
Chapter 8

Shellings, the Euler-Poincaré Formula

for Polytopes, Dehn-Sommerville

Equations, the Upper Bound Theorem

8.1 Shellings

The notion of shellability is motivated by the desire to
give an inductive proof of the Euler-Poincaré formula in
any dimension.

Historically, this formula was discovered by Euler for three
dimensional polytopes in 1752 (but it was already known
to Descartes around 1640).

If f0, f1 and f2 denote the number of vertices, edges and
triangles of the three dimensional polytope, P , (i.e., the
number of i-faces of P for i = 0, 1, 2), then the Euler
formula states that

f0 − f1 + f2 = 2.
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The proof of Euler’s formula is not very difficult but one
still has to exercise caution.

Euler’s formula was generalized to arbitrary d-dimensional
polytopes by Schläfli (1852) but the first correct proof was
given by Poincaré (1893, 1899).

If fi denotes the number of i-faces of the d-dimensional
polytope, P , (with f−1 = 1 and fd = 1), the Euler-
Poincaré formula states that:

d−1
∑

i=0

(−1)ifi = 1 − (−1)d,

which can also be written as
d
∑

i=0

(−1)ifi = 1,

by incorporating fd = 1 in the first formula or as

d
∑

i=−1

(−1)ifi = 0,

by incorporating both f−1 = 1 and fd = 1 in the first
formula.
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Earlier inductive “proofs” of the above formula were pro-
posed, notably a proof by Schläfli in 1852, but it was later
observed that all these proofs assume that the boundary
of every polytope can be built up inductively in a nice
way, what we call shellability .

Actually, counter-examples of shellability for various sim-
plicial complexes suggested that polytopes were perhaps
not shellable.

However, the fact that polytopes are shellable was finally
proved in 1970 by Bruggesser and Mani [?] and soon after
that (also in 1970) a striking application of shellability
was made by McMullen [?] who gave the first proof of
the so-called “upper bound theorem”.

As shellability of polytopes is an important tool and as
it yields one of the cleanest inductive proof of the Euler-
Poincaré formula, we will sketch its proof in some details.
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Definition 8.1.1 Let K be a pure polyhedral complex
of dimension d. A shelling of K is a list, F1, . . . , Fs, of
the cells (i.e., d-faces) of K such that either d = 0 (and
thus, all Fi are points) or the following conditions hold:

(i) The boundary complex, K(∂F1), of the first cell, F1,
of K has a shelling.

(ii) For any j, 1 < j ≤ s, the intersection of the cell
Fj with the previous cells is nonempty and is an ini-
tial segment of a shelling of the (d − 1)-dimensional
boundary complex of Fj, that is

Fj ∩

(

j−1
⋃

i=1

Fi

)

= G1 ∪ G2 ∪ · · · ∪ Gr,

for some shelling G1, G2, . . . , Gr, . . . , Gt of K(∂Fj),
with 1 ≤ r ≤ t. As the intersection should be the
initial segment of a shelling for the (d−1)-dimensional
complex, ∂Fj, it has to be pure (d − 1)-dimensional
and connected for d > 1.

A polyhedral complex is shellable if it is pure and has a
shelling.
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Note that shellabiliy is only defined for pure complexes.

Here are some examples of shellable complexes:

(1) Every 0-dimensional complex, that is, evey set of points,
is shellable, by definition.

(2) A 1-dimensional complex is a graph without loops and
parallel edges. A 1-dimensional complex is shellable
iff it is connected, which implies that it has no iso-
lated vertices. Any ordering of the edges, e1, . . . , es,
such that {e1, . . . , ei} induces a connected subgraph
for every i will do. Such an ordering can be defined
inductively, due to the connectivity of the graph.

(3) Every simplex is shellable. In fact, any ordering of
its facets yields a shelling. This is easily shown by
induction on the dimension, since the intersection of
any two facets Fi and Fj is a facet of both Fi and Fj.

(4) The d-cubes are shellable. By induction on the di-
mension, it can be shown that every ordering of the
2d facets F1, . . . , F2d such that F1 and F2d are oppo-
site (that is, F2d = −F1) yields a shelling.
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Figure 8.1: Non shellable and Shellable 2-complexes

However, already for 2-complexes, problems arise. For ex-
ample, in Figure 8.1, the left and the middle 2-complexes
are not shellable but the right complex is shellable.

The problem with the left complex is that cells 1 and
2 intersect at a vertex, which is not 1-dimensional, and
in the middle complex, the intersection of cell 8 with its
predecessors is not connected.

In contrast, the ordering of the right complex is a shelling.

However, observe that the reverse ordering is not a shelling
because cell 4 has an empty intersection with cell 5!
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Remarks:

1. Condition (i) in Definition 8.1.1 is redundant because,
as we shall prove shortly, every polytope is shellable.
However, if we want to use this definition for more
general complexes, then condition (i) is necessary.

2. When K is a simplicial complex, condition (i) is of
course redundant, as every simplex is shellable but
condition (ii) can also be simplified to:

(ii’) For any j, with 1 < j ≤ s, the intersection of
Fj with the previous cells is nonempty and pure
(d − 1)-dimensional. This means that for every
i < j there is some l < j such that Fi ∩ Fj ⊆
Fl ∩ Fj and Fl ∩ Fj is a facet of Fj.

The following proposition yields an important piece of in-
formation about the local structure of shellable simplicial
complexes:
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Proposition 8.1.2 Let K be a shellable simplicial com-
plex and say F1, . . . , Fs is a shelling for K. Then, for
every vertex, v, the restriction of the above sequence
to the link, Lk(v), and to the star, St(v), are shellings.

Since the complex, K(P ), associated with a polytope, P ,
has a single cell, namely P itself, note that by condition
(i) in the definition of a shelling, K(P ) is shellable iff the
complex, K(∂P ), is shellable.

We will say simply say that “P is shellable” instead of
“K(∂P ) is shellable”.

Proposition 8.1.3 Given any polytope, P , if F1, . . . , Fs

is a shelling of P , then the reverse sequence Fs, . . . , F1

is also a shelling of P .

Ä Proposition 8.1.3 generally fails for complexes that are
not polytopes, see the right 2-complex in Figure 8.1.
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We will now present the proof that every polytope is
shellable, using a technique invented by Bruggesser and
Mani (1970) known as line shelling [?].

We begin by explaining this idea in the 2-dimensional
case, a convex polygon, since it is particularly simple.

Consider the 2-polytope, P , shown in Figure 8.2 (a poly-
gon) whose faces are labeled F1, F2, F3, F4, F5.

Pick any line, `, intersecting the interior of P and inter-
secting the supporting lines of the facets of P (i.e., the
edges of P ) in distinct points labeled z1, z2, z3, z4, z5 (such
a line can always be found, as will be shown shortly).

Orient the line, `, (say, upward) and travel on ` starting
from the point of P where ` leaves P , namely, z1.
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Figure 8.2: Shelling a polygon by travelling along a line
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For a while we only see F1 but then F2 become visble
when we cross z2. We imagine that we travel very fast
and when we reach “+∞” in the upward direction on `,
we instantly come back on ` from below at “−∞”.

At this point, we only see the face of P corresponding
to the lowest supporting line of faces of P , i.e., the line
corresponding to the smallest zi, in our case, z3.

Our trip stops when we reach z5, the intersection of F5

and `. During the second phase of our trip, we saw
F3, F4 and F5 and the entire trip yields the sequence
F1, F2, F3, F4, F5, which is easily seen to be a shelling
of P .

This is the crux of the Bruggesser-Mani method for shelling
a polytope: We travel along a suitably chosen line and
record the order in which the faces become visible dur-
ing this trip. This is why such shellings are called line
shellings .
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In order to prove that polytopes are shellable we need the
notion of points and lines in “general position”.

Recall from the equivalence of V-polytopes andH-polytopes
that a polytope, P , in E

d with nonempty interior is cut
out by t irredundant hyperplanes, Hi, and by picking the
origin in the interior of P the equations of the Hi may be
assumed to be of the form

ai · z = 1

where ai and aj are not proportional for all i 6= j, so that

P = {z ∈ E
d | ai · z ≤ 1, 1 ≤ i ≤ t}.
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Definition 8.1.4 Let P be any polytope in E
d with

nonempty interior and assume that P is cut out by the
irredudant hyperplanes, Hi, of equations ai · z = 1, for
i = 1, . . . , t. A point, c ∈ E

d, is said to be in general
position w.r.t. P is c does not belong to any of the Hi,
that is, if ai · c 6= 1 for i = 1, . . . , t. A line, `, is said to
be in general position w.r.t. P if ` is not parallel to any
of the Hi and if ` intersects the Hi in distinct points.

The following proposition showing the existence of lines
in general position w.r.t. a polytope illustrates a very
useful technique, the “perturbation method”.

Proposition 8.1.5 Let P be any polytope in E
d with

nonempty interior. For any two points, x and y in
E

d, with x outside of P ; y in the interior of P ; and x
in general position w.r.t. P , for λ ∈ R small enough,
the line, `λ, through x and yλ with

yλ = y + (λ, λ2, . . . , λd),

intersects P in its interior and is in general position
w.r.t. P .
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It should be noted that the perturbation method involv-
ing Λ = (λ, λ2, . . . , λd) is quite flexible.

For example, by adapting the proof of Proposition 8.1.5
we can prove that for any two distinct facets, Fi and Fj of
P , there is a line in general position w.r.t. P intersecting
Fi and Fj. Start with x outside P and very close to Fi

and y in the interior of P and very close to Fj.

Given any point, x, strictly outside a polytope, P , we say
that a facet, F , of P is visible from x iff for every y ∈ F
the line through x and y intersects F only in y (equiv-
alently, x and the interior of P are strictly separared by
the supporting hyperplane of F ).

We now prove the following fundamental theorem due to
Bruggesser and Mani [?] (1970):



8.1. SHELLINGS 355
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Figure 8.3: Shelling a polytope by travelling along a line, `

Theorem 8.1.6 (Existence of Line Shellings for Poly-
topes) Let P be any polytope in E

d of dimension d.
For every point, x, outside P and in general position
w.r.t. P , there is a shelling of P in which the facets
of P that are visible from x come first.

Remark: The trip along the line ` is often described as
a rocket flight starting from the surface of P viewed as
a little planet (for instance, this is the description given
by Ziegler [?] (Chapter 8)).
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Observe that if we reverse the direction of `, we obtain the
reversal of the original line shelling. Thus, the reversal of
a line shelling is not only a shelling but a line shelling as
well.

We can easily prove the following corollary:

Corollary 8.1.7 Given any polytope, P , the follow-
ing facts hold:

(1) For any two facets F and F ′, there is a shelling of
P in which F comes first and F ′ comes last.

(2) For any vertex, v, of P , there is a shelling of P
in which the facets containing v form an initial
segment of the shelling.

Remark: A plane triangulation , K, is a pure two-
dimensional complex in the plane such that |K| is home-
omorphic to a closed disk.
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Edelsbrunner proves that every plane triangulation has a
shelling and from this, that χ(K) = 1, where χ(K) =
f0 − f1 + f2 is the Euler-Poincaré characteristic of K,
where f0 is the number of vertices, f1 is the number of
edges and f2 is the number of triangles in K (see Edels-
brunner [?], Chapter 3).

This result is an immediate consequence of Corollary 8.1.7
if one knows about the stereographic projection map,
which will be discussed in the next Chapter.

We now have all the tools needed to prove the famous
Euler-Poincaré Formula for Polytopes.
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8.2 The Euler-Poincaré Formula for Polytopes

We begin by defining a very important topological con-
cept, the Euler-Poincaré characteristic of a complex.

Definition 8.2.1 Let K be a d-dimensional complex.
For every i, with 0 ≤ i ≤ d, we let fi denote the number
of i-faces of K and we let

f(K) = (f0, · · · , fd) ∈ N
d+1

be the f -vector associated with K (if necessary we write
fi(K) instead of fi). The Euler-Poincaré characteris-
tic, χ(K), of K is defined by

χ(K) = f0 − f1 + f2 + · · · + (−1)dfd =

d
∑

i=0

(−1)ifi.
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Given any d-dimensional polytope, P , the f -vector asso-
ciated with P is the f -vector associated with K(P ), that
is,

f(P ) = (f0, · · · , fd) ∈ N
d+1,

where fi, is the number of i-faces of P (= the number of i-
faces of K(P ) and thus, fd = 1), and the Euler-Poincaré
characteristic, χ(P ), of P is defined by

χ(P ) = f0 − f1 + f2 + · · · + (−1)dfd =

d
∑

i=0

(−1)ifi.

Moreover, the f -vector associated with the boundary,
∂P , of P is the f -vector associated with K(∂P ), that is,

f(∂P ) = (f0, · · · , fd−1) ∈ N
d

where fi, is the number of i-faces of ∂P (with 0 ≤ i ≤
d − 1), and the Euler-Poincaré characteristic, χ(∂P ),
of ∂P is defined by

χ(∂P ) = f0− f1 + f2 + · · ·+(−1)d−1fd−1 =

d−1
∑

i=0

(−1)ifi.
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Observe that χ(P ) = χ(∂P ) + (−1)d, since fd = 1.

Remark: It is convenient to set f−1 = 1. Then, some
authors, including Ziegler [?] (Chapter 8), define the re-
duced Euler-Poincaré characteristic, χ′(K), of a com-
plex (or a polytope), K, as

χ′(K) = −f−1 + f0 − f1 + f2 + · · · + (−1)dfd

=

d
∑

i=−1

(−1)ifi = −1 + χ(K),

i.e., they incorporate f−1 = 1 into the formula.

A crucial observation for proving the Euler-Poincaré for-
mula is that the Euler-Poincaré characteristic is additive.

This means that if K1 and K2 are any two complexes
such that K1 ∪ K2 is also a complex, which implies that
K1∩K2 is also a complex (because we must have F1∩F2 ∈
K1∩K2 for every face F1 of K1 and every face F2 of K2),
then

χ(K1 ∪ K2) = χ(K1) + χ(K2) − χ(K1 ∩ K2).
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This follows immediately because for any two sets A and
B

|A ∪ B| = |A| + |B| − |A ∩ B|.

To prove our next theorem we will use complete induction
on N × N ordered by the lexicographic ordering.

Recall that the lexicographic ordering on N×N is defined
as follows:

(m, n) < (m′, n′) iff







m = m′ and n < n′

or
m < m′.

Theorem 8.2.2 (Euler-Poincaré Formula) For every
polytope, P , we have

χ(P ) =

d
∑

i=0

(−1)ifi = 1 (d ≥ 0),

and so,

χ(∂P ) =

d−1
∑

i=0

(−1)ifi = 1 − (−1)d (d ≥ 1).
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Proof . We prove the following statement: For every d-
dimensional polytope, P , if d = 0 then

χ(P ) = 1,

else if d ≥ 1 then for every shelling F1, . . . , Ffd−1
, of P ,

for every j, with 1 ≤ j ≤ fd−1, we have

χ(F1 ∪ · · · ∪ Fj) =

{

1 if 1 ≤ j < fd−1

1 − (−1)d if j = fd−1.

We proceed by complete induction on (d, j) ≥ (0, 1).

Remark: Other combinatorial proofs of the Euler-Poincaré
formula are given in Grünbaum [?] (Chapter 8), Boisson-
nat and Yvinec [?] (Chapter 7) and Ewald [?] (Chapter
3).

Coxeter gives a proof very close to Poincaré’s own proof
using notions of homology theory [?] (Chapter IX).

We feel that the proof based on shellings is the most direct
and one of the most elegant.
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Incidently, the above proof of the Euler-Poincaré formula
is very close to Schläfli proof from 1852 but Schläfli did
not have shellings at his disposal so his “proof” had a gap.
The Bruggesser-Mani proof that polytopes are shellable
fills this gap!
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8.3 Dehn-Sommerville Equations for Simplicial

Polytopes and h-Vectors

If a d-polytope, P , has the property that its faces are all
simplices, then it is called a simplicial polytope .

It is easily shown that a polytope is simplicial iff its facets
are simplices, in which case, every facet has d vertices.

The polar dual of a simplicial polytope is called a sim-
ple polytope . We see immediately that every vertex of a
simple polytope belongs to d facets.

For simplicial (and simple) polytopes it turns out that
other remarkable equations besides the Euler-Poincaré
formula hold among the number of i-faces.

These equations were discovered by Dehn for d = 4, 5
(1905) and by Sommerville in the general case (1927).
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Although it is possible (and not difficult) to prove the
Dehn-Sommerville equations by “double counting”, as
in Grünbaum [?] (Chapter 9) or Boissonnat and Yvinec
(Chapter 7, but beware, these are the dual formulae for
simple polytopes), it turns out that instead of using the
f -vector associated with a polytope it is preferable to
use what’s known as the h-vector because for simplicial
polytopes the h-numbers have a natural interpretation in
terms of shellings.

Furthermore, the statement of the Dehn-Sommerville equa-
tions in terms of h-vectors is transparent:

hi = hd−i,

and the proof is very simple in terms of shellings.

In the rest of this section, we restrict our attention to
simplicial complexes.

In order to motivate h-vectors, we begin by examining
more closely the structure of the new faces that are cre-
ated during a shelling when the cell Fj is added to the
partial shelling F1, . . . , Fj−1.
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If K is a simplicial polytope and V is the set of vertices
of K, then every i-face of K can be identified with an
(i + 1)-subset of V (that is, a subset of V of cardinality
i + 1).

Definition 8.3.1 For any shelling, F1, . . . , Fs, of a sim-
plicial complex, K, of dimension d, for every j, with
1 ≤ j ≤ s, the restriction , Rj, of the facet, Fj, is the set
of “obligatory” vertices

Rj = {v ∈ Fj | Fj − {v} ⊆ Fi, for some i, 1 ≤ i < j}.

The crucial property of the Rj is that the new faces, G,
added at step j (when Fj is added to the shelling) are
precisely the faces in the set

Ij = {G ⊆ V | Rj ⊆ G ⊆ Fj}.

But then, we obtain a partition, {I1, . . . , Is}, of the set
of faces of the simplicial complex (other that K itself).
Note that the empty face is allowed.
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Now, if we define

hi = |{j | |Rj| = i, 1 ≤ j ≤ s}|,

for i = 0, . . . , d, then it turns out that we can recover the
fk in terms of the hi as follows:

fk−1 =

s
∑

j=1

(

d − |Rj|
k − |Rj|

)

=

k
∑

i=0

hi

(

d − i
k − i

)

,

with 1 ≤ k ≤ d.

But more is true: The above equations are invertible and
the hk can be expressed in terms of the fi as follows:

hk =

k
∑

i=0

(−1)k−i

(

d − i
d − k

)

fi−1,

with 0 ≤ k ≤ d (remember, f−1 = 1).

Let us explain all this in more detail. Consider the exam-
ple of a connected graph shown in Figure 8.4:
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Figure 8.4: A connected 1-dimensional complex, G

∅

1 2 3 4 5 6

12 13 34 35 45 36 56

Figure 8.5: the partition associated with a shelling of G

A shelling order of its 7 edges is given by the sequence

12, 13, 34, 35, 45, 36, 56.

The partial order of the faces of G together with the
blocks of the partition {I1, . . . , I7} associated with the
seven edges of G are shown in Figure 8.5, with the blocks
Ij shown in red:

The “minimal” new faces (corresponding to the Rj’s)
added at every stage of the shelling are

∅, 3, 4, 5, 45, 6, 56.
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Again, if hi is the number of blocks, Ij, such that the
corresponding restriction set, Rj, has size i, that is,

hi = |{j | |Rj| = i, 1 ≤ j ≤ s}|,

for i = 0, . . . , d, where the simplicial polytope, K, has
dimension d − 1, we define the h-vector associated with
K as

h(K) = (h0, . . . , hd).

Then, in the above example, as R1 = {∅}, R2 = {3},
R3 = {4}, R4 = {5}, R5 = {4, 5}, R6 = {6} and
R7 = {5, 6}, we get h0 = 1, h1 = 4 and h2 = 2, that is,

h(G) = (1, 4, 2).

Now, let us show that if K is a shellable simplicial com-
plex, then the f -vector can be recovered from the h-
vector.
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Indeed, if |Rj| = i, then each (k − 1)-face in the block Ij

must use all i nodes in Rj, so that there are only d − i
nodes available and, among those, k − i must be chosen.
Therefore,

fk−1 =

s
∑

j=1

(

d − |Rj|
k − |Rj|

)

and, by definition of hi, we get

fk−1 =

k
∑

i=0

hi

(

d − i
k − i

)

= hk +

(

d − k + 1
1

)

hk−1 + · · · +

(

d
k

)

h0,

where 1 ≤ k ≤ d.

Moreover, the formulae are invertible, that is, the hi can
be expressed in terms of the fk. For this, form the two
polynomials

f (x) =

d
∑

i=0

fi−1x
d−i = fd−1+fd−2x+· · ·+f0x

d−1+f−1x
d

with f−1 = 1 and

h(x) =

d
∑

i=0

hix
d−i = hd + hd−1x + · · · + h1x

d−1 + h0x
d.
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Then, it is easy to see that

f (x) =

d
∑

i=0

hi(x + 1)d−i = h(x + 1).

Consequently, h(x) = f (x − 1) and by comparing the
coefficients of xd−k on both sides of the above equation,
we get

hk =

k
∑

i=0

(−1)k−i

(

d − i
d − k

)

fi−1.

In particular, h0 = 1, h1 = f0 − d, and

hd = fd−1 − fd−2 + fd−3 + · · · + (−1)d−1f0 + (−1)d.

It is also easy to check that

h0 + h1 + · · · + hd = fd−1.

Now, we just showed that if K is shellable, then its f -
vector and its h-vector are related as above.
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But even if K is not shellable, the above suggests defining
the h-vector from the f -vector as above. Thus, we make
the definition:

Definition 8.3.2 For any (d−1)-dimensional simplicial
complex, K, the h-vector associated with K is the vector

h(K) = (h0, . . . , hd) ∈ Z
d+1,

given by

hk =

k
∑

i=0

(−1)k−i

(

d − i
d − k

)

fi−1.

Note that if K is shellable, then the interpretation of hi

as the number of cells, Fj, such that the corresponding
restriction set, Rj, has size i shows that hi ≥ 0.

However, for an arbitrary simplicial complex, some of the
hi can be strictly negative. Such an example is given in
Ziegler [?] (Section 8.3).

We summarize below most of what we just showed:
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Proposition 8.3.3 Let K be a (d − 1)-dimensional
pure simplicial complex. If K is shellable, then its h-
vector is nonnegative and hi counts the number of cells
in a shelling whose restriction set has size i. More-
over, the hi do not depend on the particular shelling
of K.

We are now ready to prove the Dehn-Sommerville equa-
tions.

For d = 3, these are easily obtained by double counting.
Indeed, for a simplicial polytope, every edge belongs to
two facets and every facet has three edges. It follows that

2f1 = 3f2.

Together with Euler’s formula

f0 − f1 + f2 = 2,

we see that

f1 = 3f0 − 6 and f2 = 2f0 − 4,

namely, that the number of vertices of a simplicial 3-
polytope determines its number of edges and faces, these
being linear functions of the number of vertices.
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For arbitrary dimension d, we have

Theorem 8.3.4 (Dehn-Sommerville Equations) If K
is any simplicial d-polytope, then the components of
the h-vector satisfy

hk = hd−k k = 0, 1, . . . , d.

Equivalently

fk−1 =

d
∑

i=k

(−1)d−i

(

i
k

)

fi−1 k = 0, . . . , d.

Furthermore, the equation h0 = hd is equivalent to the
Euler-Poincaré formula.

Clearly, the Dehn-Sommerville equations, hk = hd−k, are
linearly independent for
0 ≤ k < bd+1

2
c.
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For example, for d = 3, we have the two independent
equations

h0 = h3, h1 = h2,

and for d = 4, we also have two independent equations

h0 = h4, h1 = h3,

since h2 = h2 is trivial.

When d = 3, we know that h1 = h2 is equivalent to
2f1 = 3f2 and when d = 4, if one unravels h1 = h3 in
terms of the fi’ one finds

2f2 = 4f3,

that is f2 = 2f3.

More generally, it is easy to check that

2fd−2 = dfd−1

for all d. For d = 5, we find three independent equations

h0 = h5, h1 = h4, h2 = h3,

and so on.
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It can be shown that for general d-polytopes, the Euler-
Poincaré formula is the only equation satisfied by all h-
vectors and for simplicial d-polytopes, the bd+1

2
c Dehn-

Sommerville equations, hk = hd−k, are the only equations
satisfied by all h-vectors (see Grünbaum [?], Chapter 9).

As we saw for 3-dimensional simplicial polytopes, the
number of vertices, n = f0, determines the number of
edges and the number of faces, and these are linear in f0.

For d ≥ 4, this is no longer true and the number of facets
is no longer linear in n but in fact quadratic.

It is then natural to ask which d-polytopes with a pre-
scribed number of vertices have the maximum number of
k-faces.

This question which remained an open problem for some
twenty years was eventually settled by McMullen in 1970
[?].
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8.4 The Upper Bound Theorem and Cyclic Polytopes

Given a d-polytope with n vertices, what is an upper
bound on the number of its i-faces?

This question is not only important from a theoretical
point of view but also from a computational point of view
because of its implications for algorithms in combinatorial
optimization and in computational geometry.

The answer to the above problem is that there is a class
of polytopes called cyclic polytopes such that the cyclic
d-polytope, Cd(n), has the maximum number of i-faces
among all d-polytopes with n vertices.

This result stated by Motzkin in 1957 became known as
the upper bound conjecture until it was proved by Mc-
Mullen in 1970, using shellings [?] (just after Bruggesser
and Mani’s proof that polytopes are shellable). It is now
known as the upper bound theorem .
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Another proof of the upper bound theorem was given later
by Alon and Kalai [?] (1985). A version of this proof can
also be found in Ewald [?] (Chapter 3).

First, consider the cases d = 2 and d = 3. When d = 2,
our polytope is a polygon in which case n = f0 = f1.
Thus, this case is trivial.

For d = 3, we claim that 2f1 ≥ 3f2. Indeed, every edge
belongs to exactly two faces so if we add up the number
of sides for all faces, we get 2f1. Since every face has at
least three sides, we get 2f1 ≥ 3f2. Then, using Euler’s
relation, it is easy to show that

f1 ≤ 6n − 3 f2 ≤ 2n − 4

and we know that equality is achieved for simplicial poly-
topes.

Let us now consider the general case. The rational curve,
c: R → R

d, given parametrically by

c(t) = (t, t2, . . . , td)

is at the heart of the story.
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This curve if often called the moment curve or rational
normal curve of degree d. For d = 3, it is known as
the twisted cubic. Here is the definition of the cyclic
polytope, Cd(n).

Definition 8.4.1 For any sequence, t1 < . . . < tn, of
distinct real number, ti ∈ R, with n > d, the convex hull,

Cd(n) = conv(c(t1), . . . , c(tn))

of the n points, c(t1), . . . , c(tn), on the moment curve of
degree d is called a cyclic polytope .

The first interesting fact about the cyclic polytope is that
it is simplicial.

Proposition 8.4.2 Every d+1 of the points c(t1), . . .,
c(tn) are affinely independent. Consequently, Cd(n) is
a simplicial polytope and the c(ti) are vertices.
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Proposition 8.4.3 For any k with 2 ≤ 2k ≤ d, every
subset of k vertices of Cd(n) is a (k−1)-face of Cd(n).
Hence

fk(Cd(n)) =

(

n
k + 1

)

if 0 ≤ k <

⌊

d

2

⌋

.

Observe that Proposition 8.4.3 shows that any subset of
bd

2
c vertices of Cd(n) forms a face of Cd(n).

When a d-polytope has this property it is called a neigh-
borly polytope . Therefore, cyclic polytopes are neigh-
borly.

Proposition 8.4.3 also shows a phenomenon that only
manifests itself in dimension at least 4: For d ≥ 4, the
polytope Cd(n) has n pairwise adjacent vertices. For
n >> d, this is counter-intuitive.

Finally, the combinatorial structure of cyclic polytopes is
completely determined as follows:



8.4. THE UPPER BOUND THEOREM 381

Proposition 8.4.4 (Gale evenness condition, Gale
(1963)). Let n and d be integers with 2 ≤ d < n. For
any sequence t1 < t2 < · · · < tn, consider the cyclic
polytope

Cd(n) = conv(c(t1), . . . , c(tn)).

A subset, S ⊆ {1, . . . , n} with |S| = d determines
a facet of Cd(n) iff for all i < j not in S, then the
number of k ∈ S between i and j is even:

|{k ∈ S | i < k < j}| ≡ 0 (mod 2) for i, j /∈ S

In particular, Proposition 8.4.4 shows that the combina-
torial structure of Cd(n) does not depend on the specific
choice of the sequence t1 < . . . < tn. This justifies our
notation Cd(n).

Here is the celebrated upper bound theorem first proved
by McMullen [?].
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Theorem 8.4.5 (Upper Bound Theorem, McMullen
(1970)) Let P be any d-polytope with n vertices. Then,
for every k, with 1 ≤ k ≤ d, the polytope P has
at most as many (k − 1)-faces as the cyclic polytope,
Cd(n), that is

fk−1(P ) ≤ fk−1(Cd(n)).

Moreover, equality for some k with bd
2
c ≤ k ≤ d im-

plies that P is neighborly.

The first step in the proof of Theorem 8.4.5 is to prove
that among all d-polytopes with a given number, n, of
vertices, the maximum number of i-faces is achieved by
simplicial d-polytopes.
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Proposition 8.4.6 Given any d-polytope, P , with n-
vertices, it is possible to form a simplicial polytope,
P ′, by perturbing the vertices of P such that P ′ also
has n vertices and

fk−1(P ) ≤ fk−1(P
′) for 1 ≤ k ≤ d.

Furthermore, equality for k > bd
2
c can occur only if P

is simplicial.

Proposition 8.4.6 allows us to restict our attention to sim-
plicial polytopes. Now, it is obvious that

fk−1 ≤

(

n
k

)

for any polytope P (simplicial or not) and we also know
that equality holds if k ≤ bd

2
c for neighborly polytopes

such as the cyclic polytopes. For k > bd
2
c, it turns out

that equality can only be achieved for simplices.
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However, for a simplicial polytope, the Dehn-Sommerville
equations hk = hd−k together with the equations giving
fk in terms of the hi’s show that f0, f1, . . . , fbd

2c
already

determine the whole f -vector.

Thus, it is possible to express the fk−1 in terms of h0, h1,
. . . , hbd

2c
for k ≥ bd

2
c. It turns out that we get

fk−1 =

bd
2c
∑

i=0

∗
((

d − i
k − i

)

+

(

i
k − d + i

))

hi,

where the meaning of the superscript ∗ is that when d
is even we only take half of the last term for i = d

2
and

when d is odd we take the whole last term for i = d−1
2

(for details, see Ziegler [?], Chapter 8).

As a consequence if we can show that the neighborly
polytopes maximize not only fk−1 but also hk−1 when
k ≤ bd

2
c, the upper bound theorem will be proved.
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Indeed, McMullen proved the following theorem which is
“more than enough” to yield the desired result ([?]):

Theorem 8.4.7 (McMullen (1970)) For every sim-
plicial d-polytope with f0 = n vertices, we have

hk(P ) ≤

(

n − d − 1 + k
k

)

for 0 ≤ k ≤ d.

Furthermore, equality holds for all l and all k with
0 ≤ k ≤ l iff l ≤ bd

2
c and P is l-neighborly. (a poly-

tope is l-neighborly iff any subset of l or less vertices
determine a face of P .)

Since cyclic d-polytopes are neighborly (which means that
they are bd

2
c-neighborly), Theorem 8.4.5 follows from Propo-

sition 8.4.6, and Theorem 8.4.7.
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Corollary 8.4.8 For every simplicial neighborly d-
polytope with n vertices, we have

fk−1 =

bd
2c
∑

i=0

∗
((

d − i
k − i

)

+

(

i
k − d + i

))

(

n − d − 1 + i
i

)

,

for 1 ≤ k ≤ d. This gives the maximum number of
(k−1)-faces for any d-polytope with n-vertices, for all
k with 1 ≤ k ≤ d. In particular, the number of facets
of the cyclic polytope, Cd(n), is

fd−1 =

bd
2c
∑

i=0

∗

2

(

n − d − 1 + i
i

)

and, more explicitly,

fd−1 =

(

n − bd+1
2
c

n − d

)

+

(

n − bd+2
2
c

n − d

)

.
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Corollary 8.4.8 implies that the number of facets of any

d-polytope is O(nbd
2c).

An unfortunate consequence of this upper bound is that
the complexity of any convex hull algorithms for n points

in E
d is O(nbd

2c).

The O(nbd
2c) upper bound can be obtained more directly

using a pretty argument using shellings due to R. Seidel
[?].

Remark: There is also a lower bound theorem due to
Barnette (1971, 1973) which gives a lower bound on the
f -vectors all d-polytopes with n vertices.

In this case, there is an analog of the cyclic polytopes
called stacked polytopes .
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These polytopes, Pd(n), are simplicial polytopes obtained
from a simplex by building shallow pyramids over the
facets of the simplex. Then, it turns out that if d ≥ 2,
then

fk ≥







(

d
k

)

n −

(

d + 1
k + 1

)

k if 0 ≤ k ≤ d − 2

(d − 1)n − (d + 1)(d − 2) if k = d − 1.

There has been a lot of progress on the combinatorics of f -
vectors and h-vectors since 1971, especially by R. Stanley,
G. Kalai and L. Billera and K. Lee, among others. We
recommend two excellent surveys:

1. Bayer and Lee [?] summarizes progress in this area up
to 1993.

2. Billera and Björner [?] is a more advanced survey
which reports on results up to 1997.

In fact, many of the chapters in Goodman and O’Rourke
[?] should be of interest to the reader.


