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Abstract. Morse theory describes the relationship between a function's critical
points and the homotopy type of the function's domain. The theorems of Morse
theory were developed speci�cally for functions on a manifold. This work adapts
these theorems for use with parameterized families of implicit surfaces in computer
graphics. The result is a theoretical basis for the determination of the global topol-
ogy of an implicit surface, and supports the interactive modeling of implicit surfaces
by direct manipulation of a topologically-correct triangulated representation.

1 Introduction

Implicit surfaces provide a powerful and versatile shape model in computer
graphics by representing geometry as the zero-set of a function over three-
space, although displaying such surfaces requires a search through space. The
display of an implicit surface is hastened by maintaining a triangulation that
can be quickly rendered on modern graphics workstations. However, when
the implicit surface changes topological type, the triangulation needs to be
updated in the neighborhood of the topology change. A recent technique
uses the critical points of the function to detect changes in topology and
recon�gures the triangulation to correctly re
ect the topology of the new
surface [10,11].

The fundamental detail missing from these publications is the connection
between a function's critical points and the topology of its implicit surface.
This connection can be found in Morse theory, but the theorems of Morse
theory do not directly apply to the implicit surfaces used in computer graph-
ics. This paper formalizes this connection with obvious but not entirely trivial
extensions of theorems from Morse theory to implicit surface topology.

Section 2 summarizes the implicit surface geometric representation and
techniques for modeling with implicit surfaces. Section 3 reviews Morse the-
ory, focusing on the connection between critical points and homotopy type.
Section 4 applies the results of Morse theory to implicit surfaces. Section 5
concludes with remarks on further applications of Morse theory in computer
graphics.

2 The Problem of Modeling with Implicit Surfaces

An implicit surface is de�ned as the zero-set of a function f : IR3 ! IR: The
implicit surface is often a compact manifold, though not always smooth [7],
compact (e.g. the cylinder f(x; y; z) = x2 + y2 � 1), nor even a manifold [3].
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Natural geometric primitives, such as the plane, sphere, cylinder, cone
and torus, can be described implicitly as the solutions to linear, quadratic
and quartic polynomials. These primitives are commonly treated as solids
(3-manifolds-with-boundary) by considering the points where the function
is negative (or positive) to be in the interior the set. These solid primitives
are combined with binary set operations (union, intersection and di�erence)
to form more complex shapes in a procedure known in computer graphics as
constructive solid geometry (CSG). Implicit surfaces also facilitate the joining
of surfaces with a process called blending which smoothes the results of a CSG
operation.

Perhaps the most popular blending technique in computer graphics is the
blobby model [1]. The blobby model represents shapes with implicit surfaces
de�ned by functions of the form

f(x) = T �

NX
i=1

e�kiFi(x) (1)

where the functions Fi : IR
3 ! IR implicitly de�ne primitive shapes, the ki

are parameters controlling the strength of the primitives and T is a threshold
value. The primitive shapes are often quadric spheres

Fi(x) = (x� xi) � (x� xi) (2)

centered about so-called key points xi: The implicit surface is the boundary
of a solid, and the function f is negative in this solid. As might be clear
from (1) and (2), the blobby model originated as a method for visualizing
electron densities in molecules with nuclei at xi; but has matured into a
geometric representation capable of synthesizing a variety of natural and
man-made forms [2]. Moreover, in addition to points, other primitives such
as lines, polygons, curves and patches [4] can be collected together to form a
skeleton. The primitives composing this skeleton may be thickened (using a
suitable function Fi) into implicit surfaces which may then be blended (using
a suitable function f) into a single smooth implicit surface.

For example in Figure 1, the shape on the left is composed of the CSG
union of eight spheres whereas the shape on the right is composed of the
same eight spheres joined with (1).

While implicit surfaces serve as a powerful shape representation in com-
puter graphics, they are not well suited for interactive modeling. The main
impediment is rendering. Whereas other shape descriptions such as the para-
metric surface yield a surface as the range of a function, an implicit surface
must be found in a given region of space. The increased computation re-
quired to �nd the implicit surface makes displaying them at interactive rates
di�cult.

A rendering method called ray tracing displays shapes by following each
ray of light backwards from the eye, through each pixel and into the scene.
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Fig. 1. A ray-traced implicit surface composed of the union of eight spheres (left)
and the blended union of eight spheres (right).

Implicit surfaces are well suited for ray tracing. Let l : IR+ ! IR3 be the
parametric de�nition of a ray. Then the intersection of the ray with the
implicit surface of f(x) is determined by �nding the zeros of the real function
of one variable f � l: The images in Figure 1 were rendered using such a ray
tracing algorithm developed speci�cally for mathematical visualization [6].

In order to design a blobby model interactively, the implicit surface needs
to be displayed in real time. Even with the power of modern graphics work-
stations, ray tracing remains too costly for interactive applications. Instead,
recent techniques visualize the implicit surface in real time by maintaining
a simpli�ed approximation. For example, an implicit surface can be inter-
actively manipulated using an e�cient visual representation consisting of a
system of mutually-repelling particles constrained to the surface, displayed
as a collection of disks tangent to the surface [12]. As the surface changes
shape due to user interaction, the disks maintain their position on the sur-
face. Figure 2 (left) demonstrates this method of display.

Connecting these particles triangulates the implicit surface, as shown in
Figure 2 (right). As the implicit surface changes, the vertices remain on the
surface and the triangulation remains intact. However, when the implicit
surface changes topological type, the triangulation is no longer a valid rep-
resentation of the implicit surface. Whereas the particles require only the
local tangent information to indicate the surface, the triangulated represen-
tation must be aware of any portions of the surface that are newly joined or
separated. Morse theory provides the tools necessary to make such a deter-
mination.
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Fig. 2. The blobby cube displayed using a particle system (left) and triangulated
(right). Note that the blobby cube is hollow and the particle system rendering
reveals the air bubble.

3 Morse Theory

This section reviews elementary Morse theory [8], speci�cally the classi�ca-
tion of critical points of a function on a manifold, and the e�ect of these crit-
ical points on the homotopy type of the manifold. The function is commonly
smooth, but Morse theory can be applied to functions of varying smoothness,
even piecewise linear. The following development of de�nitions and theorems
require only C2 (second-derivative) continuity which broadens the variety of
implicit surfaces accessible by the theorems. The section relies on some prior
knowledge of homotopy theory [9].

De�nition 1. Let f be a C2 real map on a manifold M: A point p 2 M is
a critical point i� its derivatives with respect to a local coordinate system on
M vanish.

More speci�cally, sinceM is an n-manifold, then there exists a C2 one-to-
one correspondence g between a neighborhood about any point p 2M and an
open neighborhood of the origin in IRn such that g(p) = x = (x1; x2; : : : ; xn):
Then the point p 2M is a critical point with respect to f if the gradient

rf =

�
@f � g�1(x)

@x1
;
@f � g�1(x)

@x2
; : : :

@f � g�1(x)

@xn

�
= 0: (3)
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Morse theory focuses only on non-degenerate critical points. Such points,
also called Morse points, are critical points where the Hessian

V (f) =

2
666664

@2f

@x2
1

@2f
@x1@x2

� � � @2f
@x1@xn

@2f
@x2@x1

@2f

@x2
2

� � � @2f
@x2@xn

...
...

. . .
...

@2f
@xn@x1

@2f
@xn@x2

� � � @2f
@x2n

3
777775

(4)

has non-zero determinant. Since @2f=@xi@xj = @2f=@xj@xi; the matrix V (f)
is symmetric with real eigenvalues. Let �1 � �2 � : : : � �n be the eigenvalues
of V (f): If any of the eigenvalues is zero, then the critical point is degenerate.
Otherwise it is called non-degenerate. The index of the critical point is the
number of negative eigenvalues of V (f):

The Morse Lemma states that the neighborhood about a non-degenerate
critical point can be deformed into the neighborhood of the non-degenerate
critical point of a quadratic function.

Lemma 2. (Morse Lemma) Let p be a non-degenerate critical point of f
with index �; and let c = f(p): Then there exists a local coordinate system
y = (y1; y2; : : : ; yn) in a neighborhood U of p with p as its origin and

f(y) = c� y21 � y22 � � � � � y2� + y2�+1 + � � �+ y2n: (5)

Morse theory focuses on determining the homotopy type of a shape based
on its critical points. A classic example [5] demonstrates the e�ects of critical
points on homotopy type by observing the portion of a torus below a clip-
ping plane, as the clipping plane moves through the torus. One can observe
these same changes by dunking a doughnut into a cup of co�ee, as shown in
Figure 3.

For this example, let M denote the surface of a vertically-oriented torus
and let f(p) return the height of point p 2 M: Assume the bottom of the
torus is at height zero and the top is of height one. In general the notation
Ma indicates the points p 2 M such that f(p) � a; in this case the portion
of the torus up to a height of a:

As the clipping plane traverses up the torus, Figure 4 shows that the
changes in the topology of the torus can be described by attaching the ap-
propriate k-cell to the truncated surface. Notice that the dimension of the
attached cell equals the index of the critical point passed by the clipping
plane.

The following theorem shows thatMa is topologically similar toM b �Ma

if there is no critical point in Ma that is not also in M b:

Theorem 3. [8] Let f : M ! IR be C2; let a < b and suppose that the
set f�1[a; b] is compact and contains no critical points of f: Then Ma is
homeomorphic to M b:
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Dunking a doughnut. A shiny doughnut and a cup of co�ee (a). The dunked
portion of the doughnut's surface changes from the empty set to a shape homeo-
morphic to a disk (b). The dunked portion changes (c) from a disk to a truncated
cylinder (d). The dunked portion changes (e) from a cylinder to a truncated torus
(f).
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∼ ∼

∼ ∼

M1/8∅  ∪ g B 0 M3/8M1/8 ∪ g B1

M13/16M5/8 ∪ g B1 M1M15/16 ∪ g B 2

Fig. 4. Homotopy classes of the clipped torus.

Proof. Let the family of continuous maps �t : M ! M be de�ned as the
solution of the ordinary di�erential equation

_�t(p) =
rf(�t(p))

jjrf(�t(p))jj2
(6)

(where _� = d�=dt) with the initial value �0(p) = p on f�1[a; b]; and let � con-
tinuously go to the identity ( _�t(p) = 0) outside a compact neighborhood of
f�1[a; b] not containing any critical points, such that each map �t is bijective
and continuous with continuous inverse.

The function value of f on the curve �t(p) generates on M �xing p and
varying t changes at the same rate as t changes, since the directional derivative

df(�t(p))

dt
= _�t(p) � rf(�t(p)) = 1: (7)

Hence the homeomorphism �b�a carries Ma onto M b: ut

Theorem 4. [8] Let f : M ! IR be C2; and let p 2 M be a non-degenerate
critical point with index �: Setting f(p) = c; suppose that f�1[c� �; c+ �] is
compact, and contains no critical point of f other than p; for some � > 0:
Then, for all su�ciently small �; the set Mc+� has the homotopy type of Mc��

with a �-cell attached.

Elements of the proof of this theorem will be needed to prove a later
proposition. The following is a brief summary of a classic proof [8], which
should be consulted for details.

Proof. Using Morse's Lemma, choose a coordinate system u1; : : : ; un in a
neighborhood U of p such that

f(p) = c� u1(p)
2 � : : :� u�(p)

2 + u�+1(p)
2 + : : :+ un(p)

2: (8)
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We abbreviate � = u21 + : : :+ u2� and � = u2�+1 + : : :+ u2n such that f(p) =
c� � + �:

Let � > 0 be su�ciently small such that f�1[c � �; c+ �] is compact and
contains no other critical points other than p; and U contains a ball of radius
2�:

The function � : IR ! IR (any di�erentiable function such that �(0) >
�; �(r) = 0 for r � 2�; and �1 < �0(r) � 0) locally warps the e�ects of the
function on the manifold as F (p) = f(p)� �(�(p) + 2�(p)):

Given the de�nition of the new function F; the following four assertions
follow and su�ce to prove the theorem. Proof of each of the assertions can
be found in [8].

Assertion 1. F�1(�1; c+ �] = Mc+�:

Assertion 2. F shares the same critical points as f:

Assertion 3. F�1(�1; c� �] �= M c+�:
Let e� �M be the �-cell

e� = f(u1; : : : ; un) : u
2
1 + � � �+ u2� � �; u2�+1 + � � �+ u2n = 0g: (9)

Denote H = closure(F�1(�1; c� �]�Mc��): Note that e� � H:

Assertion 4. Mc�� [ e� is a deformation retract of M c�� [ H: ut

4 Application to Implicit Surfaces

The following proposition is a �rst step at applying the theorems from the
previous section to implicit surfaces. It essentially states that two isosurfaces
of the same function are topologically similar if there is no critical point in
any isosurface between them.

Proposition 5. Let f : M ! IR be C2; and such that f�1[a; b] is compact
and contains no critical points. Then f�1(a) �= f�1(b):

Proof. From Theorem 3 we have thatMa �= M b: The boundary ofMa (w.r.t.
M) is f�1(a) and likewise @M b = f�1(b): The boundaries of two homeomor-
phic sets must themselves be homeomorphic. ut

Proposition 5 can be applied to implicit surfaces, but must be restricted
to non-intersecting implicit surfaces such that one implicit surface completely
surrounds the other.

In order to show a homeomorphism between two implicit surfaces in gen-
eral, we must de�ne a family of implicit surfaces and de�ne a height function
on this family. Then the properties of the manifold due to the height function
will also apply to the family of implicit surfaces.
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Let f : IRn� IRm ! IR de�ne a family of functions f(x;q) parameterized
by an m-vector q that de�nes a family of implicit surfaces as the collection
of (n� 1)-manifolds f�1

q
(0) = fx : f(x;q) = 0g: Note that the domain of the

instance fq : IRn ! IR di�ers from the domain of the family f: (The latter
includes the parameter space.)

Consider two (n � 1)-manifolds M0 = f�1
q0

(0) and M1 = f�1
q1

(0): Let
q(t); t 2 IR; denote a linear interpolation of parameters such that q(0) = q0
and q(1) = q1: Let q : IR! IRm be parameterized such thatM 2 IRn�IRm =
f(x;q(t)) : f(x;q(t)) = 0; t 2 IRg is an n-manifold. De�ne the height map
h : M ! IR as h(x;q) = t:

Proposition 6. Let p = (xp;qp) 2 M: Then p is a critical point of h
(rh(p) = 0) if and only if rfqp(xp) = (@fq=x1; : : : ; @fq=xn) = 0:

Proof. If p is a critical point of h; then it's value (= t) is locally constant
along M and vice versa. Hence M is locally perpendicular to the t axis and
orthogonal to the q hyperplane. The x coordinate system serves as a local
coordinate system for M at p: ut

Proposition 5 combines with this family of implicit surfaces to assert the
following proposition that implicit surfaces do not change homotopy type if
they do not intersect a critical point.

Proposition 7. If the family of implicit surfaces f�1
q(t)(0) is compact for ev-

ery t 2 [t0; t1] and none contain a point x such that rfq(t)(x) = 0; then
f�1
q0

(0) is homeomorphic to f�1
q1

(0):

Proof. The surfaces h�1(t0) = f�1
q0

(0) and h�1(t1) = f�1
q1

(0): Proposition 6
asserts there are no critical values on M between t0 and t1; which allows
Proposition 5 to show h�1(t0) �= h�1(t1): ut

Proposition 8. Let xp be a non-degenerate critical point with index � of
fq(tp): If there exists some � > 0 such that the set fx : f(x;q(t)) = 0; t 2
[tp� �; tp+ �]g is compact and contains no other critical points than (xp;qp);
and assuming without loss of generality that @f(xp;q(tp))=@t < 0; then the
n-manifold-with-boundary f�1

q(tp+�)
(�1; 0] has the same homotopy type as

f�1
q(tp��)

(�1; 0] with a �-cell attached.

The following proof follows the same logic as the proof of Theorem 4 but
also uses a projection to show that the regions bounded by homeomorphic
sets are also homeomorphic.

Proof. Following the proof of Theorem 4, choose a coordinate system such
that h = �� + � in a neighborhood U �M of p: Let H = �� + ���(� +2�)
inside U and H = h outside U: As before, H has the same critical points as h;
and the manifold-with-boundary H�1(�1; tp+�] = h�1(�1; tp+�]; but the



10 John C. Hart

critical point (xp;qp) is in H�1(�1; t0 � �]: Since there is no critical point
in H�1[tp � �; tp + �]; we have h�1(tp + �) �= H�1(tp � �) by Proposition 5.

Let � : M ! IRn be the projection (x;q) 7! x: Proposition 6 shows us
that near p; the manifold M is orthogonal to the q hyperplane, so � can be
set small enough such that the projection � is one-to-one in the neighborhood
U:

Recalling the map � from the proof of Theorem 3, we have

H�1(tp � �) �= H�1(tp + �); (10)

= h�1(tp + �); (11)
�= � � h�1(tp + �); (12)

= f�1
q(tp+�)

(0): (13)

Hence the homeomorphism � � �2� maps H�1(tp � �) to f�1
q(tp+�)

(0): The

latter implicit surface is the boundary of the implicit solid f�1
q(tp+�)

(�1; 0]:

This region is mapped via the homeomorphism ��2� � �
�1 : IRn !M into a

subset of M with H�1(tp � �) as its boundary.

As before, the handle

H = closure(H�1(tp � �)� h�1(tp � �)) (14)

is the subset that creates the change in homotopy type, and this handle is
homotopic to a �-cell. Both the handle and the boundary of the �-cell extend
to h�1(tp � �) and hence their projections extend to f�1

q(tp��)
(�1; 0]: ut

The disconnection direction (@f(x0; q0)=@q > 0) is not de�ned since there
is no mechanism available to us to \remove a �-cell." Instead, we must invert
the t parameter about the critical point to treat the problem in the connection
direction, or consider the closure of the complement of the implicit solid and
attach an (n� �)-cell.

These propositions allow us to classify changes in the topological type
of implicit surfaces. The eight possible topological-type changes are listed in
Table 1.

Critical value
Index +! � �! +

0 Create Destroy
1 Connect Cut
2 Spackle Pierce
3 Burst Bubble

Table 1. The eight possible homotopy equivalence class changes in 3-D at a non-
degenerate critical point.
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When a minimum value becomes negative, a new implicit surface compo-
nent is created. This can be considered attaching a 0-cell to the empty set.
When a minimum value becomes positive, the component is destroyed.

When an index 1 critical value becomes negative, a new connection is
formed between two components. In terms of homotopy type, a 1-cell has
been attached to the two solid components. When an index 1 critical value
becomes positive, a connection is cut. These cases are shown in Figure 5.

Fig. 5. An index 1 critical point with critical value positive (left) and negative
(right).

When an index 2 critical value becomes negative, a hole in the solid is
�lled in. In terms of homotopy type, a 2-cell has been attached. When an
index 2 critical value becomes negative, a new hole is pierced in the solid.
These cases are shown in Figure 6.

Fig. 6. An index 2 critical point with critical value positive (left) and negative
(right).
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When a maximum value becomes positive, a hollow region is formed in a
solid. Such an air bubble can be seen in the particle system rendering of the
blobby cube in Figure 2. When a minimum critical value becomes negative,
the bubble bursts. In terms of homotopy type, a 3-cell has been attached in
place of the air bubble.

When the implicit solid changes homotopy type, simple algorithms exist
to locally recon�gure the triangulation to re
ect the new topology [11].

The only remaining problem for maintaining a triangulated version of a
dynamic implicit surface is tracking all of the critical points of the function.
Several techniques have been explored [11]. The most e�ective technique per-
forms an interval Newton's method search across a given region of space over
a given time interval for critical points that intersect the implicit surface.
Such search methods based on interval analysis can be guaranteed not to
miss any solutions, resulting in a guarantee that the triangulation is homo-
topy equivalent to the implicit surface it represents.

5 Conclusion

This document serves to provide a theoretical basis for the alteration of
implicit surface topology in the presence of critical points. It ultimately
shows that the topological type of an implicit surface before and after a
non-degenerate critical value changes sign can be described through the at-
tachment of an appropriate-dimension cell.

Morse theory might also add insight to current problems in shape trans-
formation. The determination that the initial and �nal shapes share the same
topological type would be the �rst step toward �nding a possible topological-
type preserving shape transformation. Likewise, the characterization of neigh-
borhoods of critical points occurring during shape transformation may pro-
vide new insight into the maintenance of consistent texture coordinates through
changes in homotopy type.

Thanks to Jules Bloomenthal, George Francis, John Hughes, Nelson Max
and Bart Stander for informative discussions about Morse theory and im-
plicit surfaces. This research was supported in part by the National Science
Foundation under grants CCR-9309210 and CCR-9529809.
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