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The permutahedron

We obtain a k¥ — 1 dimensional o)}
picking a point A = (\q,..., ;) € R* with
distinct coordinates;

permuting the coordinates of A in all possible
ways to get k! points;

taking the convex hull of those points.
Py = conv(G; - \)

Py conv ({(%(1), . -»)\a(k)) L 0 € Gk})
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The permutahedron

It Is £k — 1 dimensional because the points
{()\0'(1)7 IR )\o'(k)) . O & Gk}

all lie on the same subspace of R”:
k k

x1+x2+"'+xk:Z)‘i:Z)\a(i)-
= 1=1

We will assume that \{ +---+ X\ = 0.
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Examples of permutahedra




Examples of permutahedra




Integral permutahedra

Since P, = F,,), we will further assume that

)\1>>\2>"'>)\k-

We will usually consider A, Le. e 7k
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Integral permutahedra

Since P, = F,,), we will further assume that

>\1>>\2>°">)\k-
We will usually consider A, Le. e 7k

Then P, is an integral polytope, and P, N Z* is
the lattice spanned by the vectors

{67;—63' : 1§Z<]§/€},
or, equivalently, by the vectors

{Gi—67;_|_1 X 1§Z§]€—1}
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Two functions on the permutahedron

We will consider two functions on an integral
permutahedron.

A discrete one: , defined
on the lattice points in the permutahedron.

A continuous one: the
. defined on the whole
permutahedron.

Both functions partition the permutahedron into
polytopal domains over which they are given by
polynomials.
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Gelfand-Tsetlin diagrams

A IS an array of integers
of the form
k k k k
Ag) A 1),X§) ) 1)... A;21 . Aé)
)‘1 )‘2 >‘k—1
)\§2) )\;2)
R

such that
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Gelfand-Tsetlin diagrams
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Gelfand-Tsetlin diagrams
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Gelfand-Tsetlin diagrams

& (k—1) : (k—1) Nt (k—1)
)‘1 )‘2 )‘k—l
)\§2) )\;2)
1
K
and (41) (4+1)
A Aj+l
Q g/
NG
J

for every such triangle in the diagram.
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Weight multiplicities

The of 5 in P, is the
number of Gelfand-Tsetlin diagrams with top
row A and row sums satisfying

m

S AN =B+ +B8, forl<m<k
1=1
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Weight multiplicities

The of 5 in P, is the
number of Gelfand-Tsetlin diagrams with top
row A and row sums satisfying

m

S AN =B+ +B8, forl<m<k
1=1

Weight multiplicities vanish outside the
permutahedron.
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Weight multiplicities

The of 5 In P, is the
number of Gelfand-Tsetlin diagrams with top
row A and row sums satisfying

m

S AN =B+ +B8, forl<m<k
1=1

Weight multiplicities vanish outside the
permutahedron.

Weight multiplicities are invariant under the
action of the symmetric group S, .
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GT-diagrams and S_

- P2 + B3+ B = 17
- 02 + P33 =13
-0y =8

3
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GT-diagrams and S_

- P2 + B3+ B = 17
- 02 + P33 =13
-0y =8

3
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GT-diagrams and SS_

+ P2+ 03 + s = 17
+ P2 + 05 = 13
+ 02 = 8
— 5
2

Pl VPF # 2 [0



GT-diagrams and SS_

+ P2+ O3+ 0a = 17
+ P2 + 03 =13

+ 02 = 8

=3

4 | s

3|3
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GT-diagrams and SSYTs
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1 Br+ B2 + 03 + 04 = 17
b1+ P2+ 03 =13
B1+ G =8
G1=3

1711112123

212121313

313
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Gelfand-Tsetlin pol_
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The Duistermaat-Heckman function

For X integral there is a function from
symplectic geometry, the
, that is

piecewise polynomial on P,.
It approximates the weight multiplicities.

The domains of polynomiality form a partition
of P, into subpolytopes.
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The DH function for £ = 3
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The DH function for £ = 3

Theorem (Heckman, Guillemin-Lerman-Sternberg)
Consider the convex polytopes
conv(W - a(N))

where o € &, and W Is the stabilizer of a facet of
conv(Sy - ).

These polytopes are walls that partition
conv(S; - \) Into convex subpolytopes over which
the Duistermaat-Heckman function is
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A= (7, =1, SONE.
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Vector partition functions
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Vector partition functions

Let M be a d x n matrix over the integers. The
associated to M is the
function

by Z¢ — N
b |{x € N® : Mz = b}
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Vector partition functions

Let M be a d x n matrix over the integers. The
associated to M is the
function

by Z¢ — N
b |{x € N® : Mz = b}

Example

|f M_<1 ) - 2) and b—(3> then ¢ (b) =3
0101 1

e o= ():()-2) - ()-) - )-C)

P VPE # 2 [O 22



Polytopes and partition functions

If M is such that kerM N R%; = 0, then
Py={x € R, : Mz = b}
IS a polytope.

¢ (b) Is the number of integral points in P, .
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Polytopes and partition functions

If M is such that kerM N R%; = 0, then
Py={x € R, : Mz = b}
IS a polytope.

¢ (b) Is the number of integral points in P, .

¢ vanishes outside of pos(M) .
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Quasipolynomials

A function on a lattice L is a
function that is polynomial on each coset of a
sublattice NV of L.

Example

n% + 3ning + 2ny if ny + n9 = 0 (mod 3),

f(n1,n9) = 2N + nins + 3 if n1 +n9 =1 (mod3),
2 179

0 If N1 ™ N9 = 2 (mOO 3)
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Chamber (cone) complexes

A IS a collection C of
convex polyhedral cones such that

If C' e C and F'is a face of (', then F' € C;
(C Is closed under taking faces.)

If C1,Cy € C, then C; N C5 I1Is a common face
to C'; and (..

(Cones touch along whole faces. Note that
{0} is a 0-dimensional face of any cone.)
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The structure of partition functions

oy 1S plecewise quasipolynomial of degree
n — rank(M) . (Sturmfels)
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The structure of partition functions

oy 1S plecewise quasipolynomial of degree
n — rank(M) . (Sturmfels)

The domains of quasipolynomiality form a
complex of convex polyhedral cones, the

Ofng
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The structure of partition functions

oy 1S plecewise quasipolynomial of degree
n — rank(M) . (Sturmfels)

The domains of quasipolynomiality form a
complex of convex polyhedral cones, the

Ofng

Alekseevskaya, Gelfand and Zelevinsky
described how to determine the chamber
complex of a partition function from its matrix.
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Determining the chamber complex

We can assume without loss of generality that M
has full rank d.

Find all the d x d nonsingular submatrices M,
of M .
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Determining the chamber complex

We can assume without loss of generality that M
has full rank d.

Find all the d x d nonsingular submatrices M,
of M .

Determine the cone 7, = pos(M,) spanned by
the columns of M., .
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Determining the chamber complex

We can assume without loss of generality that M
has full rank d.

Find all the d x d nonsingular submatrices M,
of M .

Determine the cone 7, = pos(M,) spanned by
the columns of M., .

The chamber complex of ¢,, is the common
refinement of the 7, .
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Example

_— O O
O = =
—_ = O

34.135, 136, 145, 146,
46, 256, 345, 356, 456} .
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KExample

146

145

136

135

134

126

125

123
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KExample

o ‘\\

A
V

o1+ Oy O+ O3

061+ O+ O3
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A partition function for the m,(5)

Theorem

For every k, we can find integer matrices E; and
By such that the weight multiplicities can be

written as
o (3 2)
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Example: £ = 3
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for £k = 3 have the form

A3
42




Example: £ = 3

Gelfand-Tsetlin diagrams for k£ = 3 have the form

A1 Ao A3
M1 M2
v
Row sums:
| 61
p+pe = 01+ 5o
AL+t A3 = B+ 0+ s
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Example: £ = 3

A1

)

Ay — 1 — P2

G1 4+ B2 + A1+ Ao
— 01

— 2.

d to be nonnegative.
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Example: £ = 3

OS] = )
I 52 = — A
SHINE S35 = A — 01— 2
1+ Sa = Ot Pe+ A+ A
—p1 + S5 = —[
Sl + S = —[ao.

The s; are constrainted to be nonnegative.

Finally we can use i, = A\; — s; to get rid of u.
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Example: £ = 3
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1 — A2

o — [ — B
1+ 02+ A1
2 — b
2 — [




Example: £ = 3
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\1 — A2
Ay — O1 — P2
o+ G2+ A
\o — 51
\o — 0o




Example: £ = 3

S1+ S92 = A — Ao
—Sg+83 = 2X— 1 — Do
So+s4 = Pi+ 0+ M
—S3+ 85 = A — O
—So + 56 = A2 — [

Solving for s; > 0 V.

Requiring the s;’s to be integers yields all
Integer solutions to the Gelfand-Tsetlin
constraints.
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Example: £ = 3

So we are solving

1 0000
/0—_1000\
NG 1 0 0 |.
G 0 1 0
G o 0 1/
Es
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Example: £ = 3

So we are solving

/1 OODO\
O —1 1 0 0 O
0 1 01 0 0 |.
O —1 0 0O 1 O
G o 0 1/

Ly

Es
for s N°. Hence
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[ 51) e
52 2X2 — b1 — B2
Bl = L+L+N
>4 Ao — 1
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The
chamber compl
plex

k—1)(k+2) /2

, 8
cREI N =
@:0}.
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The chamber complex

or, takes values in RF—1D(#+2)/2
Let B={B,(}) : A\€R* BER SN =Y 5 =0}

The only part of the chamber complex of ¢,
that is relevant for the weight multiplicities is

its intersection with B .
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The chamber complex

or, takes values in RF—1D(#+2)/2

LetB:{Bk(g) ; AeRk,ﬁeR’f,Z)\i:Zﬁi:O}.

The only part of the chamber complex of ¢,
that is relevant for the weight multiplicities is

its intersection with B .

We can intersect the base cones with B
before taking the common refinement.
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The chamber compl_

(A, B)-coordinates.
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The chamber complex

On B, we can work in (), 3)-coordinates.

We will call this (2k — 2)-dim complex in
(A, B)-coordinates.
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The chamber complex

On B, we can work in (), 3)-coordinates.

We will call this (2k — 2)-dim complex in
(A, B)-coordinates.

For fixed ), let
L) = {1, X, Bry- -, Br) : BER D Bi=) X=0}.
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The chamber complex

On B, we can work in (), 3)-coordinates.

We will call this (2k — 2)-dim complex in

(A, B)-coordinates.

For fixed ), let
L) = {2 By 1)+ B ERY i =

The intersection of C*) with L()\) gives
domains of (quasi)polynomiality for the
multiplicities.
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> X =0}
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Classifying the )

Corollary

Let C ) be the chamber complex given by the
common refinement of the projections px () of

the cones of C'*) onto RF.

Then CX“) classifies the \'s, in the sense that if A

and )\ belong to the same cell of CXC), then all
their domains are indexed by the same subsets

of cones from C\¥), and therefore have the same
corresponding polynomials.
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' the regions
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The complex for £ = 3

The complex C'® consists of eight
4-dimensional cones and their faces.

The complex is invariant under permuting the
(5 coordinates.

We project the cones of C® on the )

coordinates and take the common refinement.

c\” has two top-dimensional cones.
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The projected complex

&

pos((2,—1,—1),(1,0,—1))

Cs pos((1,0,-1),(1,1,—2))

AV

There are two generic cases for A in this case
(A2 < 0 or Ay > 0), each with 7 domains.
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The complex for £ = 4

For k = 4, we find that C* has 1202 top
dimensional cones (6-dim cones in 8-dim
ambient (), 5)-space).

However, it is not invariant under the action of
S, on the 5 coordinates.

This means that the complex is not optimal
and can be coarsened further.

PP VPE # 2 [O 41



Glueing the complex

Theorem

The union of the top dimensional cones of C'¥
with the same weight polynomial is again a
convex polyhedral cone.
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Glueing the complex

Theorem

The union of the top dimensional cones of C'¥
with the same weight polynomial is again a
convex polyhedral cone.

This means we can glue these cones
together.

We can then verify that we get a chamber
complex that way, the
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Idea of the proof

1. Select the cones with a same weight
polynomial. (Yellow)

2. Consider their rays.

3. Construct the cone spanned by those rays.
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Idea of the proof

4. Find a transversal affine halfspace and
Intersect it with the cones to get polytopes.

v

5. Compare volumes.

A4
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Idea of the proof

This process was automated symbolically, so
that there are no roundoff errors which might
cause us to miss a small cone.

The complex G has 612 top dimensional
cones.

It Is Invariant under the action of G, on 5.
There are 64 orbits of cones.
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Counting the regions _
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Counting the regions




7!
=
-
—

ing the reg
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Two partitions

Is this partition for weight multiplicities the
same as the one we have in terms of walls for
the Duistermaat-Heckman function?

4:5 - "I p 8

——

b

1.06

4
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Comparing the two partitions
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The DH function and the m (/)

The partitions agree for all the random \ we
tried.

The difficulty is intersecting G with L()\) not for
a specific A but for a general (symbolic) one.
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The DH function and the m (/)

The partitions agree for all the random \ we
tried.

The difficulty is intersecting G with L()\) not for
a specific A but for a general (symbolic) one.

Theorem

For k = 4, the partitions of the permutahedron

into its domains of polynomiality for the weight
multiplicities and for the Duistermaat-Heckman
function are the same.
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Strategy

The partition for the DH function is given in
terms of walls rather than a description of the
subpolytopes themselves.

Therefore our goal will be to identify which
pieces of the chamber complex G give rise to
the walls when intersected with L(\).
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Strategy

The intersection of a top dimensional cone
with L(\), if it is not empty, gives a domain.

So the intersection of the facets of that cone
with L(\) give the facets of the domain
(generically).

We build the walls by glueing such facets
together.
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Proof/Algorithm

| facets of the top
1, --.,Ge2 Of G.

Pl VPF # 2 [0



Proof/Algorithm

1. Let F be the set of all facets of the top
dimensional cones GG, ..., Gge Of G.

2. Group the facets in F according to their
normals. 37 normal directions: {n1,...,ns7}.
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Proof/Algorithm

1. Let F be the set of all facets of the top
dimensional cones GG, ..., Gge Of G.

2. Group the facets in F according to their
normals. 37 normal directions: {n1,...,ns7}.

- Call the subset of F consisting of all the
facets with normals in direction n; .
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Proof/Algorithm

1. Let F be the set of all facets of the top
dimensional cones GG, ..., Gge Of G.

2. Group the facets in F according to their
normals. 37 normal directions: {n1,...,ns7}.

- Call the subset of F consisting of all the
facets with normals in direction n; .

- Each facet lies on a unique hyperplane.
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Proof/Algorithm

1. Let F be the set of all facets of the top
dimensional cones GG, ..., Gge Of G.

2. Group the facets in F according to their
normals. 37 normal directions: {n1,...,ns7}.

- Call the subset of F consisting of all the
facets with normals in direction n; .

- Each facet lies on a unique hyperplane.
. These hyperplanes go through the origin.
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Proof/Algorithm

1. Let F be the set of all facets of the top
dimensional cones GG, ..., Gge Of G.

2. Group the facets in F according to their
normals. 37 normal directions: {n1,...,ns7}.

- Call the subset of F consisting of all the

facets with normals in direction n; .

- Each facet lies on a unique hyperplane.
. These hyperplanes go through the origin.
- S0 two facets lie on the same hyperplane if

P VPF # 2 O

and only if they have the same normals up
to scalar multiple.
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Proof/Algorithm

The facets in F;, when intersected with L()\)
will therefore give all the facets of domains
lying on a given wall.
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Proof/Algorithm

The facets in F;, when intersected with L()\)
will therefore give all the facets of domains
lying on a given wall.

3. We glue these facets together by setting for

each
K, = U F
FG.FZ'

We verify that K; is again a convex polyhedral
cone by a truncation and volume comparison
method (as before).
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Proof/Algorithm

The intersections of the K; with L(\) will be
the walls partitioning the permutahedron.
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Proof/Algorithm

The intersections of the K; with L(\) will be
the walls partitioning the permutahedron.

The facets of K;, when intersected with L()\),
will correspond to the edges of the walls
generically (or be empty).
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Proof/Algorithm

The intersections of the K; with L(\) will be
the walls partitioning the permutahedron.

The facets of K;, when intersected with L()\),
will correspond to the edges of the walls
generically (or be empty).

The facets of those facets will correspond to
the vertices of the walls generically (or be

empty).
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Proof/Algorithm
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Proof/Algorithm

4. For each i, let V; be the set of facets of facets
of K.

5. For each 7, identify the f € V; whose
Intersection with L(\) (for generic )) is a point
and find that point. [Explanations later]
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Proof/Algorithm

4. For each i, let V; be the set of facets of facets
of K.

5. For each 7, identify the f € V; whose
Intersection with L(\) (for generic )) is a point
and find that point. [Explanations later]

6. For each i, verify that the vertices thus found
define the same wall as the one of the
Duistermaat-Heckman partition.
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Step 5 explained

Things would break down in Step 5 if not for a
remarkable fact.

The subset WV of the hyperplane
x1+x2+x3+x4:()where A1 > Ao > A3 > N\
IS a simplicial cone.

Denote by {w;,ws, w3} its basis (rays), so that
W = pos(wl, W2, CLJ3).

It turns out that all the f € V; have very nice
expressions in terms of the w;.
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KExample

fi = pos((wi,w1), (wa, T ws), (w3,ws))

fo = pos((wi,wi), (w2, T w2), (w3,9-ws))
fs = pos((wy,0-w1), (we, T ws), (w3, ws
fa = pos((wy,0-wi), (W, T ws), (w3,ws)
fo. = pos((wi,0 - wi), (ws, ¢ ws), (w3,ws))
fo = pos((wa, ™ ws), (w3, ¢ ws), (ws,ws3))
fr = pos((w1,0-w1), (w1,w1), (W3,¢-ws))
fs = pos((wi,wr1), (w3, ¢ ws), (ws,ws))

fo = pos((wi,0:w1), (wi,wr), (w3,ws))

fio = pos((wy,0-wq), (wi,wr), (W, T - ws))
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Z~— N -~/ N 7/ N /N /N

N— e T N N N

Z~— N 7~ N 7/ N /N

N— N T N N N

"» o T o>
3 3 3 3
A A
3 3 3 3
2 2 2 g
xn v v
O © © O
Q&
el
== s s
<
& & K& &

Only the first four projected cones span W.
The others will miss a generic A\ (they won't

intersect L()\)).

57
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KExample

We can rewrite the cone f; so that the (3
coordinates of its rays are always the results
of applying the same permutation to their A
coordinates.

fi = pos((wi,(23) - wi), (w2, (23) - wa), (ws,(23) - ws))

fa = pos((wi,(243) -wi), (w2,(243) - ws), (w3, (243) - ws))

fs = pos((w1,(1243) - w1), (w2, (1243) - ws), (w3,(1243) - wy))
fa = pos((wi,(123) -wi), (w2, (123) - ws), (w3, (123) - ws))
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KExample

finL(A) = (A (23)-A)

faOL(A) = (A (243)-))
fsNL(A) = (A, (1243)-A)
fanL(A) = (A (123)-A)

This means there will be a wall with vertices

BRI (0 5 0, 0) = A
BRI (O ) 0, N) = ({@02))
BEEER = (0 )5 0, 0) = (34)\
BRI O 0, 0 ) = (12)(34)N
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Open problems

What are the regions counts for higher
dimensional permutahedra ?
(15230 regions for A = (2,1,0, —1, —2))

Do the partitions for the DH function and
weight multiplicities keep coinciding in higher
dimension ?

What about the permutahedra for other
groups ?

Are there fast ways to compute weight
multiplicities (Kostka numbers) ?
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Permutahedron for _
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Permutahedron for 5;
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