Math 603, Spring 2003, HW 3, due 2/24/2003

Part A

- AI) Consider the two rings $A = \mathbb{R}[T]$ and $B = \mathbb{C}[T]$. Show that Max(B) is in one-to-one correspondence with the points of the complex plane while Max(A) is in one-to-one correspondence with the closed upper half plane: $\{\xi \in \mathbb{C} \mid Im(\xi) \ge 0\}$. Since A is a PID (so is B) we can characterize an ideal by its generator. In these terms, which ideals of Max(A) correspond to points in $Im(\xi) > 0$, which to points on the real line? What about Spec B, Spec A?
- AII) When X is compact Hausdorff and $A = \mathbb{C}(X)$, we identified X and Max(A) in class via $x \mapsto \mathfrak{m}_x$. Now Max(A) has the induced topology from Spec A.
 - (a) Show the induced topology on Max(A) is compact Hausdorff by proving $x \mapsto \mathfrak{m}_x$ is a homeomorphism.
 - (b) Prove all finitely generated ideals of A are principal but that no maximal ideal is finitely generated.
- AIII) (a) Given $A \to B$ a homomorphism prove that B is faithfully flat over A iff B is flat over A and the map Spec $B \to$ Spec A is surjective.
 - (b) Say $A \to B$ is a homomorphism and B is faithfully flat over A. Assume A is noetherian. Show that the topology on Spec A is the quotient topology from Spec B.
- AIV) Here A is a commutative ring, but not necessarily with unity. Let $A^{\#}$ denote $A \times \mathbb{Z}$ (category of sets) and addition componentwise and multiplication by

$$\langle a, n \rangle \langle b, q \rangle = \langle ab + nb + qa, nq \rangle$$

- (a) Clearly, $A^{\#}$ is a commutative ring with unity $\langle 0, 1 \rangle$. A is a subring of $A^{\#}$, even an ideal. Suppose A has the ACC on ideals, prove that $A^{\#}$ does too.
- (b) If you know all the prime ideals of A, can you find all the prime ideals of $A^{\#}$?
- AV) Let B, C be commutative A-algebras, where A is also commutative. Write D for the A-algebra $B \otimes_A C$.
 - (a) Give an example to show that Spec D is not Spec $B \underset{\text{Spec } A}{\times} \text{Spec } C$ (category of sets over Spec A).
 - (b) We have A-algebra maps $B \to D$ and $C \to D$ and so we get maps $\text{Spec } D \to \text{Spec } B$ and $\text{Spec } D \to \text{Spec } C$ (even maps over Spec A), and these are maps of topological spaces (over Spec A). Hence, we do get a map

$$\theta : \operatorname{Spec} D \to \operatorname{Spec} B \prod_{\operatorname{Spec} A} \operatorname{Spec} C$$
 (top. spaces).

Show \exists closed sets in Spec *D* not of the form $\theta^{-1}(Q)$, where *Q* is a closed set in the product topology of Spec *B* $\prod_{\text{Spec }A} \text{Spec }C$.

Part B

- BI) Let $A = \mathbb{Z}[T]$, we are interested in Spec A.
 - (a) If $\mathfrak{p} \in \operatorname{Spec} A$, prove that $\operatorname{ht}(\mathfrak{p}) \leq 2$.
 - (b) If $\{\mathfrak{p}\}$ is closed in Spec A, show that $ht(\mathfrak{p}) = 2$. Is the converse true?
 - (c) We have the map $\mathbb{Z} \hookrightarrow \mathbb{Z}[T] = A$, hence the continuous map $\operatorname{Spec} A \xrightarrow{\pi} \operatorname{Spec} \mathbb{Z}$. Pick a prime number, say p, of \mathbb{Z} . Describe $\pi^{-1}(p)$, is it closed?

- (d) When exactly is a $\mathfrak{p} \in \operatorname{Spec} A$ the generic point (point whose closure is everything) of $\pi^{-1}(p)$ for some prime number p?
- (e) Describe exactly those $\mathfrak{p} \in \operatorname{Spec} A$ whose image, $\pi(\mathfrak{p})$, is dense in $\operatorname{Spec} \mathbb{Z}$. What is $\operatorname{ht}(\mathfrak{p})$ in these cases?
- (f) Is there a $\mathfrak{p} \in \operatorname{Spec} A$ so that the closure of $\{\mathfrak{p}\}$ is all of $\operatorname{Spec} A$? What is $\operatorname{ht}(\mathfrak{p})$?
- (g) For a general commutative ring, B, if p and q are elements of Spec B and if q ∈ {p} show that ht(q) ≥ ht(p) (assuming finite height). If p, q are as just given and ht(q) = ht(p) is q necessarily p? Prove that the following are equivalent:
 - i. Spec B is *irreducible* (that is, it is NOT the union of two properly contained closed subsets)
 - ii. $(\exists \mathfrak{p} \in \operatorname{Spec} B)(\operatorname{closure of} \{\mathfrak{p}\} = \operatorname{Spec} B)$
 - iii. $(\exists unique \ \mathfrak{p} \in \operatorname{Spec} B)(\operatorname{closure of} \{\mathfrak{p}\} = \operatorname{Spec} B)$
 - iv. $\mathcal{N}(B) \in \operatorname{Spec} B$.
- (h) Draw a picture of Spec $\mathbb{Z}[T]$ as a kind of plane over the "line" Spec \mathbb{Z} and exhibit in your picture all the different kinds of $\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[T]$.
- BII) If A is a commutative ring, we can view $f \in A$ as a "function" on the topological space Spec A as follows: for each \mathfrak{p} in Spec A, as usual write $\kappa(\mathfrak{p})$ for $\operatorname{Frac}(A/\mathfrak{p})$; [note that $\kappa(\mathfrak{p}) = A_{\mathfrak{p}}/\operatorname{its} \max$. ideal] and set $f(\mathfrak{p}) = \operatorname{image} \operatorname{of} f$ in A/\mathfrak{p} considered in $\kappa(\mathfrak{p})$. Thus, $f : \operatorname{Spec} A \to \bigcup_{\mathfrak{p} \in \operatorname{Spec} A} \kappa(\mathfrak{p})$. Observe that

if $f \in \mathcal{N}(A)$, then $f(\mathfrak{p}) = 0$ all \mathfrak{p} , yet f need not be zero as an element of A.

- (a) Let $A = k[X_1, \ldots, X_n]$. We'll prove soon that there are fields, Ω , containing k so that
 - i. Ω has infinitely many transcendental elements independent of each other and of the X_j over k and
 - ii. Ω is algebraically closed, i.e., all polynomials with coefficients in Ω have a root in Ω .

An example of this is when $k = \mathbb{Q}$ or some finite extension of \mathbb{Q} and then we can take $\Omega = \mathbb{C}$. In any case, fix such an Ω . Establish a set-theoretic map $\Omega^n \to \operatorname{Spec} A$ so that $f \in A = k[X_1, \ldots, X_n]$ viewed in the usual way as a function on Ω^n agrees with f viewed as a function on $\operatorname{Spec} A$. We can topologize Ω^n as follows: call a subset of Ω^n k-closed iff \exists finitely many polynomials f_1, \ldots, f_p from A so that the subset is exactly the set of common zeros of f_1, \ldots, f_p . This gives Ω^n the k-topology (an honest topology, as one checks). Show that your map $\Omega^n \to \operatorname{Spec} A$ is continuous between these topological spaces. Prove, further, that Ω^n maps onto $\operatorname{Spec} A$.

- (b) Show that Ω^n is irreducible in the k-topology.
- (c) Define an equivalence relation on Ω^n : $\xi \sim \eta \iff$ each point lies in the closure (k-topological) of the other. Prove that Ω^n / \sim is homeomorphic to Spec A under your map.
- BIII) Let A be an integral domain and write K for Frac(A). For each $\xi \in K$, we set

dom $(\xi) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \xi \text{ can be written } \xi = a/b, \text{ with } a, b \in A \text{ and } b(\mathfrak{p}) \neq 0 \}.$

- (a) Show dom(ξ) is open in Spec A.
- (b) If $A = \mathbb{R}[X, Y]/(X^2 + Y^2 1)$, set $\xi = (1 y)/x$ (where $x = \overline{X}$ and $y = \overline{Y}$). What is dom(ξ)?
- (c) Set $A = \mathbb{C}[X, Y]/(Y^2 X^2 X^3)$ and let $\xi = y/x$. What is dom (ξ) ?
- (d) Note that as ideals of A (any commutative ring) are A-modules, we can ask if they are free or locally free. Check that the non-zero ideal, a, of A is free ⇔ it is principal and (a → (0)) = (0). The second condition is automatic in a domain. Now look again at A = ℝ[X, Y]/(X² + Y² 1), you should see easily that this is a domain. Characterize as precisely as you can the elements m ∈ Max(A) which are free as A-modules. If there are other elements of Max(A), are these locally free? What is the complement of Max(A) in Spec A? Prove that A ⊗_ℝ C is a PID.

- (e) Consider the descent question for PIDs: given rings S and T with $S \to T$ a homomorphism, suppose A is an S-algebra and T is faithfully flat over S. If $A \otimes_S T$ is a PID, is A necessarily a PID?
- BIV) Let p be an odd prime number, set m = 2p 1 and write $A = \mathbb{Z}[\sqrt{-m}] \cong \mathbb{Z}[T]/(T^2 + m)$. Assume m is square free.
 - (a) Let \mathfrak{a} be the ideal $(p, 1 + \sqrt{-m})$ of A. Prove that \mathfrak{a} is not principal, yet that \mathfrak{a} , as a module, is locally free (necessarily of rank one). Prove further that A is not a UFD.
 - (b) For p = 3 and 7, find all the ideals, \mathfrak{a} , which are not free, yet are locally free.
 - N.B. By our results you have non-free projectives, here.
- BV) In this problem A is an integral domain and K = Frac(A).
 - (a) Is it true that if $\mathfrak{p} \in \text{Spec}(A[X])$ and if $\mathfrak{p} \cap A = (0)$, then \mathfrak{p} is a principal ideal? Proof or counterexample.
 - (b) Say A is a UFD and $\eta \in K$, with $\eta \neq 0$. Write $\eta = a/b$, where a and b are relatively prime. Prove that $A[\eta] \cong A[X]/(bX-a)$. When is $A[\eta]$ a flat A-module?
 - (c) If k is a field and $\xi \in k(X)$ is a non-constant rational function, write $\xi = f(X)/g(X)$ where f and g are relatively prime polynomials. Of course, $k(\xi)$ is a subfield of k(X), so k(X) is a $k(\xi)$ vector space (and a $k(\xi)$ -algebra). Prove that $\dim_{k(\xi)}(k(X)) < \infty$ and compute this dimension in terms of f and g.
- BVI) If A is a commutative ring, $B = A[[X_1, ..., X_n]]$ denotes the ring of formal power series in the variables $X_1, ..., X_n$ (the case n = 1 was discussed in assignment 2).
 - (a) Prove:

 $\begin{array}{rcl} A \text{ is noetherian} & \Longleftrightarrow & B \text{ is noetherian} \\ A \text{ is an integral domain} & \Longleftrightarrow & B \text{ is an integral domain} \\ A \text{ is a local ring} & \Longleftrightarrow & B \text{ is a local ring.} \end{array}$

(b) Write $K((X_1, \ldots, X_n))$ for Frac *B*, where K = Frac A. Say $A = K = \mathbb{C}$, n = 2. Is $\mathbb{C}((X, Y))$ equal to $\mathbb{C}((X))((Y))$? If not, does one contain the other; which?