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Related Work

The most popular is the parametric surface approach.

The idea is to assign a parametric surface patch with each

triangle of ST :

R
2

R
3
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Related Work

There are two main drawbacks with this approach:

• To ensure continuity of order k, we need patches of order

d, where d is a function of k and the value of d rapidly

grows with k.

Large values of d yield surfaces with poor visual quality.

Also, the larger d is, the larger the number of control

points, and the more difficult the placement of control

points.
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• The placement of control points is constrained around

vertices and along edges. So, local control of geometry

is not very flexible.

(Loop and DeRose, 1989), (Seidel, 1994), (Prautzsch, 1997),

and (Reif, 1998).

Some examples of Ck parametric approaches, for arbitrary k:
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Related Work

Subdivision surfaces are probably the easiest and more intuitive

solution for the problem whenever the smoothness degree, k,

is not large.

For large values of k, the few existing schemes are rather com-

plex.

See (Warren, 2002).
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Related Work

An often neglected approach, the manifold-based one, has

the potential to easily produce Ck surfaces, for arbitrary k

(including k = ∞).

The idea behind this approach is to build a surface from

open parametric patches that overlap smoothly, as opposed

to closed patches that stitch together along their common

edges and vertices.
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Related Work

The manifold-based approach was pioneered by Grimm and

Hughes, 1995.

However, their particular construction yielded C2 surfaces

only. Besides, this construction was too complicated for prac-

tical purposes.

It does not yield a fully polynomial surface representation ei-

ther.
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Contributions

We present a new manifold-based construction of Ck surfaces

(including k = ∞).

Our construction does not yield a fully polynomial surface,

but it is guaranteed to produce an analytic representation of

a truly Ck (including k = ∞) surface (i.e., with no singular

points).
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Gluing Data and PPS’s

Recall the definition of a manifold...

(U, ϕ) is called a chart.

ϕ : U → Ω

homeomorphism

open sets
Ω = ϕ(U) ⊂ R

nϕ

U
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M

ϕ21 = ϕ2 ◦ ϕ
−1

1

ϕ12 = ϕ1 ◦ ϕ
−1

2

U1

U2

ϕ1

ϕ2

Ω1 Ω2

R
n

ϕ21 and ϕ12 are the transition functions.
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Gluing Data and PPS’s

A Ck n-atlas is a family of charts, {(Ui, ϕi)}(i∈I), where

I is a non-empty countable set, and such that the following

conditions hold:

(1) ϕi(Ui) ⊆ Rn, for all i.

(2) M =

⋃

i∈I

Ui.

(3) Whenever Ui∩Uj "= ∅, the transition function ϕji (resp.

ϕij) is a Ck diffeomorphism.
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Gluing Data and PPS’s

Recall that we want to define a surface S that approxi-

mates the underlying surface, |ST |, of a given simplicial sur-

face, ST .

Our plan is to define S constructively by building a mani-

fold.

More specifically, we want to build a Ck 2-dimensional mani-

fold in R3.
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A LITTLE PROBLEM:

Our definition of manifold is not constructive: it states what a

manifold is by assuming it already exists! So, for our purposes,

it is not useful!

THE KEY IDEA:

The notion of a set of gluing data.
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Let n be an integer, with n ≥ 1, and k be an integer, with

k ≥ 1 or k = ∞.
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A set of gluing data is a triple

G =
(

(Ωi)i∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K×K

)

satisfying the following properties, where I and K are count-

able sets, and I is non-empty:

Let n be an integer, with n ≥ 1, and k be an integer, with

k ≥ 1 or k = ∞.
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(1) For every i ∈ I, the set Ωi is a non-empty open subset

of Rn called parametrization domain, for short, p-

domain, and the Ωi are pairwise disjoint (i.e., Ωi∩Ωj =

∅ for all i $= j).
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(1) For every i ∈ I, the set Ωi is a non-empty open subset

of Rn called parametrization domain, for short, p-

domain, and the Ωi are pairwise disjoint (i.e., Ωi∩Ωj =

∅ for all i $= j).

Ω1 Ω2

Ω3 Ωi· · ·

.

.

.

R
n
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Ω1 Ω2

Ω3 Ωi
· · ·

.

.

.

Ω12

Ω13

Ω31

Ω21

R
n

(2) For every pair (i, j)×I×I, the set Ωij is an open subset

of Ωi. Furthermore, Ωii = Ωi and Ωji "= ∅ if and only

if Ωij "= ∅. Each non-empty Ωij (with i "= j) is called

gluing domain.
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(3) If we let

K = {(i, j) ∈ I × I | Ωij #= ∅} ,

then ϕji : Ωij → Ωji is a Ck bijection for every (i, j) ∈

K, called a transition function or gluing function.
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The transition functions tell us how we glue the p-domains:

· · ·

.

.

.

R
n

Ω1 Ω2

Ω3 Ωi

ϕ13

ϕ31

ϕ12

ϕ21

Ω12

Ω13

Ω31

Ω21
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Gluing Data and PPS’s

The transition functions must satisfy the following conditions:

(a) ϕii = idΩi
, for all i ∈ I,

(b) ϕij = ϕ−1

ji , for all (i, j) ∈ K, and

(c) For all i, j, and k, if Ωji ∩ Ωjk "= ∅ then ϕ−1

ji (Ωji ∩

Ωjk) ⊆ Ωik and ϕki(x) = ϕkj ◦ ϕji(x), for all x ∈

ϕ−1

ji (Ωji ∩ Ωjk).
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Indeed, such a manifold is built by a quotient construction.   

MG =

(

∐

i

Ωi

)

/ ∼We form the quotient                                                       

We  form the disjoint union of the               Ωi and we identify

, an equivalence relation,ϕj i ∼with using .Ωi j Ωj i



Gluing Data and PPS’s

28



Gluing Data and PPS’s
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 A condition on the gluing data is needed to make sure that MG

is Hausdorff. Since it is quite technical, we will not show it here.
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Gluing Data and PPS’s

Very nice, but...

• our proof is not constructive;

• MG is an “abstract entity”, which may not be compact,

orientable, etc.

So, the question that remains is how we can build a “con-

crete” manifold.
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A parametric Ck pseudo-manifold of dimension n in

Rm is a pair,

M = (G, (θi)i∈I)

such that G =
(

(Ωi)i∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K)
)

is a set

of gluing data, for some finite I, and each θi is a Ck function,

θi : Ωi → Rm, called a parametrization such that the

following holds:
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(C) For all (i, j) ∈ K, we have θi = θj ◦ ϕji .
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(C) For all (i, j) ∈ K, we have θi = θj ◦ ϕji .

Ω2

R
n

Ω1

θ2

θ1

Ω12

Ω21

ϕ12

ϕ21

R
m

p

θi(p) θj ◦ ϕ21(p)
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pseudo-surface.
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M ⊆ R
m

Gluing Data and PPS’s

Ω2

R
n

Ω1

θ2

θ1

Ω12

Ω21

ϕ12

ϕ21
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We also proved that M can be given a manifold structure if

we require the θi’s to be bijective and to satisfy the following

additional conditions:

(C’) For all (i, j) ∈ K,

θi(Ωi) ∩ θj(Ωj) = θi(Ωij) = θj(Ωji) .

34

(i, j) /∈ K,(C ′′) For all

θi(Ωi) ∩ θj(Ωj) = ∅.
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Now, let us go back to our original problem:

We want to define a surface, S, in R3 that approximates the

underlying surface, |ST |, of a given simplicial surface, ST , in

R3.
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We use ST to define the set of gluing data, G, of M.

We use |ST | to define the set of parametrizations, (θi)i∈I , of
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We solve this problem by defining a pseudo-surface, M, so

that S is the image, M , of M.
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Building PPS’s

To define M, we must

• define the p-domains, (Ωi)i∈I ,

• define the gluing domains, (Ωij)(i,j)∈I×I ,

• define the transition functions, (ϕij)(i,j)∈K×K ,

• and define the parametrizations, (θi)i∈I .

G

M = (G, (θi)i∈I)

37
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Building PPS’s

p-Domains

Let

I = {(σ, v) | σ is a triangle of ST and v is a vertex of σ} .

For each (σ, v) in I, we let Ω(σ,v) be an open triangle in R2.

Ω(σ,v)

R
2

38
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We denote the (closed) triangle in R2 whose interior is Ω(σ,v)

by Ω(σ,v).

R
2

Ω(σ,v)

u0 u1

u2
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Building PPS’s

We denote the (closed) triangle in R2 whose interior is Ω(σ,v)

by Ω(σ,v).

R
2

Ω(σ,v)

u0 u1

u2

We fix an enumeration, 〈u0, u1, u2〉, of the vertices, u0, u1,

and u2 of Ω(σ,v). This enumeration will play an important role

later on.

39



Building PPS’s

40



Building PPS’s

Gluing Domains

40



Building PPS’s

Gluing Domains

Gluing domains are defined in terms of two abstractions, a P-

polygon and its associated triangulation, and two maps, one

of which is affine.
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Gluing Domains

A P-polygon is a regular n-gon inscribed in the unit circle

centered at the origin.

Gluing domains are defined in terms of two abstractions, a P-

polygon and its associated triangulation, and two maps, one

of which is affine.

40
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For each vertex v of ST , let mv be the degree of v.
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Building PPS’s

For each vertex v of ST , let mv be the degree of v.

The P-polygon, Pv, associated with v is the regular mv-

gon inscribed in a unit circle centered at the origin and con-

taining the vertex (1, 0).

v

ST

x

y

Pv

R
2

(1, 0)

41
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We define a simplicial isomorphism between the vertices of the

star, st(v, ST ), of v in ST and the vertices of Tv, as shown

below:
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Building PPS’s

We define a simplicial isomorphism between the vertices of the

star, st(v, ST ), of v in ST and the vertices of Tv, as shown

below:

sv : st(v, ST )(0) → T (0)
v

v v0

v1v2

v3

v4

v5

R
2

Tv

ST sv(v)

sv(v0)

sv(v1)sv(v2)

sv(v3)

sv(v4) sv(v5)
42
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For each i ∈ {0, . . . , mv −1}, we assign a point, ri,v, with the

triangle with vertices sv(v), sv(vi), and sv(vi+1) of Tv (the

index i is taken modulo mv):
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For each i ∈ {0, . . . , mv −1}, we assign a point, ri,v, with the

triangle with vertices sv(v), sv(vi), and sv(vi+1) of Tv (the

index i is taken modulo mv):

sv(v)

sv(vi)

sv(vi+1)

with

0 < α <
1

4

−α · (2sv(v) + sv(vi) + sv(vi+1))
1

2
(sv(v) + sv(vi))

1

2
(sv(v) + sv(vi+1))
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u0 u1

u2 f(σ,v)

v
′

i

v
′

i+1

ri,v

Ω(σ,v) (index i is taken modulo mv)

For each (σ, v) ∈ I, we let f(σ,v) : R2
→ R2 denote the unique

affine function that maps the vertices u0, u1, and u2 of Ω(σ,v)

to the vertices sv(vi), sv(vi+1), and ri,v, respectively:
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For each edge [u, w] of ST , we define the function

g(u,w) : R
2
→ R

2 ,

as follows:
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Building PPS’s

For each edge [u, w] of ST , we define the function

g(u,w) : R
2
→ R

2 ,

as follows:

Let

[u, x, w] and [u, w, y]

be the two triangles of ST that share the edge [u, w].

45
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Then, the function g(u,w) takes the interior of the quadrilateral

with vertices su(u), su(x), su(w), and su(y) onto the interior

of the quadrilateral with vertices sw(u), sw(x), sw(w), and

sw(y).
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Building PPS’s

Then, the function g(u,w) takes the interior of the quadrilateral

with vertices su(u), su(x), su(w), and su(y) onto the interior

of the quadrilateral with vertices sw(u), sw(x), sw(w), and

sw(y).

su(u)

su(x)

su(w)

su(y)

sw(y)

sw(x)

sw(w)

sw(u)

u

w

x
y

R
2

ST

g(u,w)
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Building PPS’s

For every point p in the interior of the quadrilateral given

by su(u), su(x), su(w), and su(y), we define the function

g(u,w)(p) as

R−1
(w,u) ◦ H ◦ R(u,w)(p) ,

where
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R−1
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p

su(u)

su(x)
su(w)
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For every point p in the interior of the quadrilateral given

by su(u), su(x), su(w), and su(y), we define the function

g(u,w)(p) as

R−1
(w,u) ◦ H ◦ R(u,w)(p) ,

where

R(u,w)

(0, 0) (1, 0)

(
1

2
,−

√

3

2
)

(
1

2
,

√

3

2
)

p

su(u)

su(x)
su(w)

su(y)
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For every point p in the interior of the quadrilateral given

by su(u), su(x), su(w), and su(y), we define the function

g(u,w)(p) as

R−1
(w,u) ◦ H ◦ R(u,w)(p) ,

where

R(u,w)
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√
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(
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,−

√

3
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p

su(u)
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−1
(w,u)

sw(w)

sw(u)

sw(x)

sw(y)
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The function R(u,w) can be expressed by

Π−1
◦ (id × ρu) ◦ Π ◦ Mβi

,

where
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The function R(u,w) can be expressed by

Π−1
◦ (id × ρu) ◦ Π ◦ Mβi

,

where

• Mβi
is a rotation by −i ·

2π

mu
around the origin,
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Building PPS’s

The function R(u,w) can be expressed by

Π−1
◦ (id × ρu) ◦ Π ◦ Mβi

,

where

• Mβi
is a rotation by −i ·

2π

mu
around the origin,

• Π(x, y) = (
√

x2 + y2, θ) ,

48



Building PPS’s

The function R(u,w) can be expressed by

Π−1
◦ (id × ρu) ◦ Π ◦ Mβi

,

where

• Mβi
is a rotation by −i ·

2π

mu
around the origin,

• Π(x, y) = (
√

x2 + y2, θ) ,

• ρu(θ) = θ ·

mu

6
.
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For every point p outside the interior of the quadrilateral given

by su(u), su(x), su(w), and su(y), the value g(u,w)(p) can be

any point, q ∈ R2, outside the unit circle centered at the

origin.
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For any two (τ, u), (η, w) ∈ I, we define Ω(τ,u)(η,w) as follows:
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For any two (τ, u), (η, w) ∈ I, we define Ω(τ,u)(η,w) as follows:

η

τ

u = w

s(u)

st(u, ST )

Tu

Ω(τ,u) Ω(η,w)

f(τ,u)(Ω(τ,u)) f(η,w)(Ω(η,w))

f−1
(τ,u)

Ω(τ,u)(η,w)

R
2

(1) If u = w then

Ω(τ,u),(η,w) = f−1
(τ,u)

(

f(τ,u)(Ωτ,u) ∩ f(η,w)(Ω(η,w))
)

.
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τ

η

u

w

τ

η

w
u

τ

η

u

w

(2) If u != w and w is a vertex of τ or u is a vertex of η

then
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Ω(τ,u),(η,w) = f−1
(τ,u)

(

f(τ,u)(Ωτ,u) ∩ g(u,w)(f(η,w)(Ω(η,w)))
)

.

Ω(τ,u)(η,w)

Ω(τ,u) Ω(η,w)

f(η,w)(Ω(η,w))

f(τ,u)(Ω(τ,u))

f−1
(τ,u)

g(u,w)

Tu

Tw

su(w)

su(u)
sw(w)

sw(x)

sw(u)

sw(y)
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(3) If u != w and w is not a vertex of τ nor u is a vertex of

η then

Ω(τ,u),(η,w) = ∅ .
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We can show that the above definition of gluing domains sat-

isfies condition (2) of the definition of sets of gluing data we

saw before:
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We can show that the above definition of gluing domains sat-

isfies condition (2) of the definition of sets of gluing data we

saw before:

(2) For every pair (i, j)×I×I, the set Ωij is an open subset

of Ωi. Furthermore, Ωii = Ωi and Ωji "= ∅ if and only

if Ωij "= ∅.
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Parametrizations

55

Ω(τ,u)

Ω(τ,u),(η,w)

Ω(η,w)

Ω(η,w),(τ,u)

ϕ(η,w),(τ,u)

p

θ(τ,u) θ(η,w)
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For each (σ, v) ∈ I, we define the parametrization

θ(σ,v) : Ω(σ,v) → R
3 ,

such that for each p ∈ Ω(σ,v),

θ(σ,v)(p) =
∑

(τ,u)∈J(p)

ω(σ,v)(τ,u) · ψτ,u ◦ ϕ(τ,u)(σ,v)(p) ,

where
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ω(σ,v)(τ,u)(p) =
γτ,u ◦ ψ(τ,u) ◦ ϕ(τ,u)(σ,v)(p)
∑

(η,w)∈J(p)

γ(η,w) ◦ ϕ(η,w)(σ,v)(p)

and

J(p) = {(η, w) ∈ I | p ∈ Ω(σ,v)(η,w)} .
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The function

ψ(τ,u) : R
2
→ R

3

is a Bézier patch whose control points are defined on Ωτ,u.

58



Building PPS’s

The function

ψ(τ,u) : R
2
→ R

3

is a Bézier patch whose control points are defined on Ωτ,u.

R
2

R
3

Ω(τ,u) ψ(τ,u)(Ω(τ,u))
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y

0
0.1

0.2

0.3
z

.5

-0.25

0

0.25xγ(τ,u)(Ω(τ,u))

The function

γ(τ,u) : R
2
→ R

is a “hat” function defined as the product of three C∞ curves:
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We can show that

θ(τ,u)(p) = θ(η,w)(ϕ(η,w)(τ,u)(p)) ,

for all p ∈ Ω(τ,u)(η,w) and for all ((τ, u), (η, w)) ∈ K.

60

Ω(τ,u)
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p

θ(τ,u) θ(η,w)
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Shading reveals lack of smoothness
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Catmull-Clark
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Catmull-Clark M built from Catmull-Clark
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PN triangle M built from PN triangle
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ST Catmull-Clark M from Catmull-Clark
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