,

which proves that
df(A)(H) = A>JH +H>JA

for all A ∈ GL+(n+ 1) and all H.

Let us prove that df(A) is surjective for all A ∈ GL+(n + 1). For any n× n symmetric
matrix S, if we let

H =
AJS

2
,
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then we get

df(A)(H) = A>JH +H>JA

= A>J

(
AJS

2

)
+

(
AJS

2

)>
JA

=
1

2

(
A>JAJS + S>JA>JA

)
=

1

2

(
JJS + S>JJ

)
=

1

2

(
S + S>

)
= S,

since S is symmetric and since A>JA = J (because A ∈ SO(n, 1).

Obviously,
f−1(0) = SO(n, 1),

and since we just proved that df(A) is surjective for all A ∈ SO(n, 1), it follows that SO(n, 1)
is a manifold of dimension

(n+ 1)2 − (n+ 1)(n+ 2)

2
=

(n+ 1)(2(n+ 1)− (n+ 2))

2
=
n(n+ 1)

2
,

since GL+(n + 1) has dimension (n + 1)2 (as an open subset of GL(n + 1), which has
dimension (n+ 1)2), and S(n+ 1) has dimension (n+ 1)(n+ 2)/2.

Problem B3 (40 pts). (a) Given any matrix

B =

(
a b
c −a

)
∈ sl(2,C),

if ω2 = a2 + bc and ω is any of the two complex roots of a2 + bc, prove that if ω 6= 0, then

eB = coshω I +
sinh ω

ω
B,

and eB = I +B, if a2 + bc = 0. Observe that tr(eB) = 2 cosh ω.

Prove that the exponential map, exp: sl(2,C)→ SL(2,C), is not surjective. For instance,
prove that (

−1 1
0 −1

)
is not the exponential of any matrix in sl(2,C).

(b) Recall that a matrix, N , is nilpotent iff there is some m ≥ 0 so that Nm = 0. Let
A be any n× n matrix of the form A = I −N , where N is nilpotent. Why is A invertible?
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prove that there is some B so that eB = I −N as follows: Recall that for any y ∈ R so that
|y − 1| is small enough, we have

log(y) = −(1− y)− (1− y)2

2
− · · · − (1− y)k

k
− · · · .

As N is nilpotent, we have Nm = 0, where m is the smallest integer with this propery. Then,
the expression

B = log(I −N) = −N − N2

2
− · · · − Nm−1

m− 1

is well defined. Use a formal power series argument to show that

eB = A.

We denote B by log(A).

(c) Let A ∈ GL(n,C). Prove that there is some matrix, B, so that eB = A. Thus, the
exponential map, exp: gl(n,C)→ GL(n,C), is surjective.

First, use the fact that A has a Jordan form, PJP−1. Then, show that finding a log of
A reduces to finding a log of every Jordan block of J . As every Jordan block, J , has a fixed
nonzero constant, λ, on the diagonal, with 1’s immediately above each diagonal entry and
zero’s everywhere else, we can write J as (λI)(I − N), where N is nilpotent. Find B1 and
B2 so that λI = eB1 , I −N = eB2 , and B1B2 = B2B1. Conclude that J = eB1+B2 .

Solutions. B3(a). Given any matrix

B =

(
a b
c −a

)
∈ sl(2,C),

we have

B2 =

(
a b
c −a

)(
a b
c −a

)
=

(
a2 + bc 0

0 a2 + bc

)
= (a2 + bc)I.

If a2 + bc = 0, then
eB = I +B.

Otherwise, if we let ω be any complex square root of a2 + bc 6= 0, so that ω2 = a2 + bc, then
B2 = ω2I and so

eB = I +
B

1!
+
ω2

2!
I +

ω2

3!
B +

ω4

4!
I +

ω4

5!
B +

ω6

6!
I +

ω6

6!
B + · · · .

Rearranging the order of the terms, we get

eB =

(
1 +

ω2

2!
+
ω4

4!
+
ω6

6!
+ · · ·

)
I +

1

ω

(
ω +

ω3

3!
+
ω5

5!
+
ω7

7!
+ · · ·

)
B.
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We recognize the power series for coshω and sinhω, so we obtain the equation

eB = coshωI +
sinhω

ω
B.

Since tr(B) = 0, we have
tr(eB) = 2 coshω.

Recall that
cosh(x+ iy) = coshx cos y + i sinhx sin y,

where x, y ∈ R. It follows that cosh(x + iy) is real if either x = 0 or y = 0. Since cosh x =
(ex + e−x)/2, if y = 0, then cosh x ≥ 1 for all x ∈ R and if x = 0, then cosh iy = cos y ≥ −1
for all y ∈ R. Therefore, if coshω is real, then its minimum is −1 and it is achieved for
y = π + 2kπ (k ∈ Z). But then, we have

sinhω = sinh iπ = i sin π = 0.

We claim that there is no matrix B ∈ sl(2,C) so that

eB =

(
−1 1
0 −1

)
,

or equivalently, such that

coshωI +
sinhω

ω
B =

(
−1 1
0 −1

)
.

This is because the trace of the matrix on the right-hand side is −2, so we should have

tr(eB) = 2 coshω = −2,

which implies that coshω = −1. However, we just showed that in this case sinhω = 0, and
then

eB = −2I 6=
(
−1 1
0 −1

)
.

Therefore, the exponential map exp: sl(2,C)→ SL(2,C) is not surjective.

B3(b). A rigorous solution to this problem turns out to be a lot harder than I thought!

Recall that for every invertible matrix, P , and every matrix, A,

ePAP
−1

= PeAP−1

and that for every block diagonal matrix,

A =

A1 · · · 0
...

. . .
...

0 · · · Am

 ,
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we have

eA =

e
A1 · · · 0
...

. . .
...

0 · · · eAm

 .

Consequenly, the problem of finding the logarithm of a matrix reduces to the problem of
finding the logarithm of a Jordan block Jr(α) with α 6= 0, where

Jr(α) =


α 1 0 · · · 0
0 α 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 · · · α

 ,

where α ∈ C, with J1(α) = (α) if r = 1. However, every such Jordan block, Jr(α), can be
written as

Jr(α) = αI +H = αI(I + α−1H),

where H is the nilpotent matrix of index of nilpotency, r, given by

H =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...

0 0 0
. . . 1

0 0 0 · · · 0

 .

Furthermore, it is obvious that N = α−1H is also nilpotent of index of nilpotency, r, and we
have

Jr(α) = αI(I +N).

Logarithms of the diagonal matrix, αI, are easily found. If we write α = ρeiθ where
ρ > 0, then logα = log ρ+ i(θ + 2πh), for any h ∈ Z, and we can pick a logarithm of αI to
be

S =


log ρ+ iθ 0 · · · 0

0 log ρ+ iθ · · · 0
...

...
. . .

...
0 0 · · · log ρ+ iθ

 .

Observe that if we can find a logarithm, M , of I +N , as S commutes with any matrix and
as eS = αI and eM = I +N , we have

eS+M = eSeM = αI(I +N) = Jr(α),
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which means that S +M is a logarithm of Jr(α). Therefore, the problem reduces to finding
the logarithm of a unipotent matrix, I + N . However, this problem always has a solution.
To see this, remember that for |u| < 1 (where u ∈ C), the power series

log(1 + u) = u− u2

2
+
u3

3
+ · · ·+ (−1)n+1u

n

n
+ · · ·

is normally convergent. It turns out that the above fact can be generalized to matrices in
the following way:

Proposition 0.1 For every n× n matrix, A, such that ‖A‖ < 1, the series

log(I + A) = A− A2

2
+
A3

3
+ · · ·+ (−1)n+1A

n

n
+ · · ·

is normally convergent (here, ‖A‖ denotes the Frobenius norm). Furthermore, if ‖A‖ < 1,
we have

elog(I+A) = I + A.

Proof . Since ‖An‖ ≤ ‖A‖n and since the power series for log(1 + z) converges for |z| < 1,
when z ∈ C, we see that the power series for log(I + A) is normally convergent if ‖A‖ < 1.

To prove the second part of the lemma, first assume that A can be diagonalized. If
A = PDP−1 where D = diag(λ1, . . . , λn), then we know that

An = PDnP−1.

We claim that for any complex matrix A (not necessarily diagonalizable), if ‖A‖ < 1, then
|λj| < 1, for j = 1, . . . , n. Let (u1, . . . , un) be an orthonormal basis and express each vector
Auj in terms of the basis (u1, . . . , un) as

Auj =
n∑
k=1

bkjuk.

If we let B be the matrix B = (bij) and U be the orthogonal matrix whose jth column is uj,
then we have

AU = UB,

which yields
A = UBU>.

It follows that

A>A = (UBU>)>UBU> = UB>U>UBU> = UB>BU>,

and since
tr(UB>BU>) = tr(B>B),

14



we get
‖A‖ =

√
tr(A>A) =

√
tr(B>B) = ‖B‖ .

On the other hand,

〈ui, Auj〉 = 〈ui,
n∑
k=1

bkjuk〉 =
n∑
k=1

bkj〈ui, uk〉 = bij,

and so

‖B‖2 =
n∑

i,j=1

|bij|2 =
n∑

i,j=1

|〈ui, Auj〉|2.

It follows that

‖A‖2 =
n∑

i,j=1

|〈ui, Auj〉|2.

Now, if λ is an eigenvalue of A and if u is a unit eigenvector associated with λ, we can form
an orthonormal basis (u1, . . . , un) where u1 = u, and then

‖A‖2 =
n∑

i,j=1

|〈ui, Auj〉|2 = |λ|2 +
n∑

i=1,j=2

|〈ui, Auj〉|2,

which proves that |λ| ≤ ‖A‖ < 1, as claimed.

Actually, we can show that for any matrix norm ‖ ‖ and for any complex n × n matrix
A,

ρ(A) = max
1≤i≤n

|λi| ≤ ‖A‖ ,

where the λi are the eigenvalues of A. Recall that a matrix norm satisfies the property

‖AB‖ ≤ ‖A‖ ‖B‖

for all A,B.

Let λ be some eigenvalue of A for which |λ| = ρ(A) (i.e., |λ| is maximum) and let u be a
corresponding eigenvector. If U denotes the matrix whose n columns are all u, then Au = λu
implies that

AU = λU

and since
|λ| ‖U‖ = ‖λU‖ = ‖AU‖ ≤ ‖A‖ ‖U‖

and U 6= 0, we get
ρ(A) = |λ| ≤ ‖A‖ ,

as claimed. In particular, since the Frobenius norm ‖ ‖F is a matrix norm, we get another
proof of the fact that ρ(A) ≤ ‖A‖F .
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Since |λj| < 1 for j = 1, . . . , n, each power series for log(1 + λj) converges, and so

log(I + A) =
∞∑
n=1

(−1)n+1A
n

n!

= Pdiag

(
∞∑
n=1

(−1)n+1λ
n
1

n!
, . . . ,

∞∑
n=1

(−1)n+1λ
n
n

n!

)
P−1

= Pdiag (log(1 + λ1), . . . , log(1 + λn))P−1.

It follows that

elog(I+A) = Pdiag
(
elog(1+λ1), . . . , elog(1+λn)

)
P−1 = Pdiag (1 + λ1, . . . , 1 + λn)P−1 = I + A,

as claimed.

If A can’t be diagonalized, it can still be written as

A = UTU>,

where T is an upper triangular matrix and U is unitary (Schur’s lemma). Then, if some of the
diagonal entries of T are not distinct, we can find n sequences (ε1m), . . . , (εnm) each converging
to 0, so that for every m, the numbers T11 + ε1m, . . . , Tnn + εnm are all distinct, and if we let
Tm be the matrix obtained from T by replacing the diagonal by T11 + ε1m, . . . , Tnn + εnm, then
the sequence of matrices Am = UTmU

> converges to A and is Am is diagonalizable, since its
eigenvalues are all distinct. If ‖A‖ < 1, then for m large enough we have ‖Am‖ < 1 and by
the previous case, elog(I+Am) = I + Am, and by continuity of the exponential and of the log,
we get eI+A = I + A, as claimed.

We will now prove that if N is any nilpotent matrix, then

elog(I+N) = I +N,

which finishes the proof that every unipotent matrix has a log, and thus, that every complex
matrix has a log.

Note that ‖N‖ is can be arbitary, so a different argument is needed. We argue as follows:
For any nilpotent matrix N (with N r = 0), the map

t 7→ elog(I+tN) − (I + tN), t ∈ R

is a polynomial, since N r = 0. Furthermore, for t sufficiently small, ‖tN‖ < 1 and in
view of Proposition 0.1, we have elog(I+tN) = I + tN , so the above polynomial vanishes in a
neighborhood of 0, which implies that it is identically zero. Therefore, elog(I+N) = I +N , as
required.

Problem B4 (60 pts). Recall from Homework 1, Problem B1, the Cayley parametrization
of rotation matrices in SO(n) given by

C(B) = (I −B)(I +B)−1,
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where B is any n × n skew-symmetric matrix. In that problem, it was shown that C(B)
is a rotation matrix that does not admit −1 as an eigenvalue and that every such rotation
matrix is of the form C(B).

(a) If you have not already done so, prove that the map B 7→ C(B) is injective.

(b) Prove that

dC(B)(A) = DA((I −B)(I +B)−1) = −[I + (I −B)(I +B)−1]A(I +B)−1.

Hint . First, show that DA(B−1) = −B−1AB−1 (where B is invertible) and that
DA(f(B)g(B)) = (DAf(B))g(B) + f(B)(DAg(B)), where f and g are differentiable matrix
functions.

Deduce that dC(B) is injective, for every skew-symmetric matrix, B. If we identify
the space of n × n skew-symmetric matrices with Rn(n−1)/2, show that the Cayley map,
C : Rn(n−1)/2 → SO(n), is a parametrization of SO(n).

(c) Now, consider n = 3, i.e., SO(3). Let E1, E2 and E3 be the rotations about the
x-axis, y-axis, and z-axis, respectively, by the angle π, i.e.,

E1 =

1 0 0
0 −1 0
0 0 −1

 , E2 =

−1 0 0
0 1 0
0 0 −1

 , E3 =

−1 0 0
0 −1 0
0 0 1

 .

Prove that the four maps

B 7→ C(B)

B 7→ E1C(B)

B 7→ E2C(B)

B 7→ E3C(B)

where B is skew-symmetric, are parametrizations of SO(3) and that the union of the images
of C, E1C, E2C and E3C covers SO(3), so that SO(3) is a manifold.

(d) Let A be any matrix (not necessarily invertible). Prove that there is some diagonal
matrix, E, with entries +1 or −1, so that EA+ I is invertible.

(e) Prove that every rotation matrix, A ∈ SO(n), is of the form

A = E(I −B)(I +B)−1,

for some skew-symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1, and where the number of −1 is even. Moreover, prove that every orthogonal matrix
A ∈ O(n) is of the form

A = E(I −B)(I +B)−1,

for some skew-symmetric matrix, B, and some diagonal matrix, E, with entries +1 and −1.
The above provide parametrizations for SO(n) (resp. O(n)) that show that SO(n) and O(n)
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are manifolds. However, observe that the number of these charts grows exponentially with
n.

Solutions.

B4(a). We proved in B1(d) that for any rotation matrix R such that R does not admit
−1 as an eigenvalue, the skew-symmetric matrix B such that

R = C(B) = (I −B)(I +B)−1

is uniquely determined by the formula

B = (I −R)(I +R)−1.

Therefore, the Cayley map B 7→ C(B) is injective.

B4(b). Observe that the Cayley map C : B 7→ C(B) can be viewed as a map between the
normed vector spaces Rn(n−1)/2 and Rn2

, since the vector space of skew-symmetric matrices
is isomorphic to Rn(n−1)/2.

Let f and g be the maps defined on n× n matrices by f(B) = I −B and g(B) = I +B.
We would like to compute the derivative d(fg−1)(B) of C = fg−1 on the vector space of
skew-symmetric matrices. We will use the product rule and the chain rule.

First, we claim that

df(B) = −id

dg(B) = id,

for all matrices B. Indeed

f(B +H)− f(B) + id(H) = I − (B +H)− (I −B) +H = 0

and
g(B +H)− g(B)− id(H) = I + (B +H)− (I +B)−H = 0,

which proves our claim.

Let h be the matrix inverse function, namely,

h(B) = B−1.

The map h is defined on GL(n,R), an open subset of Rn2
. We claim that

dh(B)(H) = −B−1HB−1, for all B ∈ GL(n,R) and for all H. We have

h(B +H)− h(B) +B−1HB−1 = (B +H)−1 −B−1 +B−1HB−1

= (B +H)−1[I − (B +H)B−1 + (B +H)B−1HB−1]

= (B +H)−1[B − (B +H) + (B +H)B−1H]B−1

= (B +H)−1[−H +H +HB−1H]B−1

= (B +H)−1HB−1HB−1.
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Consequently, we get

ε(H) =
h(B +H)− h(B) +B−1HB−1

‖H‖
=

(B +H)−1HB−1HB−1

‖H‖
,

and it is clear that limH 7→0 ε(H) = 0, which proves that

dh(B)(H) = −B−1HB−1

for all B ∈ GL(n,R) and for all H. Now, g−1(B) = (h ◦ g)(B), so by the chain rule

dg−1(B) = dh(g(B)) ◦ dg(B)

and since dg(B) = id and g(B) = I +B, we get

dg−1(B)(H) = −(I +B)−1H(I +B)−1,

for all skew-symmetric matrices B and for all H. By the product rule,

dfg−1(B)(H) = df(B)(H)g−1(B) + f(B)dg−1(B)(H),

and since df(B)(H) = −H, f(B) = I −B, and g(B) = I +B, we get

dfg−1(B)(H) = −H(I +B)−1 + (I −B)
(
− (I +B)−1H(I +B)−1

)
= −[I + (I −B)(I +B)−1]H(I +B)−1,

for all skew-symmetric matrices B and for all H, as claimed. Actually, since C = fg−1 is
a map from the space of skew-symmetric matrices to Rn2

, dC(B) is a linear map from the
space of skew-symmetric matrices to Rn2

, but it happens to be also defined on Rn2
.

Because B is a skew-symmetric matrix, we proved in Problem B1 that (I−B)(I+B)−1 is a
rotation matrix that does not admit the eigenvalue−1, which implies that I+(I−B)(I+B)−1

is invertible. Since (I +B)−1 is also invertible and since the linear map dC(B) is given by

dC(B)(H) = −[I + (I −B)(I +B)−1]H(I +B)−1,

it is clear that dC(B) is injective.

The Cayley map B 7→ C(B) is continuous since its derivative exists for all skew-symmetric
matrices B. We already know that it is injective and its derivative is injective for all skew-
symmetric B. To be a parametrization, it remains to show that the inverse of C is continuous
on the image of C, namely, the set of rotation matrices that do not admit −1 as an eigenvalue.
The inverse map if given by the formula

B = (I −R)(I +R)−1

which involves computing the inverse of a matrix. However, we know that the inverse of
a matrix can be computed in terms of ratios of determinants (using the cofactors of the
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matrix) and these functions are rational, and thus continuous. Therefore, the Cayley map
is a parametrization of SO(n).

B4(c). Since the matrices E1, E2, E3 are rotation matrices, they are invertible and so,
the maps C1 : C 7→ E1C(B), C2 : C 7→ E2C(B), and C3 : C 7→ E3C(B) are injective. Since
E1, E2, E3 are constant matrices, by the product rule, we get

dC1(B) = dE1(B)C(B) + E1(B)dC(B) = 0 + E1dC(B) = E1dC(B)

dC2(B) = dE2(B)C(B) + E2(B)dC(B) = 0 + E2dC(B) = E2dC(B)

dC3(B) = dE3(B)C(B) + E3(B)dC(B) = 0 + E3dC(B) = E3dC(B),

Since E1, E2, E3 are invertible and since dC(B) is injective, the linear maps dC1(B) =
E1dC(B), dC2(B) = E2dC(B), and dC3(B) = E3dC(B) are injective. Since dC1(B),
dC2(B), and dC3(B) exist for all skew-symmetric B, the maps C1, C2, C3 are continuous.

Observe that E2
i = I, for i = 1, 2, 3. If

R = Ei(I −B)(I +B)−1,

then
EiR = (I −B)(I +B)−1,

from which we get
EiR(I +B) = I −B,

and then
(I + EiR)B = I − EiR.

Because B is skew-symmetric, we know that (I −B)(I +B)−1 = EiR does not admit −1 as
an eigenvalue, and thus I+EiR is invertible and so B is uniquely determined by the formula

B = (I − EiR)(I + EiR)−1,

which also shows that the inverse of the map Ci is continuous. Therefore, the maps
C,C1, C2, C3 are parametrizations of SO(3). It remains to show that the images of these
maps cover SO(3). I can’t find a direct proof for the 3D case but this follows from B4(e).

B4(d). This is a rather tricky exercise due to Richard Bellman. Actually, we can prove
a little more.

Observe that if E is a diagonal matrix whose entries are ±1, then E2 = I. Consequently,
by multiplying by E, we get the following fact:

I + EA is invertible iff E + A is.

Thus, we are naturally led to the following problem: If A is any n×nmatrix, is there a way
to perturb the diagonal entries of A, i.e., to add some diagonal matrix, C = diag(c1, . . . , cn),
to A so that C + A becomes invertible?

Indeed this can be done, and we will show in the next section that what matters is not
the magnitude of the perturbation but the signs of the entries being added.
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Proposition 0.2 For every n × n matrix (invertible or not), A, and every any diagonal
matrix, C = diag(c1, . . . , cn), with ci 6= 0 for i = 1, . . . , n, there an assignment of signs,
εi = ±1, so that if E = diag(ε1c1, . . . , εncn), then E + A is invertible.

Proof . Let us evaluate the determinant of C+A. We see that ∆ = det(C+A) is a polynomial
of degree n in the variables c1, . . . , cn and that all the monomials of ∆ consist of products of
distinct variables (i.e., every variable occurring in a monomial has degree 1). In particular,
∆ contains the monomial c1 · · · cn. In order to prove Proposition 0.2, it will suffice to prove

Proposition 0.3 Given any polyomial, P (x1, . . . , xn), of degree n (in the indeterminates
x1, . . . , xn and over any integral domain of characteristic unequal to 2), if every monomial
in P is a product of distinct variables, for every n-tuple (c1, . . . , cn) such that ci 6= 0 for
i = 1, . . . , n, then there is an assignment of signs, εi = ±1, so that

P (ε1c1, . . . , εncn) 6= 0.

Clearly, any assignment of signs given by Proposition 0.3 will make det(E + A) 6= 0,
proving Proposition 0.2.

It remains to prove Proposition 0.3.

Proof of Proposition 0.3. We proceed by induction on n (starting with n = 1). For n = 1, the
polynomial P (x1) is of the form P (x1) = a + bx1, with b 6= 0 since deg(P ) = 1. Obviously,
for any c 6= 0, either a+ bc 6= 0 or a− bc 6= 0 (otherwise, 2bc = 0, contradicting b 6= 0, c 6= 0
and the ring being an integral domain of characteristic 6= 2).

Assume the induction hypothesis holds for any n ≥ 1 and let P (x1, . . . , xn+1) be a
polynomial of degree n+ 1 satisfying the conditions of Proposition 0.3. Then, P must be of
the form

P (x1, . . . , xn, xn+1) = Q(x1, . . . , xn) + S(x1, . . . , xn)xn+1,

where both Q(x1, . . . , xn) and S(x1, . . . , xn) are polynomials in x1, . . . , xn and S(x1, . . . , xn)
is of degree n and all monomials in S are products of distinct variables. By the induction
hypothesis, we can find (ε1, . . . , εn), with εi = ±1, so that

S(ε1c1, . . . , εncn) 6= 0.

But now, we are back to the case n = 1 with the polynomial

Q(ε1c1, . . . , εncn) + S(ε1c1, . . . , εncn)xn+1,

and we can find εn+1 = ±1 so that

P (ε1c1, . . . , εncn, εn+1cn+1) = Q(ε1c1, . . . , εncn) + S(ε1c1, . . . , εncn)εn+1cn+1 6= 0,

establishing the induction hypothesis.
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Note that in Proposition 0.2, the ci can be made arbitrarily small or large, as long as they
are not zero. Thus, we see as a corollary that any matrix can be made invertible by a very
small perturbation of its diagonal elements. What matters is the signs that are assigned to
the perturbation.

B4(e). We prove the following proposition:

Proposition 0.4 For any orthogonal matrix, R ∈ O(n), there is some diagonal matrix, E,
whose entries are +1 or −1, and some skew-symmetric matrix, S, so that

R = E(I − S)(I + S)−1.

Proof of Proposition 0.4. Let R ∈ O(n) be any orthogonal matrix. By Proposition 0.2, we
can find a diagonal matrix, E (with diagonal entries ±1), so that I + ER is invertible. But
then, as E is orthogonal, ER is an orthogonal matrix that does not admit the eigenvalue −1
and so, by the Cayley representation theorem, there is a skew-symmetric matrix, S, so that

ER = (I − S)(I + S)−1.

However, notice that E2 = I, so we get

R = E(I − S)(I + S)−1,

as claimed.

We have det(R) = det(E) det((I − S)(I + S)−1) = det(E), because (I − S)(I + S)−1 is
a rotation matrix. If R is a rotation matrix, det(R) = +1, and so det(E) = +1. Therefore,
when R is a rotation matrix, E must have an even number of −1.

The fact that the maps B 7→ EC(B) parametrize the manifold SO(n) when E has an
even number of −1 and the manifold O(n) in general is an immediate generalization of part
B4(c).
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