Chapter 8

Shellings, the Euler-Poincaré Formula
for Polytopes, Dehn-Sommerville
Equations, the Upper Bound Theorem

8.1 Shellings

The notion of shellability is motivated by the desire to
give an inductive proof of the Euler-Poincaré formula in
any dimension.

Historically, this formula was discovered by Euler for three
dimensional polytopes in 1752 (but it was already known
to Descartes around 1640).

If fo, f1 and fo denote the number of vertices, edges and
triangles of the three dimensional polytope, P, (i.e., the
number of i-faces of P for i = 0,1,2), then the Euler

formula states that

Jo—J1+ fo=2.
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The proof of Euler’s formula is not very difficult but one
still has to exercise caution.

Euler’s formula was generalized to arbitrary d-dimensional
polytopes by Schlafli (1852) but the first correct proof was
given by Poincaré (1893, 1899).

If f; denotes the number of i-faces of the d-dimensional
polytope, P, (with f 1 = 1 and f; = 1), the Euler-
Poincaré formula states that:

d—1

d(=1fi=1-(-1)",

1=0

which can also be written as

Z<_1)Zf2 — 17

1=0

by incorporating f; = 1 in the first formula or as

i=—1

by incorporating both f_; = 1 and f; = 1 in the first
formula.
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Earlier inductive “proofs” of the above formula were pro-
posed, notably a proof by Schlafli in 1852, but it was later
observed that all these proofs assume that the boundary
of every polytope can be built up inductively in a nice
way, what we call shellability.

Actually, counter-examples of shellability for various sim-
plicial complexes suggested that polytopes were perhaps
not shellable.

However, the fact that polytopes are shellable was finally
proved in 1970 by Bruggesser and Mani |?]| and soon after
that (also in 1970) a striking application of shellability
was made by McMullen [?] who gave the first proof of
the so-called “upper bound theorem” .

As shellability of polytopes is an important tool and as
it yields one of the cleanest inductive proof of the Euler-
Poincaré formula, we will sketch its proof in some details.
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Definition 8.1.1 Let K be a pure polyhedral complex
of dimension d. A shelling of K is a list, Fy, ..., F§, of

the cells (i.e., d-faces) of K such that either d = 0 (and
thus, all F; are points) or the following conditions hold:

(i) The boundary complex, IC(OF}), of the first cell, F,
of K has a shelling.

(ii) For any 7, 1 < j < s, the intersection of the cell
F; with the previous cells is nonempty and is an ni-
tial segment of a shelling of the (d — 1)-dimensional
boundary complex of Fj, that is

j—1
F;n (UE> =G UGyU--- UG,
i=1

for some shelling G, Gy, ..., G,,...,G; of K(OF)}),
with 1 < r < ¢. As the intersection should be the
initial segment of a shelling for the (d—1)-dimensional
complex, dFj, it has to be pure (d — 1)-dimensional
and connected for d > 1.

A polyhedral complex is shellable if it is pure and has a
shelling.
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Note that shellabiliy is only defined for pure complexes.

Here are some examples of shellable complexes:

(1) Every O-dimensional complex, that is, evey set of points,
is shellable, by definition.

(2) A 1-dimensional complex is a graph without loops and
parallel edges. A 1-dimensional complex is shellable
iff it is connected, which implies that it has no iso-
lated vertices. Any ordering of the edges, e, ..., e,
such that {eq,...,e;} induces a connected subgraph
for every ¢ will do. Such an ordering can be defined
inductively, due to the connectivity of the graph.

(3) Every simplex is shellable. In fact, any ordering of
its facets yields a shelling. This is easily shown by
induction on the dimension, since the intersection of
any two facets F; and F) is a facet of both F; and Fj.

(4) The d-cubes are shellable. By induction on the di-
mension, it can be shown that every ordering of the
2d facets I, ..., Fyy such that F and F54 are oppo-
site (that is, Fog = —F7) yields a shelling.
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9 1 2 3 4 3 S
8 4 2
! 7 6 5 1

Figure 8.1: Non shellable and Shellable 2-complexes

However, already for 2-complexes, problems arise. For ex-
ample, in Figure 8.1, the left and the middle 2-complexes
are not shellable but the right complex is shellable.

The problem with the left complex is that cells 1 and
2 intersect at a vertex, which is not 1-dimensional, and
in the middle complex, the intersection of cell 8 with its
predecessors is not connected.

In contrast, the ordering of the right complex is a shelling.

However, observe that the reverse ordering is not a shelling
because cell 4 has an empty intersection with cell 5!
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Remarks:

1. Condition (i) in Definition 8.1.1 is redundant because,
as we shall prove shortly, every polytope is shellable.
However, if we want to use this definition for more
general complexes, then condition (i) is necessary.

2. When K is a simplicial complex, condition (i) is of
course redundant, as every simplex is shellable but
condition (ii) can also be simplified to:

(ii") For any j, with 1 < j < s, the intersection of
F; with the previous cells 1s nonempty and pure
(d — 1)-dimensional. This means that for every
1 < j there is some [ < j such that F; N F; C
FiN Fjand F; N Fjis a facet of Fj.

The following proposition yields an important piece of in-
formation about the local structure of shellable simplicial
complexes:
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Proposition 8.1.2 Let K be a shellable stmplicial com-
plex and say F1, ..., Fy is a shelling for K. Then, for
every vertexr, v, the restriction of the above sequence
to the link, Lk(v), and to the star, St(v), are shellings.

Since the complex, K(P), associated with a polytope, P,
has a single cell, namely P itself, note that by condition
(i) in the definition of a shelling, K(P) is shellable iff the
complex, IC(OP), is shellable.

We will say simply say that “P is shellable” instead of
“IC(OP) is shellable”.

Proposition 8.1.3 Given any polytope, P, if Fi, ..., F
1s a shelling of P, then the reverse sequence F, ..., F}
s also a shelling of P.

Proposition 8.1.3 generally fails for complexes that are
not polytopes, see the right 2-complex in Figure 8.1.
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We will now present the proof that every polytope is
shellable, using a technique invented by Bruggesser and
Mani (1970) known as line shelling |?].

We begin by explaining this idea in the 2-dimensional
case, a convex polygon, since it is particularly simple.

Consider the 2-polytope, P, shown in Figure 8.2 (a poly-
gon) whose faces are labeled Fy, Fy, F3, Fy, F5.

Pick any line, £, intersecting the interior of P and inter-
secting the supporting lines of the facets of P (i.e., the
edges of P) in distinct points labeled 21, 29, 23, 24, 25 (such
a line can always be found, as will be shown shortly).

Orient the line, ¢, (say, upward) and travel on ¢ starting
from the point of P where £ leaves P, namely, z;.
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Figure 8.2: Shelling a polygon by travelling along a line
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For a while we only see F} but then F, become visble
when we cross zo. We imagine that we travel very fast
and when we reach “+00” in the upward direction on /.

7

we instantly come back on ¢ from below at “—o0”.

At this point, we only see the face of P corresponding
to the lowest supporting line of faces of P, i.e., the line
corresponding to the smallest z;, in our case, z3.

Our trip stops when we reach zs, the intersection of Fj
and ¢. During the second phase of our trip, we saw
F3, F, and F5 and the entire trip yields the sequence
Fy, Fy, F3, Fy, F5, which is easily seen to be a shelling
of P.

This is the crux of the Bruggesser-Mani method for shelling
a polytope: We travel along a suitably chosen line and
record the order in which the faces become visible dur-
ing this trip. This is why such shellings are called line
shellings.
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In order to prove that polytopes are shellable we need the
notion of points and lines in “general position”.

Recall from the equivalence of V-polytopes and H-polytopes
that a polytope, P, in E? with nonempty interior is cut
out by ¢ irredundant hyperplanes, H;, and by picking the
origin in the interior of P the equations of the H; may be
assumed to be of the form

a; -z =1
where a; and a; are not proportional for all ¢ # j, so that

P={zcE'|a;-2<1,1<i<t}
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Definition 8.1.4 Let P be any polytope in E¢ with
nonempty interior and assume that P is cut out by the
irredudant hyperplanes, H;, of equations a; - z = 1, for
i =1,...,t. A point, ¢ € E? is said to be in general
position w.r.t. P is ¢ does not belong to any of the H;,
that is, if a; - c# 1 fort =1,...,t. A line, £, is said to
be in general position w.r.t. P if £ is not parallel to any
of the H; and if ¢ intersects the H; in distinct points.

The following proposition showing the existence of lines
in general position w.r.t. a polytope illustrates a very
useful technique, the “perturbation method”.

Proposition 8.1.5 Let P be any polytope in E® with
nonempty interior. For any two points, x and y in
E?, with z outside of P; y in the interior of P; and x
in general position w.r.t. P, for A € R small enough,
the line, £y, through x and vy, with

yA:y—l—()\,)\2,...,)\d),

intersects P in its interior and is in general position
w.r.t. P.



354 CHAPTER 8. SHELLINGS AND THE EULER-POINCARE FORMULA

It should be noted that the perturbation method involv-
ing A = (X, A2, ..., \9) is quite flexible.

For example, by adapting the prootf of Proposition 8.1.5
we can prove that for any two distinct facets, £ and F); of
P, there is a line in general position w.r.t. P intersecting
F; and F;. Start with x outside P and very close to Fj
and y in the interior of PP and very close to Fj.

Given any point, x, strictly outside a polytope, P, we say
that a facet, F', of P is wmsible from x iff for every y € F
the line through x and y intersects F' only in y (equiv-
alently, x and the interior of P are strictly separared by
the supporting hyperplane of F).

We now prove the following fundamental theorem due to
Bruggesser and Mani [?] (1970):
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]

Figure 8.3: Shelling a polytope by travelling along a line, ¢

Theorem 8.1.6 (Existence of Line Shellings for Poly-
topes) Let P be any polytope in B of dimension d.
For every point, x, outstde P and in general position
w.r.t. P, there is a shelling of P tn which the facets
of P that are visible from x come first.

Remark: The trip along the line ¢ is often described as
a rocket flight starting from the surface of P viewed as
a little planet (for instance, this is the description given
by Ziegler [?] (Chapter 8)).
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Observe that if we reverse the direction of £, we obtain the
reversal of the original line shelling. Thus, the reversal of
a line shelling is not only a shelling but a line shelling as
well.

We can easily prove the following corollary:

Corollary 8.1.7 Given any polytope, P, the follow-
wng facts hold:

(1) For any two facets F' and F', there is a shelling of
P in which F' comes first and F' comes last.

(2) For any vertex, v, of P, there is a shelling of P
in which the facets containing v form an initial
segment of the shelling.

Remark: A plane triangulation, K, is a pure two-
dimensional complex in the plane such that | K| is home-
omorphic to a closed disk.
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Edelsbrunner proves that every plane triangulation has a
shelling and from this, that x(K) = 1, where y(K) =
fo — f1 + f2 is the Euler-Poincaré characteristic of K.
where fy is the number of vertices, f; is the number of
edges and fo is the number of triangles in K (see Edels-
brunner [?], Chapter 3).

This result is an immediate consequence of Corollary 8.1.7
if one knows about the stereographic projection map,
which will be discussed in the next Chapter.

We now have all the tools needed to prove the famous
Euler-Poincaré Formula for Polytopes.
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8.2 The Euler-Poincaré Formula for Polytopes

We begin by defining a very important topological con-
cept, the Euler-Poincaré characteristic of a complex.

Definition 8.2.1 Let K be a d-dimensional complex.
For every ¢, with 0 <7 < d, we let f; denote the number
of i-faces of K and we let

f(K)=(fo, -, f1) € NIt

be the f-vector associated with K (if necessary we write
fi(K) instead of f;). The Fuler-Poincaré characteris-
tic, X(K), of K is defined by

X(K)=fo—fit+tfot -+ (—1)dfd = Z(—l)ifz-.
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Given any d-dimensional polytope, P, the f-vector asso-
ciated with P is the f-vector associated with K(P), that
1S,

f<P) — <f07 T fd) S Nd—Ha
where f;, is the number of i-faces of P (= the number of ¢-

faces of IC(P) and thus, f; = 1), and the Euler-Poincaré
characteristic, x(P), of P is defined by

d

X(P)=fo—fi+ fot-+ (=1 = Z(—l)ifi.

1=0

Moreover, the f-vector associated with the boundary,
OP, of P is the f-vector associated with IC(OP), that is,

£(0P) = (fo,-- -, fo-1) € N

where f;, is the number of i-faces of OP (with 0 < ¢ <
d — 1), and the Euler-Poincaré characteristic, x(OP),
of OP is defined by

d—1

X(OP) = fo— fit fot -+ (=1 = Z(—l)if@-.

1=0
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Observe that x(P) = x(0P) + (—1), since f; = 1.

Remark: [t is convenient to set f_1 = 1. Then, some
authors, including Ziegler [?] (Chapter 8), define the re-
duced Euler-Poincaré characteristic, x'(K), of a com-
plex (or a polytope), K, as

X(K) = —fa+fo—fitfot -+ (=D%%
d

= ) (-1)fi= =1+ x(K),

1=—1

1.e., they incorporate f_; = 1 into the formula.

A crucial observation for proving the Euler-Poincaré for-
mula is that the Euler-Poincaré characteristic is additive.

This means that if K; and K5 are any two complexes
such that K7 U K is also a complex, which implies that
KN K, is also a complex (because we must have F1NF; €
KN K, for every face Fy of Ky and every face Iy of Ks),
then

X(K1U Ks) = x(K1) + x(K2) — x(K1 N K»).
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This follows immediately because for any two sets A and
B

AU B|=|A|+ |B| —|AN Bj.

To prove our next theorem we will use complete induction
on N X N ordered by the lexicographic ordering.

Recall that the lexicographic ordering on N x N is defined
as follows:
m=m' and n<n
(m,n) < (m',n') iff or
m < m'.

Theorem 8.2.2 (Euler-Poincaré Formula) For every
polytope, P, we have

d
(P =D 0h=1 (@20)
and so,
d—1 |
X(@OP)=> (-1)fi=1-(-1)" (d=1)
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Proof. We prove the following statement: For every d-
dimensional polytope, P, if d = 0 then

xX(P) =1,

else if d > 1 then for every shelling F3,..., Fy, ,, of P,
for every 7, with 1 < 5 < f;_1, we have

1 itl <7< fia
X(Flu”'UFj>:{1—<—1>d it = fi

We proceed by complete induction on (d, j) > (0,1). o

Remark: Other combinatorial proots of the Euler-Poincaré

formula are given in Griinbaum |?] (Chapter 8), Boisson-
nat and Yvinec |?] (Chapter 7) and Ewald [?] (Chapter
3).

Coxeter gives a proof very close to Poincaré’s own proof
using notions of homology theory [?] (Chapter IX).

We teel that the prootf based on shellings is the most direct
and one of the most elegant.
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Incidently, the above proof of the Euler-Poincaré formula
is very close to Schlafli proof from 1852 but Schlafli did
not have shellings at his disposal so his “proof” had a gap.
The Bruggesser-Mani proof that polytopes are shellable
fills this gap!
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8.3 Dehn-Sommerville Equations for Simplicial
Polytopes and h-Vectors

If a d-polytope, P, has the property that its faces are all
simplices, then it is called a simplicial polytope.

[t is easily shown that a polytope is simplicial iff its facets
are simplices, in which case, every facet has d vertices.

The polar dual of a simplicial polytope is called a sim-
ple polytope. We see immediately that every vertex of a
simple polytope belongs to d facets.

For simplicial (and simple) polytopes it turns out that
other remarkable equations besides the Euler-Poincaré
formula hold among the number of i-faces.

These equations were discovered by Dehn for d = 4,5
(1905) and by Sommerville in the general case (1927).
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Although it is possible (and not difficult) to prove the
Dehn-Sommerville equations by “double counting”, as
in Griinbaum |[?] (Chapter 9) or Boissonnat and Yvinec
(Chapter 7, but beware, these are the dual formulae for
simple polytopes), it turns out that instead of using the
f-vector associated with a polytope it is preferable to
use what’s known as the h-vector because for simplicial
polytopes the A-numbers have a natural interpretation in
terms of shellings.

Furthermore, the statement of the Dehn-Sommerville equa-
tions in terms of h-vectors is transparent:

hi — hd—i7

and the proof is very simple in terms of shellings.

In the rest of this section, we restrict our attention to
simplicial complexes.

In order to motivate h-vectors, we begin by examining
more closely the structure of the new faces that are cre-

ated during a shelling when the cell F; 1s added to the
partial shelling F3, ..., Fj_;.
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If K is a simplicial polytope and V' is the set of vertices
of K, then every i-face of K can be identified with an
(2 + 1)-subset of V' (that is, a subset of V' of cardinality
i+ 1).

Definition 8.3.1 For any shelling, Fi, ..., F§, of a sim-
plicial complex, K, of dimension d, for every j, with
1 < j < s, the restriction, R;, of the facet, I}, is the set
of “obligatory” vertices

Ri={veF;| F;—{v} CF, forsomei, 1<1i<j}

The crucial property of the I, is that the new faces, G,
added at step j (when F} is added to the shelling) are
precisely the faces in the set

I;={GCV|R CGCF}

But then, we obtain a partition, {I,..., I}, of the set
of faces of the simplicial complex (other that K itself).
Note that the empty face is allowed.
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Now, if we define
hi = {7 [|Rj] =14, 1 <j < s},

fort =0,...,d, then it turns out that we can recover the
fi in terms of the h; as follows:

S k
B d—|R;|\ _ [ d—i
w3 () -5 ()

7=1 1=0
with 1 < k < d.

But more is true: The above equations are invertible and
the hj can be expressed in terms of the f; as follows:

hi = Zk:<—1>k_i (j:;) fi1,

i=0
with 0 < k < d (remember, f 1 =1).

Let us explain all this in more detail. Consider the exam-
ple of a connected graph shown in Figure 8.4:
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1 4 3

2 3 6

Figure 8.4: A connected 1-dimensional complex, GG

12 13 34 35 45 36 o6

Figure 8.5: the partition associated with a shelling of G

A shelling order of its 7 edges is given by the sequence
12, 13, 34, 35, 45, 36, 56.

The partial order of the faces of G together with the
blocks of the partition {Ii, ..., I7} associated with the
seven edges of GG are shown in Figure 8.5, with the blocks
I; shown in red:

The “minimal” new faces (corresponding to the R;’s)
added at every stage of the shelling are

0,3, 4,5, 45, 6, 56.
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Again, it h; is the number of blocks, I;, such that the
corresponding restriction set, I?;, has size ¢, that is,

hi={J [ Rl =i, 1 <j < s},

for ¢+ = 0,...,d, where the simplicial polytope, K, has
dimension d — 1, we define the h-vector associated with
K as

h(K) = (hg, ..., hq).

Then, in the above example, as Ry = {0}, Ry = {3},
Rg = {4}, R4 — {5}, R5 = {4,5}, R@ = {6} and
R; ={5,6}, we get hg = 1, hy = 4 and hy = 2, that is,

h(G) = (1,4,2).

Now, let us show that if K is a shellable simplicial com-
plex, then the f-vector can be recovered from the h-
vector.
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Indeed, if |R;| = 7, then each (k — 1)-face in the block I;
must use all 2 nodes in 7, so that there are only d — 1
nodes available and, among those, £k — ¢ must be chosen.

Therefore,
—~ (d—|R||
f“zz(k—m§|>

7=1
and, by definition of h;, we get

o (d—i
fia = Do (i20)
d—Fk+1 d
= h; + * hi_1+ -+ ho,
1 k
where 1 < k < d.
Moreover, the formulae are invertible, that is, the h; can

be expressed in terms of the f,. For this, form the two
polynomials

d
flz) = Z fio12® = faat faox+e -+ for '+ fogat
i=0
with f_; =1 and

d
h(z) = Z hia®™" = hg+ hg1x + - - + hyxt + hoxt.
i=0
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Then, it is easy to see that

flz) = Z hi(z + 1) = h(z +1).

Consequently, h(x) = f(z — 1) and by comparing the
coefficients of %% on both sides of the above equation,

we get
: d—i
_ k=i [ 4~ |
=3 (52 )
In particular, hg =1, hy = fy — d, and

ha= fo1— fio+ fas+-+ (=D fo+ (=D~

It is also easy to check that
ho+hi+---+hg= fa_1.

Now, we just showed that it K is shellable, then its f-
vector and its h-vector are related as above.
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But even if K is not shellable, the above suggests defining
the h-vector from the f-vector as above. Thus, we make
the definition:

Definition 8.3.2 For any (d—1)-dimensional simplicial
complex, K, the h-vector associated with K is the vector

h(K> — <h07 S hd) < Zd+17
given by

= 3 (1) (475) 5

1=0

Note that if K is shellable, then the interpretation of A;
as the number of cells, F}, such that the corresponding
restriction set, R, has size ¢ shows that h; > 0.

However, for an arbitrary simplicial complex, some of the
h; can be strictly negative. Such an example is given in

Ziegler [?] (Section 8.3).

We summarize below most of what we just showed:
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Proposition 8.3.3 Let K be a (d — 1)-dimensional
pure simplicial complex. If K s shellable, then its h-
vector 1s nonnegative and h; counts the number of cells
in a shelling whose restriction set has size 1. More-

over, the h; do not depend on the particular shelling
of K.

We are now ready to prove the Dehn-Sommerville equa-
tions.

For d = 3, these are easily obtained by double counting.
Indeed, for a simplicial polytope, every edge belongs to
two facets and every facet has three edges. It follows that

2f1 = 3f2.

Together with Euler’s formula

Jo— i+ f2=2,

we see that

Ji=3fo—06 and fo=2fy—4,

namely, that the number of vertices of a simplicial 3-
polytope determines its number of edges and faces, these
being linear functions of the number of vertices.
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For arbitrary dimension d, we have

Theorem 8.3.4 (Dehn-Sommerville Equations) If K
15 any simplicial d-polytope, then the components of
the h-vector satisfy

he =hgr  k=0,1,....d

FEquivalently
d .
Je-1 ZZ(—UCH <]z€) fir  k=0,...,d
i=k

Furthermore, the equation hy = hy is equivalent to the
Fuler-Poincaré formula.

Clearly, the Dehn-Sommerville equations, hy = hg_, are
linearly independent for

0<k<|H
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For example, for d = 3, we have the two independent
equations

ho = h3, hy = ha,
and for d = 4, we also have two independent equations
hO — h47 hl — h37

since ho = he is trivial.

When d = 3, we know that h; = hy is equivalent to
2f1 = 3fy and when d = 4, if one unravels h; = hs in
terms of the f;” one finds

2f2 — 4f37
that is fg — 2f3

More generally, it is easy to check that

2fa—2 = dfg
for all d. For d = 5, we find three independent equations

hO — h57 hl — h47 hQ — h37

and so on.
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It can be shown that for general d-polytopes, the Euler-
Poincaré formula is the only equation satisfied by all h-
vectors and for simplicial d-polytopes, the L%j Dehn-
Sommerville equations, h; = h4_j, are the only equations
satisfied by all h-vectors (see Griinbaum |?], Chapter 9).

As we saw for 3-dimensional simplicial polytopes, the
number of vertices, n = fy, determines the number of
edges and the number of faces, and these are linear in f.

For d > 4, this is no longer true and the number of facets
is no longer linear in n but in fact quadratic.

It is then natural to ask which d-polytopes with a pre-
scribed number of vertices have the maximum number of
k-taces.

This question which remained an open problem for some
twenty years was eventually settled by McMullen in 1970

7l
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8.4 The Upper Bound Theorem and Cyclic Polytopes

Given a d-polytope with n vertices, what is an upper
bound on the number of its i-faces?

This question is not only important from a theoretical
point of view but also from a computational point of view
because of its implications for algorithms in combinatorial
optimization and in computational geometry.

The answer to the above problem is that there is a class
of polytopes called cyclic polytopes such that the cyclic
d-polytope, Cy(n), has the maximum number of i-faces
among all d-polytopes with n vertices.

This result stated by Motzkin in 1957 became known as
the upper bound conjecture until it was proved by Mc-
Mullen in 1970, using shellings [?] (just after Bruggesser
and Mani’s proof that polytopes are shellable). It is now
known as the upper bound theorem.
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Another proof of the upper bound theorem was given later
by Alon and Kalai [?] (1985). A version of this proof can
also be found in Ewald [?] (Chapter 3).

First, consider the cases d = 2 and d = 3. When d = 2,
our polytope is a polygon in which case n = fy = fi.
Thus, this case is trivial.

For d = 3, we claim that 2f; > 3f5. Indeed, every edge
belongs to exactly two faces so if we add up the number
of sides for all faces, we get 2f;. Since every face has at
least three sides, we get 2f; > 3f2. Then, using Euler’s
relation, it is easy to show that

fl < 6n—3 f2§2n—4
and we know that equality is achieved for simplicial poly-

topes.

Let us now consider the general case. The rational curve,
c:R — R? given parametrically by

c(t) = (¢, %, ...t

is at the heart of the story.
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This curve if often called the moment curve or rational
normal curve of degree d. For d = 3, it is known as
the twisted cubic. Here is the definition of the cyclic

polytope, Cy(n).

Definition 8.4.1 For any sequence, t1 < ... < t,, of
distinct real number, t; € R, with n > d, the convex hull,

Ca(n) = conv(c(ty), ..., c(t,))

of the n points, c(t1), ..., c(t,), on the moment curve of
degree d is called a cyclic polytope.

The first interesting fact about the cyclic polytope is that
it is simplicial.
Proposition 8.4.2 Every d+1 of the points c(t1), . . .,

c(t,) are affinely independent. Consequently, Cq(n) is
a simplicial polytope and the c(t;) are vertices.
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Proposition 8.4.3 For any k with 2 < 2k < d, every
subset of k vertices of Cyq(n) is a (k—1)-face of Cy(n).

Hence
sk = (1) v osk<|3].

Observe that Proposition 8.4.3 shows that any subset of

| 2] vertices of Cy(n) forms a face of Cy(n).

2
When a d-polytope has this property it is called a neigh-
borly polytope. Therefore, cyclic polytopes are neigh-
borly.

Proposition 8.4.3 also shows a phenomenon that only
manifests itself in dimension at least 4: For d > 4, the
polytope Cy(n) has n pairwise adjacent vertices. For
n >> d, this is counter-intuitive.

Finally, the combinatorial structure of cyclic polytopes is
completely determined as follows:
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Proposition 8.4.4 (Gale evenness condition, Gale
(1963)). Let n and d be integers with 2 < d < n. For
any sequence t; < ty < --- < t,, consider the cyclic

polytope
Ca(n) = conv(c(ty), ..., c(ty)).
A subset, S C {1,...,n} with |S| = d determines

a facet of Cy(n) iff for all © < j not in S, then the
number of k € S between i and j is even:

{keS|i<k<j}=0(mod2) for i,j¢5

In particular, Proposition 8.4.4 shows that the combina-
torial structure of Cy(n) does not depend on the specific
choice of the sequence t; < ... < t,. This justifies our
notation Cy(n).

Here is the celebrated upper bound theorem first proved
by McMullen |?].
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Theorem 8.4.5 (Upper Bound Theorem, McMullen
(1970)) Let P be any d-polytope with n vertices. Then,
for every k, with 1 < k < d, the polytope P has
at most as many (k — 1)-faces as the cyclic polytope,
Cq(n), that is

fe1(P) < fr—1(Ca(n)).

Moreover, equality for some k with %] < k < d im-
plies that P 1s neighborly.

The first step in the proof of Theorem 8.4.5 is to prove
that among all d-polytopes with a given number, n, of
vertices, the maximum number of ¢-faces is achieved by
simplicial d-polytopes.
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Proposition 8.4.6 Given any d-polytope, P, with n-
vertices, 1t 1s possible to form a simplicial polytope,
P', by perturbing the vertices of P such that P’ also
has n vertices and

fe-1(P) < fi—1(P") for 1<k <d.

Furthermore, equality for k > ng can occur only if P
15 simplicial.

Proposition 8.4.6 allows us to restict our attention to sim-
plicial polytopes. Now, it is obvious that

Jr-1 < (Z)

for any polytope P (simplicial or not) and we also know

that equality holds if £ < L%J for neighborly polytopes

d

such as the cyclic polytopes. For k& > [5], it turns out

that equality can only be achieved for simplices.



384 CHAPTER 8. SHELLINGS AND THE EULER-POINCARE FORMULA

However, for a simplictal polytope, the Dehn-Sommerville
equations hi = hg_j together with the equations giving
fi in terms of the h;’s show that fy, f1,..., fL%gJ already
determine the whole f-vector.

Thus, it is possible to express the f;_; in terms of hg, hq,
e hL%J for k > |4]. It turns out that we get

141"

e () ()

where the meaning of the superscript * is that when d
is even we only take half of the last term for ¢ = % and
when d is odd we take the whole last term for 7 = %

(for details, see Ziegler [?], Chapter 8).

As a consequence if we can show that the neighborly
polytopes maximize not only fr_; but also Aji_; when
k< ng, the upper bound theorem will be proved.
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Indeed, McMullen proved the following theorem which is
“more than enough” to yield the desired result ([?]):

Theorem 8.4.7 (McMullen (1970)) For every sim-
plicial d-polytope with fy = n vertices, we have

hk(P)§<n_d;1+k> for 0<k<d.

Furthermore, equality holds for all | and all k with
0<k<liffl < L%J and P is l-neighborly. (a poly-
tope 1s [-neighborly iff any subset of | or less vertices

determine a face of P.)

Since cyclic d-polytopes are neighborly (which means that
they are | ]-neighborly), Theorem 8.4.5 follows from Propo-
sition 8.4.6, and Theorem 8.4.7.
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Corollary 8.4.8 For every simplicial neighborly d-
polytope with n vertices, we have

141"

=3 ((520) + (i)
(n—d;1+i>’

for 1 < k < d. This gives the maximum number of
(k—1)-faces for any d-polytope with n-vertices, for all
k with 1 < k <d. In particular, the number of facets
of the cyclic polytope, Cy(n), is
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Corollary 8.4.8 implies that the number of facets of any
d-polytope is O(nL%J).

An unfortunate consequence of this upper bound is that
the complexity of any convex hull algorithms for n points

in E? is O(nL%J).

The O(nL%J) upper bound can be obtained more directly
using a pretty argument using shellings due to R. Seidel

7).

Remark: There is also a lower bound theorem due to
Barnette (1971, 1973) which gives a lower bound on the
f-vectors all d-polytopes with n vertices.

In this case, there is an analog of the cyclic polytopes
called stacked polytopes.
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These polytopes, P;(n), are simplicial polytopes obtained
from a simplex by building shallow pyramids over the
facets of the simplex. Then, it turns out that if d > 2,
then

d d+1 .
fo > R b1 k f0<k<d—2

(d=1n—(d+1){d—2) ifk=d—1.

There has been a lot of progress on the combinatorics of f-
vectors and h-vectors since 1971, especially by R. Stanley,
G. Kalai and L. Billera and K. Lee, among others. We

recommend two excellent surveys:

1. Bayer and Lee [?] summarizes progress in this area up
to 1993.

2. Billera and Bjorner [?] is a more advanced survey
which reports on results up to 1997,

In fact, many of the chapters in Goodman and O’Rourke
7] should be of interest to the reader.



