Chapter 6

Polar Duality, Polyhedra and
Polytopes

6.1 Polarity and Duality

In this section, we apply the intrinsic duality afforded by
a Euclidean structure to the study of convex sets and, in
particular, polytopes.

Let E = E" be a Euclidean space of dimension n. Pick
any origin, O, in E" (we may assume O = (0,...,0)).

We know that the inner product on £ = E" induces a
duality between E and its dual E*, namely, u +— ¢,

where ¢, is the linear form defined by ¢, (v) = u - v, for
allv e B.
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For geometric purposes, it is more convenient to recast
this duality as a correspondence between points and hy-
perplanes, using the notion of polarity with respect to the

unit sphere, S" ! = {a € E" | |Oa|| = 1}.

First, we need the following simple fact: For every hy-
perplane, H, not passing through O, there is a unique
point, A, so that

H={ae€E"| Oh-0Oa=1}

Using the above, we make the following definition:

Definition 6.1.1 Given any point, a # O, the polar
hyperplane of a (w.r.t. S"1) or dual of a is the hyper-
plane, al, given by

o' ={beE"|Oa-Ob=1}.
Given a hyperplane, H, not containing O, the pole of H
(w.r.t S"1) or dual of H is the (unique) point, H', so

that
H={aecE"|OH' - Oa=1}.
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We often abbreviate polar hyperplane to polar.

We immediately check that a'm = @ and H'T = H, so, we
obtain a bijective correspondence between E" —{O} and
the set of hyperplanes not passing through O.

When a is outside the sphere S"~!, there is a nice geo-
metric interpetation for the polar hyperplane, H = a'.
Indeed, in this case, since

H=a'={bcE"|Oa-Ob=1}

and ||Oal| > 1, the hyperplane H intersects S™ ! (along
an (n — 2)-dimensional sphere) and if b is any point on
H N S" ! we claim that Ob and ba are orthogonal.

This means that H N .S"™! is the set of points on S}
where the lines through @ and tangent to S” ! touch S~
(they form a cone tangent to S" ! with apex a).
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Figure 6.1: The polar, af, of a point, a, outside the sphere S™~!

Also, observe that for any point, a # O, and any hy-
perplane, H, not passing through O, if a« € H, then,
H' € a', i.e, the pole, H', of H belongs to the polar, a',
of a.

Ifa=(ay,...,a,), the equation of the polar hyperplane,
al, is
a X1+ -+a,X, =1

Now, we would like to extend this correspondence to sub-
sets of £, in particular, to convex sets.
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Given a hyperplane, H, not containing O, we denote by
H_ the closed half-space containing O.

Definition 6.1.2 Given any subset, A, of E", the set
A*={beE"|0a-Ob< 1, forallac A} = [(a)_,

acA
a#0

is called the polar dual or reciprocal of A.

To simplify notation we write a for (af)_. Note that
{O}* = E", so it is convenient to set Ol = E", even
though OT is undefined.

We use a different notation, a' and H', for polar hy-

perplanes and poles, as opposed to A*, for polar duals,
to avoid confusion. Indeed, H' and H*, where H is a
hyperplane (resp. a' and {a}*, where a is a point) are
very different things!
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V2 V4

U1 Us

Figure 6.2: The polar dual of a polygon

In Figure 6.2, the polar dual of the polygon (vy, v, v3, v4, Us)
is the polygon shown in green.

This polygon is cut out by the half-planes determined by
the polars of the vertices (v1, vo, v3, V4, v5) and containing
the center of the circle.

By definition, A* is convex even if A is not.
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Furthermore, note that

(1) A C A*.

(2) If A C B, then B* C A*.

(3) If A is convex and closed, then A* = (0A)*.

It follows immediately from (1) and (2) that A™* = A*.
Also, if B"(r) is the (closed) ball of radius » > 0 and cen-
ter O, it is obvious by definition that B™(r)* = B™(1/r).

We would like to investigate the duality induced by the
operation A — A*.

Unfortunately, it is not always the case that A* = A,
but this is true when A is closed and convex, as shown in
the following proposition:
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Proposition 6.1.3 Let A be any subset of E" (with
origin O ).

(i) If A is bounded, then O € %i*; if O € ;l, then A*
18 bounded.

(11) If A is a closed and convexr subset containing O,

then A™ = A.

Note that
A" = {ceE"|0d-0Oc<1 forallde A*}
= {ceE"| (Vd e E")(if Od-Oa<1
foralla € A, then Od-Oc <1)}.
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Remark: For an arbitrary subset, A C [E”, it can be

shown that A* = conv(A U{O}), the topological clo-
sure of the convex hull of AU {O}.

Proposition 6.1.3 will play a key role in studying poly-
topes, but before doing this, we need one more proposi-
tion.

Proposition 6.1.4 Let A be any closed convex sub-

set of E" such that O € A. The polar hyperplanes of
the points of the boundary of A constitute the set of
supporting hyperplanes of A*. Furthermore, for any
a € 0A, the points of A* where H = a' is a sup-
porting hyperplane of A* are the poles of supporting
hyperplanes of A at a.
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6.2 Polyhedra, H-Polytopes and V-Polytopes

There are two natural ways to define a convex polyhedron,

A:
(1) As the convex hull of a finite set of points.

(2) As a subset of E" cut out by a finite number of hyper-
planes, more precisely, as the intersection of a finite
number of (closed) half-spaces.

As stated, these two definitions are not equivalent because
(1) implies that a polyhedron is bounded, whereas (2)
allows unbounded subsets.

Now, if we require in (2) that the convex set A is bounded,
it is quite clear for n = 2 that the two definitions (1) and
(2) are equivalent; for n = 3, it is intuitively clear that
definitions (1) and (2) are still equivalent, but proving this
equivalence rigorously does not appear to be that easy.

What about the equivalence when n > 47
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[t turns out that definitions (1) and (2) are equivalent for
all n, but this is a nontrivial theorem and a rigorous proof
does not come by so cheaply:.

Fortunately, since we have Krein and Milman’s theorem
at our disposal and polar duality, we can give a rather
short proof.

The hard direction of the equivalence consists in proving
that definition (1) implies definition (2).

This is where the duality induced by polarity becomes
handy, especially, the fact that A™ = A! (under the
right hypotheses).

First, we give precise definitions (following Ziegler |?]).
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/

Figure 6.3: (a) An H-polyhedron. (b) A V-polytope

(a) (b)

Definition 6.2.1 Let £ be any affine Euclidean space
of finite dimension, n.! An H-polyhedron in &, for short,
a polyhedron, is any subset, P = [i_; C;, of € defined as
the intersection of a finite number of closed half-spaces,
C;; an H-polytope in £ is a bounded polyhedron and a
V-polytope is the convex hull, P = conv(S), of a finite
set of points, S C &.

Examples of an H-polyhedron and of a V-polytope are
shown in Figure 6.3.

N
I'This means that the vector space, &£ , associated with £ is a Euclidean space.
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Obviously, polyhedra and polytopes are convex and closed
(in £). Since the notions of H-polytope and V-polytope
are equivalent (see Theorem 6.3.1), we often use the sim-
pler locution polytope.

Note that Definition 6.2.1 allows H-polytopes and V-
polytopes to have an empty interior, which is sometimes
an nconvenience.

This is not a problem. In fact, we can prove that we
may always assume to &€ = E" and restrict ourselves to
the affine hull of A (some copy of E?, for d < n, where
d = dim(A), as in Definition 3.2.3).
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Since the boundary of a closed half-space, C;, is a hy-
perplane, H;, and since hyperplanes are defined by affine
forms, a closed half-space is defined by the locus of points
satisfying a “linear” inequality of the form a; - x < b; or
a; - x > b;, for some vector a; € R" and some b; € R.

Since a; - x > b; is equivalent to (—a;) - x < —b;, we may
restrict our attention to inequalities with a < sign.

Thus, if A is the d x p matrix whose ™" row is a;, we see

that the H-polyhedron, P, is defined by the system of
linear inequalities, Ax < b, where b = (by,...,b,) € RP.

We write

P =P(Ab), with P(Ab)={x e R"| Az <b}.

An equation, a; - x = b;, may be handled as the conjunc-
tion of the two inequalities a;-x < b; and (—a;)-x < —b;.
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Also, if 0 € P, observe that we must have b, > 0 for
v = 1,...,p. In this case, every inequality for which
b; > 0 can be normalized by dividing both sides by b;, so
we may assume that b; =1 or b; = 0.

Remark: Some authors call “convex” polyhedra and
“convex’ polytopes what we have simply called polyhedra
and polytopes.

Since Definition 6.2.1 implies that these objects are con-
vex and since we are not going to consider non-convex
polyhedra in this chapter, we stick to the simpler termi-
nology.

One should consult Ziegler [?], Berger [?], Grunbaum |?]
and especially Cromwell [?], for pictures of polyhedra and
polytopes.

Even better, take a look at the web sites listed in the web
page for CIS610!
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Figure 6.4: Example of a polytope (a dodecahedron)

Figure 6.4 shows the picture a polytope whose faces are
all pentagons. This polytope is called a dodecahedron.
The dodecahedron has 12 faces, 30 edges and 20 vertices.

Obviously, an n-simplex is a V-polytope. The standard
n-cube 1s the set

The standard cube is a V-polytope. The standard n-
cross-polytope (or n-co-cube) is the set

{(wn, o) €B | D |mil < 1}
1=1

It is also a V-polytope.
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What happens if we take the dual of a V-polytope (resp.
an H-polytope)? The following proposition, although
very simple, is an important step in answering the above
question.

Proposition 6.2.2 Let S = {a;}!_, be a finite set of
points in E" and let A = conv(S) be its convex hull. If
S # {0}, then, the dual, A*, of A w.r.t. the center O

1s an H-polyhedron; furthermore, if O € A, then A*
15 an H-polytope, 1.e., the dual of a V-polytope with
nonempty interior is an H-polytope. If A =S = {0},
then A* = EX.

Thus, the dual of the convex hull of a finite set of points,
{ai,...,a,},is the intersection of the half-spaces contain-

ing O determined by the polar hyperplanes of the points
a;. (Recall that (a;)7 =E"if a; = O.)
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[t is convenient to restate Proposition 6.2.2 using matri-
ces.

First, observe that the proot of Proposition 6.2.2 shows
that

conv({ay,...,a,})" = conv({ay,...,a,} U{O})".

Therefore, we may assume that not all a; =0

(1 <4 < p). Ifwepick O as an origin, then every point a;
can be identified with a vector in IE” and O corresponds
to the zero vector, 0.

Observe that any set of p points, a; € E", corresponds
to the n x p matrix, A, whose j™ column is a;.

Then, the equation of the the polar hyperplane, a;, of
any a; (#0) is a; - x = 1, that is
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Consequently, the system of inequalities defining
conv({ay,...,a,})* can be written in matrix form as

conv({ay,...,a,}) ={z € R" | A'x <1},

where 1 denotes the vector of R? with all coordinates

equal to 1. We write
PA"1)={zeR"| Az <1}

Proposition 6.2.3 Given any set of p points,
{ai,...,a,}, in R" with {ai,...,a,} # {0}, if A is the

n X p matriz whose 7™ column is a;, then
conv({ai,...,a,}) = P(A" 1),
with P(A", 1) ={zx e R" | A’z < 1}.

Conversely, given any p X n matriz, A, not equal to
the zero matriz, we have

P(A,1)" =conv({ay,...,a,} U{0}),
where a; € R" is the i™ row of A or, equivalently,
PAL1 ={zcR"|z2=A"t, tcRP, t >0, It = 1},

where 1 1s the row vector of length p whose coordinates
are all equal to 1.
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Using the above, the reader should check that the dual of
a simplex is a simplex and that the dual of an n-cube is
an n-cross polytope.

We will see shortly that if A is an H-polytope and if
O € A, then A* is also an H-polytope.

For this, we will prove first that an H-polytope is a V-
polytope. This requires taking a closer look at polyhedra.

Note that some of the hyperplanes cutting out a polyhe-
dron may be redundant.

If A= ﬂle C; is a polyhedron (where each closed half-
space, ()}, 1s associated with a hyperplane, H;, so that
0C; = H;), we say that ﬂ§=1 C; is an irredundant de-
composition of A if A cannot be expressed as

A =L, C! with m < t (for some closed half-spaces,
).
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Proposition 6.2.4 Let A be a polyhedron with
nonempty interior and assume that A = ﬂﬁzl C; 1s an
wrredundant decomposition of A. Then,

(i) Up to order, the C;’s are uniquely determined by
A.

(ii) If H; = OC; is the boundary of C;, then H;N A is a
polyhedron with nonempty interior in H;, denoted
Facet; A, and called a facet of A.

(iii) We have A = | J._, Facet; A, where the union is
irredundant, i.e., Facet; A is not a subset of Facet; A,

for all 1 # .

As a consequence, if A is a polyhedron, then so are its
facets and the same holds for H-polytopes.

If A is an H-polytope and H is a hyperplane with

HN A# (), then HN A is an H-polytope whose facets
are of the form H N F', where F' is a facet of A.
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We can use induction and define k-taces, for
0<k<n-—1.

Definition 6.2.5 Let A C E” be a polyhedron with

nonempty interior. We define a k-face of A to be a facet
of a (k + 1)-face of A, for k = 0,...,n — 2, where an
(n — 1)-face is just a facet of A. The 1-faces are called
edges. Two k-faces are adjacent if their intersection is a

(k — 1)-face.

The polyhedron A itself is also called a face (of itself) or
n-face and the k-faces of A with & < n — 1 are called
proper faces of A.

If A= ﬂle C; is an irredundant decomposition of A
and H; is the boundary of C;, then the hyperplane, H;,
is called the supporting hyperplane of the facet H; N A.
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We suspect that the O-faces of a polyhedron are vertices
in the sense of Definition 3.4.1.

This is true and, in fact, the vertices of a polyhedron
coincide with its extreme points (see Definition 3.4.3).

Proposition 6.2.6 Let A C E” be a polyhedron with
nonempty interior.

(1) For any point, a € OA, on the boundary of A, the
intersection of all the supporting hyperplanes to A
at a coincides with the intersection of all the faces
that contain a. In particular, points of order k of
A are those points in the relative interior of the k-
faces of A?; thus, 0-faces coincide with the vertices

of A.

(2) The vertices of A coincide with the extreme points

of A.

We are now ready for the theorem showing the equiva-
lence of V-polytopes and ‘H-polytopes.

2Given a convex set, S, in A", its relative interior is its interior in the affine hull of S (which might be
of dimension strictly less than n).
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6.3 The Equivalence of H-Polytopes and V-Polytopes

The next result is a nontrivial theorem usually attributed
to Weyl and Minkowski (see Barvinok [?)).

Theorem 6.3.1 (Weyl-Minkowski) If A is an

H-polytope, then A has a finite number of extreme
points (equal to its vertices) and A is the convexr hull
of its set of vertices; thus, an H-polytope 1s a V-
polytope. Moreover, A has a finite number of k-faces
(for k. = 0,...,d — 2, where d = dim(A)). Con-
versely, the convex hull of a finite set of points is an
H-polytope. As a consequence, a V-polytope s an H-

polytope.

In view of Theorem 6.3.1, we are justified in dropping the
V) or ‘H in front of polytope, and will do so from now on.
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Theorem 6.3.1 has some interesting corollaries regarding
the dual of a polytope.

Corollary 6.3.2 If A is any polytope in E™ such that
the interior of A contains the origin, O, then the dual,
A*, of A is also a polytope whose interior contains O

and A™ = A.

Corollary 6.3.3 If A is any polytope in E" whose in-
terior contains the origin, O, then the k-faces of A
are in bijection with the (n — k — 1)-faces of the dual
polytope, A*. This correspondence is as follows: If
Y = aff(F) is the k-dimensional subspace determining
the k-face, F', of A then the subspace, Y* = aff(F™),
determining the corresponding face, F™*, of A*, is the
intersection of the polar hyperplanes of points in Y .

We also have the following proposition whose proof would
not be that simple if we only had the notion of an H-

polytope.
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Proposition 6.3.4 If A C E" is a polytope and
f:E" — E™ is an affine map, then f(A) is a polytope
in K™,

The reader should check that the Minkowski sum of poly-
topes is a polytope.

We were able to give a short proof of Theorem 6.3.1 be-
cause we relied on a powerful theorem, namely, Krein and
Milman.

A drawback of this approach is that it bypasses the in-
teresting and important problem of designing algorithms
for finding the vertices of an H-polyhedron from the sets
of inequalities defining it.

A method for doing this is Fourier-Motzkin elimination,
see Ziegler [?] (Chapter 1). This is also a special case of
linear programming.

It is also possible to generalize the notion of V-polytope
to polyhedra using the notion of cone.
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6.4 The Equivalence of H-Polyhedra and V-Polyhedra

The equivalence of H-polytopes and V-polytopes can be
generalized to polyhedral sets, i.e., finite intersections of
half-spaces that are not necessarily bounded. This equiv-
alence was first proved by Motzkin in the early 1930’s.

Definition 6.4.1 Let £ be any affine Euclidean space
H
of finite dimension, d (with associated vector space, & ).

—
A subset, C' C &, is a cone if C' is closed under linear
combinations involving only nonnnegative scalars. Given

a subset, V C ?, the conical hull or positive hull of V
is the set

cone(V) = {Z Aivi [ {vitier TV A >0 foralle e I}
T

A V-polyhedron or polyhedral set is a subset, A C &,
such that

A = conv(Y') + cone(V)
= {a+v]aé€conv(Y), ve€cone(V)},

—

where V' C & 1is a finite set of vectors and Y C &€ is a
finite set of points.
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H
Aset, C C & ,is a V-cone or polyhedral cone it C'is
the positive hull of a finite set of vectors, that is,
C' = cone({uy,...,upy}),

—
for some vectors, uy,...,u, € &. An H-cone is any

H
subset of & given by a finite intersection of closed half-
spaces cut out by hyperplanes through 0.

The positive hull, cone(V'), of V' is also denoted pos(V).

Observe that a V-cone can be viewed as a polyhedral set
for which Y = {O}, a single point.

However, if we take the point O as the origin, we may
view a V-polyhedron, A, for which Y = {O}, as a V-

cone.

We will switch back and forth between these two views
of cones as we find it convenient
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As a consequence, a (V or H)-cone always contains 0,
sometimes called an apex of the cone.

We can prove that we may always assume that £ = E¢
and that our polyhedra have nonempty interior. It will
be convenient to decree that E? is an H-polyhedron.

The generalization of Theorem 6.3.1 is that every V-
polyhedron is an H-polyhedron and conversely.

Ziegler proceeds as follows: First, he shows that the equiv-

alence of V-polyhedra and H-polyhedra reduces to the

equivalence of V-cones and H-cones using an “old trick”

of projective geometry, namely, “homogenizing” |?] (Chap-
ter 1).

Then, he uses two dual versions of Fourier-Motzkin elim-
ination to pass from V-cones to H-cones and conversely.

Since the homogenization method is an important tech-
nique we will describe it in some detail.
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However, it turns out that the double dualization tech-
nique used in the proof of Theorem 6.3.1 can be eas-
ily adapted to prove that every V-polyhedron is an H-
polyhedron.

Moreover, it can also be used to prove that every H-
polyhedron is a V-polyhedron!

So, we will not describe the version of Fourier-Motzkin
elimination used to go from V-cones to H-cones.

However, we will present the Fourier-Motzkin elimination
method used to go from H-cones to V-cones.

In order to avoid confusion between the zero vector and
the origin of E?, we will denote the origin by O and the
center of polar duality by (2.
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Given any nonzero vector, u € RY let u! be the closed
half-space
W ={zeR |z u<0}.

In other words, u! is the closed-half space bounded by the
hyperplane through €2 normal to u and on the “opposite
side” of u.

Proposition 6.4.2 Let A = conv(Y') + cone(V) C E¢
be a V-polyhedron with Y ={yi,..., y,} and

V ={vy,...,u,}. Then, for any point, Q, if

A # {Q}, then the polar dual, A*, of A w.r.t. §) is the
H-polyhedron given by

A = oh-nN)-

1=1

Furthermore, if A has nonempty interior and €2 be-
longs to the interior of A, then A* is bounded, that
is, A" is an H-polytope. If A = {Q}, then A* is the
special polyhedron, A* = EX.
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It is fruitful to restate Proposition 6.4.2 in terms of ma-
trices (as we did for Proposition 6.2.2).

First, observe that

(conv(Y') + cone(V))* = (conv(Y U {Q}) + cone(V))*.

If we pick €2 as an origin then we can represent the points
in Y as vectors. The old origin is still denoted O and €2
is now denoted 0. The zero vector is denoted O.

If Y is the d x p matrix whose " column is y; and V is
the d x ¢ matrix whose ;™ column is vj, then A* is given
by

A ={zcR'|Y2 <1, Vz <0l
We write
PYT,1,VI0)={zcR!|YT2 <1, Vx <0}
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Proposition 6.4.3 Let {yi,...,y,} be any set of points
in B and let {vy,...,v,} be any set of nonzero vec-
tors in RY. IfY is the d X p matriz whose i column
is y; and V is the d X ¢ matriz whose §™ column is
v;, then

(conv({y1,...,yp}) Ucone({vy,...,u,}))" =
PY', 1,V 0),
with
PY" 1,V 0)={zecR"| Y2 <1, V'z <0}

Conversely, given any p X d matriz, Y, and any q X d
matriz, V', we have

P(Y,1;,V,0)" =
conv({yi, ..., yp} U{0}) Ucone({vy,...,v,}),

where y; € R™ is the i™ row of Y and v; € R" is the

7™ row of V' or, equivalently,

PY,1,V,00 ={zcR|z=Y u+V't,
ueRP teRY u,t >0, lu=1},

where 1 1s the row vector of length p whose coordinates
are all equal to 1.
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We can now use Proposition 6.4.2, Proposition 6.1.3 and
Krein and Millman’s Theorem to prove that every V-
polyhedron is an H-polyhedron.

Proposition 6.4.4 Every V-polyhedron, A, is an H-
polyhedron. Furthermore, if A # E?, then A is of the
form A= P(Y,1).

Interestingly, we can now prove easily that every
H-polyhedron is a V-polyhedron.

Proposition 6.4.5 Every H-polyhedron is a
V-polyhedron.

Putting together Propositions 6.4.4 and 6.4.5 we obtain
our main theorem:

Theorem 6.4.6 (Equivalence of H-polyhedra and V-
polyhedra) Every H-polyhedron is a V-polyhedron and
conversely.
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Even though we proved the main result of this section,
it is instructive to consider a more computational proof
making use of cones and an elimination method known
as Fourier-Motzkin elimination.

The problem with the converse of Proposition 6.4.4 when
A is unbounded (i.e., not compact) is that Krein and
Millman’s Theorem does not apply.

We need to take into account “points at infinity” corre-
sponding to certain vectors.

The trick we used in Proposition 6.4.4 is that the polar
dual of a V-polyhedron with nonempty interior is an H-

polytope.

This reduction to polytopes allowed us to use Krein and
Millman to convert an H-polytope to a V-polytope and
then again we took the polar dual.
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Another trick is to switch to cones by “homogenizing”.

Given any subset, S C E? we can form the cone,
C(S) C E¥*! by “placing” a copy of S in the hyperplane,
Hy .y CE™ of equation 2447 = 1, and drawing all the
half lines from the origin through any point of S.

Let P C E? be an ‘H-polyhedron. Then, P is cut out by
m hyperplanes, H;, and for each H;, there is a nonzero
vector, a;, and some b; € R so that

Hi={xcE"|a;-x=b}
and P is given by

P:m{IEEd|aZI’§bZ}

1=1

If A denotes the m x d matrix whose ¢-th row is a; and
b is the vector b = (by, ..., by,), then we can write

P =P(Ab) ={zcE'| Az < b}.
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We “homogenize” P(A,b) as follows: Let C(P) be the
subset of E*! defined by

C(P) = {( . ) e R™ | Az < xgp1b, xgq1 > O}

Ld+1
= {( ! ) | Az — 24410 <0, =244 SO}-
Ld+1

Thus, we see that C(P) is the H-cone given by the system
of inequalities

(#2) ()= 0)

P — C(P) M Hd+1.

and that

Conversely, if @ is any H-cone in E4™! (in fact, any H-
polyhedron), it is clear that P = Q N Hyyq is an
H-polyhedron in E.
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Let us now assume that
P C E%is a V-polyhedron, P = conv(Y) + cone(V),
where Y = {y1,...,y} and V = {vy,...,v,}.

Define Y = {91,...,7,} CEL and
V={vy,...,0,} CEM by

~ _ Y; ~ _ U
(1) - ()

We check immediately that
C(P) = cone({Y UVY})
is a V-cone in E*! such that
C'=C(P)N Hyy,

where H;,4 is the hyperplane of equation x;.1 = 1.

Conversely, if C' = cone(W) is a V-cone in E4T| with

)

W;g+1 > 0 for every w; € W, we prove next that
P =CnN Hg is a V-polyhedron.
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Proposition 6.4.7 (Polyhedron—Cone Correspondence)
We have the following correspondence between polyhe-
dra in E¢ and cones in EH!:

(1) For any H-polyhedron, P C E?, if
P = P(Ab) = {z € EY| Az < b}, where A is an
m X d-matrix and b € R™, then C'(P) given by

() ()= ()

is an H-cone in B! and P = C(P)N Hyy1, where
H;.1 is the hyperplane of equation x4.1 = 1. Con-
versely, if Q is any H-cone in B (in fact, any
H-polyhedron), then P = Q N Hyyq is an
H-polyhedron in E.
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(2) Let P C E? be any V-polyhedron, where
P = conv(Y) 4 cone(V) with Y = {y1,...,y,} and
V={v,...,v,}. Define Y = {71,...,5,} € EH,
and V = {01,...,0,} CE™L by

~ _ (Y ~ _ (Y
=) w=(i)

C(P) = Cone({? U ‘A/})
is a V-cone in B such that
C — C(P) M Hd_|_1,

Conversely, if C = cone(W) is a V-cone in K4,
with w;q1 > 0 for every w; € W, then
P =CnNHyy is a V-polyhedron in E°.

Then,
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By Proposition 6.4.7, if P is an H-polyhedron, then C'(P)
is an H-cone. If we can prove that every H-cone is a V-

cone, then again, Proposition 6.4.7 shows that
P = C(P)N Hgyq is a V-polyhedron.

Therefore, in order to prove that every H-polyhedron is
a V-polyhedron it suffices to show that every H-cone is a
V-cone.

By a similar argument, Proposition 6.4.7 show that in or-
der to prove that every V-polyhedron is an H-polyhedron
it suffices to show that every V-cone is an H-cone.

We will not prove this direction again since we already
have it by Proposition 6.4.4.

[t remains to prove that every H-cone is a V-cone.

Let C C E? be an H-cone. Then, C is cut out by m
hyperplanes, H;, through 0.
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For each H;, there is a nonzero vector, u;, so that
Hi={x € E"|u; -z =0}
and C' is given by
m
C:ﬂ{xEEﬂui-xSO}.
i=1

If A denotes the m x d matrix whose ¢-th row is u;, then
we can write

C=P(A0) ={zecE!| Az <0}.
Observe that C' = Cy(A) N Hy,, where

Co(A) = {(f}) e RH™ | Az < w}

is an H-cone in E¥ and

no-{(2) exe 1o

is a hyperplane in EH.
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We claim that Cy(A) is a V-cone.

v ) satisfying

This follows by observing that for every (w

Ax < w, we can write

(2)- Z asign(a) )
=3ty any) ().

j=1
and then

C'O(A):cone({:l:(;féi) |1§z‘§d}
(o) r=ien)

Since C' = Cy(A) N Hy, is now the intersection of a V-
cone with a hyperplane, to prove that C' is a V-cone it is
enough to prove that the intersection of a V-cone with a
hyperplane is also a V-cone.
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For this, we use Fourier-Motzkin elimination. It suf-
fices to prove the result for a hyperplane, Hy, in E* of
equation y, =0 (1 < k < d+m).

Proposition 6.4.8 (Fourier-Motzkin Elimination) Say
C = cone(Y) C E? is a V-cone. Then, the intersec-
tion C'N Hy, (where Hy is the hyperplane of equation
yr = 0) is a V-cone, C'N Hy, = cone(Y'*), with

Y% = Ly Ly = 0YU{yany; — yjnwi | yin > 0, gy < 0},

the set of vectors obtained from Y by “eliminating the
k-th coordinate”. Here, each y; is a vector in RY.

As discussed above, Proposition 6.4.8 implies (again!)

Corollary 6.4.9 Every H-polyhedron is a
V-polyhedron.

Another way of proving that every V-polyhedron is an
‘H-polyhedron is to use cones.
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Let P = conv(Y') + cone(V) C E? be a V-polyhedron.

We can view Y as a d X p matrix whose ¢th column is the
1th vector in Y and V' as d X ¢ matrix whose jth column
is the jth vector in V.

Then, we can write

P={zeR!| (JueR)(3teR
(x=Yu+Vt,u>0,Tu=1,1t>0)},

where I 1s the row vector

T=(1,...,1).

p

Now, observe that P can be interpreted as the projection
of the H-polyhedron, P C E*P*4_ given by

~

P={(z,u,t) € R"PT | x =Yu+Vt,
u>0,Iu=1,t>0}

onto RY.
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Consequently, if we can prove that the projection of an
H-polyhedron is also an H-polyhedron, then we will have
proved that every V-polyhedron is an ‘H-polyhedron.

In view of Proposition 6.4.7 and the discussion that fol-
lowed, it is enough to prove that the projection of any
H-cone is an H-cone.

This can be done by using a type of Fourier-Motzkin elim-
ination dual to the method used in Proposition 6.4.8.

We state the result without proot and refer the interested
reader to Ziegler [?], Section 1.2-1.3, for full details.
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Proposition 6.4.10 If C = P(A,0) C E? is an H-
cone, then the projection, proj.(C), onto the hyper-
plane, Hy, of equation yi = 0 1s given by

proj.(C) = elimg(C) N Hy., with

elim;(C) = {x € RY| (3t € R)(x + te, € P)}
— {z—tep | z€ P, t e R} = P(A*)0)
and where the rows of A% are given by

A/k = {CLZ' | ;. = O}U{aikaj—ajkai ’ a;r > O,CL]‘k < 0}

It should be noted that both Fourier-Motzkin elimination
methods generate a quadratic number of new vectors or
inequalities at each step and thus they lead to a combi-
natorial explosion.

Therefore, these methods become intractable rather quickly:.

The problem is that many of the new vectors or inequali-
ties are redundant. Thereore, it is important to find ways
of detecting redundancies and there are various methods
for doing so.
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Again, the interested reader should consult Ziegler |?],
Chapter 1.

We conclude this section with a version of Farkas Lemma,
for polyhedral sets.

Lemma 6.4.11 (Farkas Lemma, Version IV) Let Y
be any d X p matriz and V be any d X q matriz. For
every z € R?, exactly one of the following alternatives
OCCUTS:

(a) There exist u € RP and t € RY, with u >0, t > 0,
Iu=1and z=Yu+ Vt.

(b) There is some wvector, (a,c) € R such that
cly; > o for all i with 1 < i < p, chj > 0 for
all § with1 < j <gq, and c'z < a.

Observe that Farkas IV can be viewed as a separation
criterion for polyhedral sets.



