Math 603, Spring 2003, HW 4, due 3/17/2003

Part A

- AI) If A is a noetherian ring, write $X = \operatorname{Spec} A$ with the Zariski topology. Prove the following are equivalent:
 - (a) X is T_1
 - (b) X is T_2
 - (c) X is discrete
 - (d) X is finite and T_1 .
- AII) Call a ring *semi-local* iff it possesses just finitely many maximal ideals.
 - (a) If $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \in \operatorname{Spec} A$ and $S = A \bigcup_{j=1}^t \mathfrak{p}_j$, then $S^{-1}A$ is semi-local.
 - (b) Say A is semi-local and $\mathfrak{m}_1, \ldots, \mathfrak{m}_t$ are its maximal ideals. Show that the natural map of rings

$$A/\mathcal{J}(A) \to \prod_{i=1}^t A/\mathfrak{m}_i$$

is an isomorphism.

- (c) If A is semi-local, show Pic(A) = (0).
- AIII) Let A be a domain. An element $a \in A$, not a unit, is called *irreducible* iff it is not the product a = bc in which neither b nor c is a unit. The element a is a prime iff the principal ideal, Aa, is a prime ideal. Of course, prime \iff irreducible.
 - (a) Assume A is noetherian, show each non-unit of A is a finite product of irreducible elements. (A need not be a domain for this.)
 - (b) Prove that the factorization of (a) is unique (when it exists) iff every irreducible element of A is prime.
 - (c) Say A is a UFD and S a multiplicative subset of A. Show that $S^{-1}A$ is a UFD. If A is locally a UFD is A a UFD?
 - (d) Prove: if A is noetherian then A is a PID \iff A is a UFD and dim A = 1.
 - (e) Assume A is just a domain. A weight function, w, on A is a function $A \{0\} \to \mathbb{Z}_{\geq 0}$ so that
 - i. a | b ⇒ w(a) ≤ w(b), with equality ⇔ b | a too
 ii. a and b ∈ A and say a ∤ b and b ∤ a. Then ∃ p, q, r ∈ A so that r = pa + qb and w(r) < min{w(a), w(b)}.

Prove: a domain is a PID \iff it possesses a weight function. Can you characterize the fields among the PIDs by their weight functions?

- AIV) We will prove in class the following two theorems for *noetherian* rings, A.
 - (a) Every prime ideal of A has finite height
 - (b) If A is also a domain and \mathfrak{a} is a principal ideal then each isolated prime ideal of \mathfrak{a} has height 1.

Assume (a) and (b) and prove: a noetherian domain is a UFD iff each height 1 prime is principal.

AV) Let $A \subseteq B$ be commutative rings. Recall that $\xi \in B$ is *integral over* A iff ξ satisfies a MONIC equation with coefficients in A, i.e.,

$$(\exists r > 0)(\xi^r + a_1\xi^{r-1} + \dots + a_{r-1}\xi + a_r = 0, \quad a_j \in A).$$

Note that ξ is integral over $A \implies \xi$ is algebraic over A and the concepts coalesce when A is a field. If all $\xi \in B$ are integral over A, we say B is *integral over* A (old terminology: B is *integrally dependent* on A) or $A \rightarrow B$ is an *integral (homo)morphism*.

- (a) Prove the following are equivalent:
 - i. $\xi \in B$ is integral over A
 - ii. The subring $A[\xi]$ of B is a finitely generated A-module
 - iii. The subring $A[\xi]$ of B is contained in a SUBRING, C, of B and this C is a finitely generated A-module.
 - iv. \exists a finitely generated A-module, M, contained in B satisfying $\xi M \subseteq M$ and the annihilator of M in $A[\xi]$ is (0)
 - v. If A is assumed noetherian, $A[\xi]$ is contained in a finitely generated A-module.
- (b) Say $A \subseteq B$ and write

 $Int_B(A) = \{\xi \in B \mid \xi \text{ is integral over } A\}.$

Show that $\operatorname{Int}_B(A)$ is a *subring* of B, that $A \subseteq \operatorname{Int}_B(A)$.

The ring $\operatorname{Int}_B(A)$ is called the *integral closure of* A *in* B. A is *integrally closed in* B iff $\operatorname{Int}_B(A) = A$. If B is the total fraction ring of A, then $\operatorname{Int}_B(A)$ is called the *normalization of* A and A is a *normal* ring $\iff A$ equals its normalization.

- (c) If B is integral over A and S is a multiplicative subset in A, show $S^{-1}B$ is integral over $S^{-1}A$. Say $(\forall \mathfrak{p} \in \operatorname{Spec} A)(B_{\mathfrak{p}} \text{ is integral over } A_{\mathfrak{p}})$. Is B integral over A?
- (d) Prove: every UFD is a normal domain. Prove further: S^{-1} (normal ring) is again a normal ring.

Part B

- BI) Examples and Counterexamples:
 - (a) Let A = k[X, Y] with k a field; write $\mathfrak{m} = (X, Y)$. Show that $\mathfrak{q} = (X, Y^2)$ is \mathfrak{m} -primary, but \mathfrak{q} is NOT a power of any prime ideal of A. Therefore, primary ideals need not be powers of prime ideals.
 - (b) Let $A = k[X, Y, Z]/(XY Z^2) = k[x, y, z]$. Write \mathfrak{p} for the ideal (x, z) of A. Prove that $\mathfrak{p} \in \operatorname{Spec} A$, but \mathfrak{p}^2 is not primary. Hence, powers of non-maximal prime ideals need not be primary. What is the primary decomposition of \mathfrak{p}^2 ?
 - (c) Say A = k[X, Y] as in part (a) and write $\mathfrak{a} = (X^2, XY)$. Show that \mathfrak{a} is NOT primary yet $\sqrt{\mathfrak{a}}$ is a prime ideal—which one? So, here a non-primary ideal has a prime radical. What is the primary decomposition of \mathfrak{a} ?
 - (d) If A is a UFD and p is a prime element of A, then $\mathfrak{q} = Ap^n$ is always primary. Conversely, show if \mathfrak{q} is primary and $\sqrt{\mathfrak{q}} = Ap$, then $(\exists n \ge 1)(\mathfrak{q} = Ap^n)$. Compare with (c) above.
- BII) In this problem, A is a noetherian integral domain.
 - (a) Assume A is a normal domain, not a field, let p ∈ Max(A) and suppose p is a prime ideal of a principal ideal (a) = Aa. Show that as an A-module, p is an element of Pic(A). This gives a way of making elements of Pic(A). (Suggestions: look at (p → A) in Frac A, that is, {ξ ∈ Frac A | ξp ⊆ A}. First show (p → (a)) ≠ (a) (in A) and, from some x ∈ (p → (a)) and a, make an element ξ ∈ (Frac A) ∩ (p → A). Deduce (p → A) > A. If ξ ∈ (p → A) show ξ is integral (if something goes wrong) over A, now use the maximality of p to finish.)

(b) Now forget A being normal and assume A has two properties

i. $A_{\mathfrak{p}}$ is a PID if \mathfrak{p} is a non-zero *minimal* prime of A and

ii. $A = \bigcap_{\operatorname{ht}(\mathfrak{p})=1} A_{\mathfrak{p}}.$

Under these conditions, prove A is a normal domain.

- (c) If A is normal, show conditions i and ii must hold.
- (d) Use these results to show Theorem (b) of AIV) in the case of a normal domain.
- (e) Prove: if A is a noetherian normal domain, then A is a UFD \iff Pic(A) = (0). This settles the computation of Pic($\mathbb{Z}[X_1, \ldots, X_n]$), and Pic($k[X_1, \ldots, X_n]$) where k is a field.

BIII) A Little Number Theory.

Let \mathbb{Q} be the rational numbers, and consider fields $k = \mathbb{Q}[X]/(f(X))$ where f(X) is an irreducible polynomial over \mathbb{Q} . (Each finite extension of \mathbb{Q} has this form, as we'll show.) Such a k will be called a "number field" and we write \mathcal{O}_k for $\operatorname{Int}_k(\mathbb{Z})$.

- (a) Show \mathcal{O}_k is a noetherian normal domain with dim $\mathcal{O}_k = 1$.
- (b) If $\mathfrak{p} \in \operatorname{Spec} \mathcal{O}_k$, then $(\mathcal{O}_k)_{\mathfrak{p}}$ is a PID and \mathcal{O}_k is a UFD iff $\operatorname{Pic}(\mathcal{O}_k) = (0)$ iff \mathcal{O}_k is a PID.
- (c) Say \mathfrak{a} is an ideal of \mathcal{O}_k , write $\mathfrak{a} = \bigcap_i \mathfrak{q}_i$ for an irredundant primary decomposition and set $\mathfrak{p}_i = \sqrt{\mathfrak{q}_i}$. Show that in fact $\mathfrak{a} = \prod_i \mathfrak{p}_i^{e_i}$, $e_i \in \mathbb{Z}_{\geq 0}$, and this is a unique factorization of ideals.
- (d) Let k be the fields: $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(\sqrt{-3})$, $\mathbb{Q}(\sqrt{-5})$, $\mathbb{Q}(\zeta)$, where ζ is a primitive 7th root of 1. In each case, find \mathcal{O}_k and compute $\operatorname{Pic}(\mathcal{O}_k)$. Make a table.
- (e) In $\mathbb{Q}(\sqrt{-3})$, look at $\mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} \mid a, b \in \mathbb{Z}\}$. Is $\mathbb{Z}[\sqrt{-3}] = \mathcal{O}_k$? If not, what is $\operatorname{Pic}(\mathbb{Z}[\sqrt{-3}])$? Same question for $\mathbb{Z}[\sqrt{-5}]$.
- (f) Let A be a noetherian, normal domain of dimension 1, write k = Frac A (e.g., $\mathcal{O}_k = A$ by (a)). We examine submodules (for A) of k. Call one of these, M, a *fractional ideal* iff $(\exists b \in A)(b \neq 0)(bM \subseteq A)$. Prove that the following are equivalent for A-submodules of k:
 - i. M is a fractional ideal
 - ii. M is a finitely generated A-module
 - iii. M is a rank one projective A-module.
- (g) Under multiplication, MN, the fractional ideals form a group, denote it $\mathcal{I}(A)$. (MN goes over to $M \otimes_A N$ in $\operatorname{Pic}(A)$). Let \mathcal{C}_A be the (localizing) category of finite length modules over A and write $\widetilde{K}(A)$ for the Grothendieck group, $K_0(\mathcal{C}_A)$ of \mathcal{C}_A . By the theory of associated primes, each M in \mathcal{C}_A has a composition series

$$M = M_0 \supset M_1 \supset M_2 \supset \cdots \supset M_{n+1} = (0)$$

and

$$M_i/M_{i+1} \cong A/\mathfrak{p}_i$$
 for some $\mathfrak{p}_i \in \operatorname{Max}(A)$.

These p_i are unique up to order and we set

$$\chi_A(M) = \prod_{i=0}^n \mathfrak{p}_i \in \mathcal{I}(A).$$

Prove that χ_A is an isomorphism (first prove homomorphism) of the abelian groups $\widetilde{K}(A) \to \mathcal{I}(A)$. What is the kernel of the map $\widetilde{K}(A) \to \operatorname{Pic}(A)$?

(h) Lastly, assume A is actually a PID. Say $M = A^n$ is a free A-module of rank n and let $u \in \text{End}_A M$. Assume $\det(u) \neq 0$ and show

$$\det(u) \cdot A = \chi_A(\operatorname{coker} u).$$

BIV) More examples.

- (a) Let A = k[X, Y, Z, W]/(XY ZW), where k is a field and char(k) $\neq 2$. Prove that A is a normal domain and compute Pic(A).
- (b) If $A = \mathbb{C}[t^3, t^7, t^8] \subseteq \mathbb{C}[t]$, compute Pic(A). If $A = \{f \in \mathbb{C}[T] \mid f'(0) = f''(0) \text{ and } f(1) = f(-1)\}$ compute Pic(A).
- (c) If $A = \mathbb{C}[X, Y, Z]/(X^2 + Y^2 + Z^2 1)$, show $\operatorname{Pic}(A) \neq (0)$.
- BV) (a) A = K[X, Y, Z], K a field. Set $\mathfrak{a} = (X, Y)(X, Z)$. Find a primary decomposition of \mathfrak{a} .
 - (b) Let $A = K[X, XY, Y^2, Y^3] \subseteq K[X, Y] = B$, here K is a field. Write $\mathfrak{p} = YB \cap A = (XY, Y^2, Y^3)$. Prove that $\mathfrak{p}^2 = (X^2Y^2, XY^3, Y^4, Y^5)$ and is not primary. Find a primary decomposition of \mathfrak{p}^2 involving (Y^2, Y^3) . All ideals are ideals of A.
- BVI) (a) Say A is an integral domain. Prove

$$A = \bigcap_{\mathfrak{p} \in \operatorname{Spec} A} A_{\mathfrak{p}} = \bigcap_{\mathfrak{m} \in \operatorname{Max}(A)} A_{\mathfrak{m}}.$$

(b) Now let A be a commutative ring and let f(T) be a polynomial of degree d in A[T]. Prove that A[T]/(f(T)) is an A-projective module of rank d iff the coefficient of T^d in f(T) is a unit of A.