Math 603, Spring 2003, HW 5, due 3/31/2003

Part A

AI) Write A for an integral domain, $K = \operatorname{Frac} A$, and set $\widetilde{A} = \operatorname{Int}_K(A)$. The domain \widetilde{A} is called the *normalization* of A. Now set

$$\mathcal{F} = (A \to A) = \{ \xi \in A \mid \xi A \subseteq A \}.$$

Of course, \mathcal{F} is an ideal of A, called the *conductor* of A in \widetilde{A} (German: Führer). Check that \mathcal{F} is also an ideal of \widetilde{A} .

- (a) If S is a multiplicative subset in A, show $S^{-1}\tilde{A} = \operatorname{Int}_K(S^{-1}A)$. Prove further, $S^{-1}A$ is normal if $\mathcal{F} \cap S \neq \emptyset$.
- (b) Assume \widetilde{A} is a finitely generated A-module (frequently the case). Show that the conductor of $S^{-1}A$ in $S^{-1}\widetilde{A}$ is the extended ideal \mathcal{F}^e . Show also in this case $S^{-1}A$ is normal if and only if $\mathcal{F} \cap S \neq \emptyset$.
- (c) If A is a finitely generated A-module, then

$$\{\mathfrak{p} \in \operatorname{Spec} A \mid A_{\mathfrak{p}} \text{ is normal}\}\$$

is open in $\operatorname{Spec} A$, in fact it is a dense open of $\operatorname{Spec} A$.

- AII) A discrete valuation, ν , on a (commutative) ring A, is a function $\nu : A \to \mathbb{Z} \cup \{\infty\}$ satisfying
 - (a) $\nu(xy) = \nu(x) + \nu(y)$
 - (b) $\nu(x+y) \ge \min\{\nu(x), \nu(y)\}$
 - (c) $\nu(x) = \infty \iff x = 0.$

A pair (A, ν) where A a commutative ring and ν is a discrete valuation is called a *discrete valuation* ring (DVR). Prove the following are equivalent:

- (a) A is a DVR
- (b) A is a local PID
- (c) A is a local, noetherian, normal domain of Krull dimension 1
- (d) A is a local, noetherian, normal domain and $(\mathfrak{m}_A \to a) (= \{\xi \in \operatorname{Frac} A \mid \xi \mathfrak{m}_A \subseteq A\}) \neq A$. Here, \mathfrak{m}_A is the maximal ideal of A.
- AIII) Let A be a commutative ring with unity and assume A is semi-local (it possesses just finitely many maximal ideals). Write \mathcal{J} for the Jacobson radical of A and give A its \mathcal{J} -adic topology.
 - (a) Prove that A is noetherian iff each maximal ideal of A is finitely generated and each ideal is closed in the \mathcal{J} -adic topology.
 - (b) Assume A is noetherian, then the map $A \to A_{\text{rad}}$ gives A_{rad} its \mathcal{J} -adic topology. If A_{rad} is complete prove that A is complete.
- AIV) (a) Let A be a local ring, give A its m-adic topology ($\mathfrak{m} = \mathfrak{m}_A$ is the maximal ieal of A) and assume A is complete. Given an A-algebra, B, suppose B is finitely generated as an A-module. Prove that B is a finite product of A-algebras each of which is a local ring. Give an example to show that some hypothesis like completness is necessary for the conclusion to be valid.
 - (b) Again A is complete and local, assume $f(X) \in A[X]$ is a monic polynomial. Write $\overline{f}(X)$ for the image of f in $(A/\mathfrak{m})[X]$. If $\overline{f}(X)$ factors as g(X)h(X) where g and h are relatively prime in $(A/\mathfrak{m})[X]$, show that f factors as G(X)H(X) where $\overline{G}(X) = g(X); \overline{H}(X) = h(X)$. What can you say about deg G, deg H and uniqueness of this factorization? Compare parts (a) and (b).

Part B

BI) In this problem, A is an integral domain and k = Frac A. If ν and ω are two discrete valuations of k (c.f. AII, the functions ν and ω are defined on A and extended to k via $\nu(a/b) = \nu(a) - \nu(b)$, etc.), let's call ν , ω inequivalent iff one is not a constant multiple of the other. Write S for a set of *inequivalent* discrete valuations of k and say that A is adapted to S provided

$$A = \left\{ x \in k \mid (\forall \nu \in \mathcal{S})(\nu(x) \ge 0) \right\}.$$

- (a) Prove the following are equivalent:
 - i. A is a Dedekind domain
 - ii. $(\forall \text{ ideals}, \mathfrak{a}, \text{ of } A)(\forall x, x \neq 0, x \in \mathfrak{a})(\exists y \in \mathfrak{a})(\mathfrak{a} = (x, y)).$
 - iii. There is a family of discrete valuations of k, say S, for which A is adapted to S and so that the following holds:

$$(\forall \nu, \omega \in \mathcal{S}) (\nu \neq \omega \implies (\exists a \in A) (\nu(a) \ge 1 \text{ and } \omega(a-1) \ge 1)).$$

- (b) Vis a vis part (a), describe a one-to-one correspondence $\mathcal{S} \leftrightarrow Max(A)$.
- (c) Take $k = \mathbb{Q}$, consider all prime numbers p with $p \equiv 1 \pmod{4}$, write $\operatorname{ord}_p(n)$ for the highest exponent, e, so that $p^e \mid n$. Then ord_p is a discrete valuation of \mathbb{Q} , and we set $S = \{\operatorname{ord}_p \mid p \equiv 1 \pmod{4}\}$. Illustrate iii in part (a) above with this S. What is A, in concrete terms? It is pretty clear now how to make many Dedekind domains.
- (d) Say A is a Dedekind domain and \mathfrak{a} , \mathfrak{b} are two non-zero ideals of A. Show $\exists x \in k (= \operatorname{Frac} A)$, so that $\mathfrak{a} + x\mathfrak{b} = A$.
- (e) Again let A be a Dedekind domain and let L be a *finite* subset of Max(A). Write $A^{L} = \bigcap \{A_{\mathfrak{p}} \mid \mathfrak{p} \notin L\}$, then $A \subseteq A^{L}$ and so $\mathbb{G}_{m}(A) \subseteq \mathbb{G}_{m}(A^{L})$. Recall, $\mathbb{G}_{m}(B)$ is the group of units of the ring B. Prove that Pic(A) is a torsion group $\iff \mathbb{G}_{m}(A^{L})/\mathbb{G}_{m}(A)$ is a free abelian group of rank #(L) for every finite set L of Max(A).
- BII) Here, k is a field and $A = k[X_{\alpha}]_{\alpha \in I}$. The index set, I, may possibly be infinite. Write \mathfrak{m} for the fractional ideal generated by all the X_{α} , $\alpha \in I$. Set $A_i = A/\mathfrak{m}^{i+1}$, so $A_0 = k$. These A_i form a left mapping system and we set

$$A = \lim_{i \to \infty} A_i$$

and call \widehat{A} the completion of A in the \mathfrak{m} -adic topology. Note that the kernel of $\widehat{A} \to A_j$ is the closure of \mathfrak{m}^{j+1} in \widehat{A} .

- (a) Show that \widehat{A} is canonically isomorphic to the ring of formal power series in the X_{α} in which only finitely many monomials of each degree occur.
- (b) Now let $I = \mathbb{N}$ (the counting numbers) and write $\widehat{\mathfrak{m}}$ for the closure of \mathfrak{m} in \widehat{A} . By adapting Cantor's diagonal argument, prove that $\widehat{\mathfrak{m}}$ is NOT $\widehat{A}\mathfrak{m}$. Which is bigger?
- (c) Again, I as in (b). Let k be a finite field, prove the Lemma. If k is a finite field and $\lambda > 0$, $(\exists n_{\lambda})(\forall n \ge n_{\lambda})$, \exists a homogeneous polynomial, $F_n \in k[n^2 \text{ variables}]$, so that deg $F_n = n$ and F_n cannot be written as the sum of terms of degree n of any polynomial $P_1Q_1 + \cdots + P_{\lambda}Q_{\lambda}$, where P_j , Q_j are in $k[n^2 \text{ variables}]$ and have no constant term.

Use the lemma to prove $(\widehat{m})^2 \neq (\widehat{\mathfrak{m}}^2)$.

- (d) Use (b) and (c) to prove that \widehat{A} is NOT complete in the $\widehat{\mathfrak{m}}$ -adic topology.
- (e) All the pathology exhibited in (b), (c) and (d) arises as I is not finite, indeed when I is finite, prove:

- i. $\widehat{\mathfrak{m}}$ is $\widehat{A}\mathfrak{m}$;
- ii. $\widehat{\mathfrak{m}}^2 = (\widehat{\mathfrak{m}^2});$
- iii. \widehat{A} is complete in the $\widehat{\mathfrak{m}}$ -adic topology.
- BIII) Say \mathcal{X} denotes the category TOP (topological spaces and continuous maps) and Haus(\mathcal{X}) the full subcategory of Hausdorff topological spaces.
 - (a) At first, use the ordinary Cartesian product in \mathcal{X} , with the product topology. Denote this $Y \times Z$. Show that $Y \in \text{Haus}(\mathcal{X}) \iff$ the diagonal map $\Delta : Y \to Y \times Y$ is closed.
 - (b) For $X, Y \in \text{Haus}(\mathcal{X})$, recall that $X \xrightarrow{f} Y$ is called a *proper* map $\iff f^{-1}(\text{compact}) = \text{compact}$. (Of course, any map $f: X \to Y$ will be proper if X is compact.) Show that $f: X \to Y$ is proper iff $(\forall T \in \text{Haus}(\mathcal{X}))(f_T: X \times T \to Y \times T \text{ is a closed map.})$
 - (c) With (a) and (b) as background look at another subcategory, \mathcal{X}_A of \mathcal{X} : here A is a commutative ring, \mathcal{X}_A consists of the topological spaces Spec B, where B is an A-algebra. Maps in \mathcal{X}_A are those coming from homomorphisms of A-algebras, viz: $B \to C$ gives Spec $C \to$ Spec B. Define

$$(\operatorname{Spec} B) \Pi (\operatorname{Spec} C) = \operatorname{Spec} (B \otimes_A C)$$

and prove that \mathcal{X}_A possesses products. NB:

- i. The topology on $\operatorname{Spec} B \amalg \operatorname{Spec} C$ is NOT the product topology—it is stronger (more opens and closeds)
- ii. Spec $B \prod$ Spec $C \neq$ Spec $B \times$ Spec C as sets.

Prove: the diagonal map $\Delta_Y : Y \to Y \prod_{\text{Spec } A} Y$ is closed (Y = Spec B). This recaptures (a) in the non-Hausdorff setting of \mathcal{X}_A .

(d) Given $f : \operatorname{Spec} C \to \operatorname{Spec} B$ (arising from an A-algebra map $B \to C$) call f proper \iff i) C is a finitely generated B-algebra and ii)

 $(\forall T = \operatorname{Spec} D)(f_T : \operatorname{Spec} C \prod_{\operatorname{Spec} A} \operatorname{Spec} D \to \operatorname{Spec} B \prod_{\operatorname{Spec} A} \operatorname{Spec} D \text{ is a closed map.})$

Prove: if C is integral over B, then f is proper. However, prove also, $\operatorname{Spec}(B[T]) \to \operatorname{Spec} B$ is *never* proper.

- (e) Say $A = \mathbb{C}$. For which A-algebras B is the map Spec $B \to \text{Spec } A$ proper?
- BIV) A is noetherian local, \mathfrak{m}_A its maximal ideal, and

$$\widehat{A} = \lim_{\stackrel{\longleftarrow}{n}} A/\mathfrak{m}^{n+1} =$$
completion of A in the \mathfrak{m} -adic topology.

Let B, \mathfrak{m}_B be another noetherian local ring and its maximal ideal. Assume $f : A \to B$ is a ring homomorphism and we always assume $f(\mathfrak{m}_A) \subseteq \mathfrak{m}_B$.

- (a) Prove: f gives rise to a homomorphism $\widehat{A} \xrightarrow{\widehat{f}} \widehat{B}$ (and $\mathfrak{m}_{\widehat{A}} \to \mathfrak{m}_{\widehat{B}}$).
- (b) Prove: \hat{f} is an isomorphism \iff
 - i. B is flat over A
 - ii. $f(\mathfrak{m}_A) \cdot B = \mathfrak{m}_B$
 - iii. $A/\mathfrak{m}_A \to B/\mathfrak{m}_B$ is an isomorphism.