
Math 603, Spring 2003, HW 5, due 3/31/2003

Part A

AI) Write A for an integral domain, K = Frac A, and set Ã = IntK(A). The domain Ã is called the
normalization of A. Now set

F = (Ã→ A) = {ξ ∈ A | ξÃ ⊆ A}.

Of course, F is an ideal of A, called the conductor of A in Ã (German: Führer). Check that F is also
an ideal of Ã.

(a) If S is a multiplicative subset in A, show S−1Ã = IntK(S−1A). Prove further, S−1A is normal if
F ∩ S 6= ∅.

(b) Assume Ã is a finitely generated A-module (frequently the case). Show that the conductor of
S−1A in S−1Ã is the extended ideal Fe. Show also in this case S−1A is normal if and only if
F ∩ S 6= ∅.

(c) If Ã is a finitely generated A-module, then

{p ∈ Spec A | Ap is normal}

is open in Spec A, in fact it is a dense open of Spec A.

AII) A discrete valuation, ν, on a (commutative) ring A, is a function ν : A→ Z ∪ {∞} satisfying

(a) ν(xy) = ν(x) + ν(y)
(b) ν(x + y) ≥ min

{
ν(x), ν(y)

}
(c) ν(x) =∞ ⇐⇒ x = 0.

A pair (A, ν) where A a commutative ring and ν is a discrete valuation is called a discrete valuation
ring (DVR). Prove the following are equivalent:

(a) A is a DVR
(b) A is a local PID
(c) A is a local, noetherian, normal domain of Krull dimension 1
(d) A is a local, noetherian, normal domain and (mA → a)

(
= {ξ ∈ Frac A | ξmA ⊆ A}

)
6= A. Here,

mA is the maximal ideal of A.

AIII) Let A be a commutative ring with unity and assume A is semi-local (it possesses just finitely many
maximal ideals). Write J for the Jacobson radical of A and give A its J -adic topology.

(a) Prove that A is noetherian iff each maximal ideal of A is finitely generated and each ideal is closed
in the J -adic topology.

(b) Assume A is noetherian, then the map A → Arad gives Arad its J -adic topology. If Arad is
complete prove that A is complete.

AIV) (a) Let A be a local ring, give A its m-adic topology (m = mA is the maximal ieal of A) and assume
A is complete. Given an A-algebra, B, suppose B is finitely generated as an A-module. Prove
that B is a finite product of A-algebras each of which is a local ring. Give an example to show
that some hypothesis like completness is necessary for the conclusion to be valid.

(b) Again A is complete and local, assume f(X) ∈ A[X] is a monic polynomial. Write f(X) for
the image of f in (A/m)[X]. If f(X) factors as g(X)h(X) where g and h are relatively prime in
(A/m)[X], show that f factors as G(X)H(X) where G(X) = g(X);H(X) = h(X). What can
you say about deg G, deg H and uniqueness of this factorization? Compare parts (a) and (b).

1



Part B

BI) In this problem, A is an integral domain and k = Frac A. If ν and ω are two discrete valuations of k
(c.f. AII, the functions ν and ω are defined on A and extended to k via ν(a/b) = ν(a)−ν(b), etc.), let’s
call ν, ω inequivalent iff one is not a constant multiple of the other. Write S for a set of inequivalent
discrete valuations of k and say that A is adapted to S provided

A =
{
x ∈ k | (∀ν ∈ S)(ν(x) ≥ 0)

}
.

(a) Prove the following are equivalent:

i. A is a Dedekind domain
ii. (∀ ideals, a, of A)(∀x, x 6= 0, x ∈ a)(∃ y ∈ a)(a = (x, y)).
iii. There is a family of discrete valuations of k, say S, for which A is adapted to S and so that

the following holds:

(∀ν, ω ∈ S)
(
ν 6= ω =⇒ (∃ a ∈ A)(ν(a) ≥ 1 and ω(a− 1) ≥ 1)

)
.

(b) Vis a vis part (a), describe a one-to-one correspondence S ↔ Max(A).

(c) Take k = Q, consider all prime numbers p with p ≡ 1 (mod 4), write ordp(n) for the highest
exponent, e, so that pe | n. Then ordp is a discrete valuation of Q, and we set
S =

{
ordp | p ≡ 1 (mod 4)

}
. Illustrate iii in part (a) above with this S. What is A, in concrete

terms? It is pretty clear now how to make many Dedekind domains.

(d) Say A is a Dedekind domain and a, b are two non-zero ideals of A. Show ∃x ∈ k(= Frac A), so
that a + xb = A.

(e) Again let A be a Dedekind domain and let L be a finite subset of Max(A). Write
AL =

⋂
{Ap | p 6∈ L}, then A ⊆ AL and so Gm(A) ⊆ Gm(AL). Recall, Gm(B) is the group of

units of the ring B. Prove that Pic(A) is a torsion group ⇐⇒ Gm(AL)/Gm(A) is a free abelian
group of rank #(L) for every finite set L of Max(A).

BII) Here, k is a field and A = k[Xα]α∈I . The index set, I, may possibly be infinite. Write m for the
fractional ideal generated by all the Xα, α ∈ I. Set Ai = A/mi+1, so A0 = k. These Ai form a left
mapping system and we set

Â = lim←−Ai

and call Â the completion of A in the m-adic topology. Note that the kernel of Â→ Aj is the closure
of mj+1 in Â.

(a) Show that Â is canonically isomorphic to the ring of formal power series in the Xα in which only
finitely many monomials of each degree occur.

(b) Now let I = N (the counting numbers) and write m̂ for the closure of m in Â. By adapting
Cantor’s diagonal argument, prove that m̂ is NOT Âm. Which is bigger?

(c) Again, I as in (b). Let k be a finite field, prove the
Lemma. If k is a finite field and λ > 0, (∃nλ)(∀n ≥ nλ), ∃ a homogeneous polynomial,
Fn ∈ k[n2 variables], so that deg Fn = n and Fn cannot be written as the sum of terms of degree
n of any polynomial P1Q1 + · · ·+PλQλ, where Pj , Qj are in k[n2 variables] and have no constant
term.
Use the lemma to prove (m̂)2 6= (̂m2).

(d) Use (b) and (c) to prove that Â is NOT complete in the m̂-adic topology.

(e) All the pathology exhibited in (b), (c) and (d) arises as I is not finite, indeed when I is finite,
prove:
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i. m̂ is Âm;

ii. m̂2 = (̂m2);

iii. Â is complete in the m̂-adic topology.

BIII) Say X denotes the category TOP (topological spaces and continuous maps) and Haus(X ) the full
subcategory of Hausdorff topological spaces.

(a) At first, use the ordinary Cartesian product in X , with the product topology. Denote this Y ×Z.
Show that Y ∈ Haus(X ) ⇐⇒ the diagonal map ∆ : Y → Y × Y is closed.

(b) For X, Y ∈ Haus(X ), recall that X
f−→ Y is called a proper map ⇐⇒ f−1(compact) = compact.

(Of course, any map f : X → Y will be proper if X is compact.) Show that f : X → Y is proper
iff (∀T ∈ Haus(X ))(fT : X ×

Y
T → Y ×

Y
T is a closed map.)

(c) With (a) and (b) as background look at another subcategory, XA of X : here A is a commutative
ring, XA consists of the topological spaces Spec B, where B is an A-algebra. Maps in XA are
those coming from homomorphisms of A-algebras, viz: B → C gives Spec C → Spec B. Define

(Spec B) Π (Spec C) = Spec (B ⊗A C)

and prove that XA possesses products.
NB:

i. The topology on Spec B Π Spec C is NOT the product topology—it is stronger (more opens
and closeds)

ii. Spec B Π Spec C 6= Spec B × Spec C as sets.

Prove: the diagonal map ∆Y : Y → Y Π
Spec A

Y is closed (Y = Spec B). This recaptures (a) in the

non-Hausdorff setting of XA.

(d) Given f : Spec C → Spec B (arising from an A-algebra map B → C) call f proper ⇐⇒ i) C is a
finitely generated B-algebra and ii)
(∀T = Spec D)(fT : Spec C Π

Spec A
Spec D → Spec B Π

Spec A
Spec D is a closed map.)

Prove: if C is integral over B, then f is proper. However, prove also, Spec
(
B[T ]

)
→ Spec B is

never proper.

(e) Say A = C. For which A-algebras B is the map Spec B → Spec A proper?

BIV) A is noetherian local, mA its maximal ideal, and

Â = lim←−
n

A/mn+1 = completion of A in the m-adic topology.

Let B, mB be another noetherian local ring and its maximal ideal. Assume f : A → B is a ring
homomorphism and we always assume f(mA) ⊆ mB .

(a) Prove: f gives rise to a homomorphism Â
f̂−→ B̂ (and mÂ → mB̂).

(b) Prove: f̂ is an isomorphism ⇐⇒
i. B is flat over A

ii. f(mA) ·B = mB

iii. A/mA → B/mB is an isomorphism.
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