Math 603, Spring 2003, HW 1, due 1/27/2003

Part A

- AI) (a) Say $A \xrightarrow{\theta} B$ is a homomorphism of commutative rings. and suppose it makes B a faithfully flat A-module. Show that θ is injective.
 - (b) Hypotheses as in (a), but also assume B is finitely presented as an A-algebra (e.g., B is finitely generated and A is noetherian). Show that there exists an A-module, M, so that $B \cong A \amalg M$, as A-modules.
 - (c) Assume A and B are local rings, $\theta : A \to B$ is a ring map (N.B. so that we assume $\theta(\mathfrak{m}_A) \subseteq \mathfrak{m}_B$) and B, as an A-module, is flat. Write $\mathcal{N}(A)$, respectively $\mathcal{N}(B)$ for the nilradicals of A, respectively B. That is,

$$\mathcal{N}(A) = \left\{ \xi \in A \mid (\exists n \in \mathbb{N})(\xi^n = 0) \right\}, \text{ etc.}$$

Prove:

i. If $\mathcal{N}(B) = (0)$, then $\mathcal{N}(A) = (0)$.

ii. If B is an integral domain, so is A.

Are the converses of i., ii. true? Proof or counter-example.

AII) Here, I is an index set and S(I) is the set of all *finite* subsets of I. Partially order S(I) by inclusion, then it has Moore–Smith. Also, C is a category having *finite* products or finite coproducts as the case may be below (e.g. groups, Ω -groups, modules). Say for each $\alpha \in I$ we are given an object $M_{\alpha} \in C$. For ease of notation below, write $M_S = \coprod_{\alpha \in S} M_{\alpha}, M_S^* = \prod_{\alpha \in S} M_{\alpha}$, where $S \in S(I)$ is given. Prove:

If $\mathcal C$ has right limits and finite coproducts, then $\mathcal C$ has arbitrary coproducts; indeed,

$$\varinjlim_{S \in \mathcal{S}(I)} M_S = \coprod_{\alpha \in I} M_\alpha$$

Prove a similar statement for left limits and products.

AIII) Recall that a ring, Λ , is *semi-simple* iff every Λ -module, M, has the property:

 $(\forall \text{ submodules, } M', \text{ of } M)(\exists \text{ another submodule, } M'' \text{ of } M)(M \cong M' \amalg M'').$

There is a condition on the positive integer, n, so that n has the condition $\iff \mathbb{Z}/n\mathbb{Z}$ is semi-simple. Find the condition and prove the theorem.

- AIV) In this problem, $A \in CR$. If $\alpha_1, \ldots, \alpha_m$ are in A, write $(\alpha_1, \ldots, \alpha_n)$ for the ideal generated by $\alpha_1, \ldots, \alpha_n$ in A. Recall that $K_0(A)$, the *Grothendieck group* of A, is the quotient of the free abelian group on the (isomorphism classes of) finitely generated A-modules (as generators) by the subgroup generated by the relations: if $0 \to M' \to M \to M'' \to 0$ is exact in Mod(A), then $[M] \to [M'] \to [M'']$ is a relation.
 - (a) If $\alpha \in A$, show that in $K_0(A)$ we have

$$\left[((\alpha) \to 0) \right] = \left[A/(\alpha) \right]$$

- (b) If A is a PID and M is a finite length A-module, show that [M] = 0 in $K_0(A)$.
- (c) Prove: if A is a PID, then for all finitely generated A-modules, M, there exists a unique integer r = r(M), so that [M] = r[A] in $K_0(A)$; hence $K_0(A)$ is \mathbb{Z} . Prove further that $r(M) = \dim(M \otimes_A \operatorname{Frac}(A))$.

Part B

BI) Write \mathcal{LCAb} for the category of locally compact abelian topological groups, the morphisms being continuous homomorphisms. Examples include: every abelian group with the discrete topology, \mathbb{R} , \mathbb{C} , $\mathbb{R}/\mathbb{Z} = \mathbb{T}$, etc. If $G \in \mathcal{LCAb}$, write

$$G^D = \operatorname{Hom}_{\operatorname{cts}}(G, \mathbb{T}),$$

make G^D a group via pointwise operations and topologize G^D via the compact-open topology; that is, take the sets

$$U(C,\epsilon) = \left\{ f \in G^D \mid \operatorname{Im} f \upharpoonright C \subseteq -\epsilon < \arg z < \epsilon \right\}$$

—where C runs over the compact subsets of G containing 0, ϵ is positive and we identify \mathbb{T} with the unit circle in \mathbb{C} —as a fundamental system of neighborhoods at 0 in G^D .

- (a) Suppose G is actually compact. Prove G^D is discrete in this topology. Likewise, prove if G is discrete, then G^D is compact in this topology. Finally prove G^D is locally compact in this topology.
- (b) If $\{G_{\alpha}, \varphi_{\alpha}^{\beta}\}$ is a right (respectively left) mapping family of *finite* abelian groups, then $\{G_{\alpha}^{D}, (\varphi_{\alpha}^{\beta})^{D}\}$ becomes a left (respectively right) mapping family, again of *finite* abelian groups (how, why?). Prove that

$$\left(\varinjlim_{\alpha} G_{\alpha}\right)^{D} \cong \varprojlim_{\alpha} G_{\alpha}^{D}$$

and

$$\left(\lim_{\alpha} G_{\alpha}\right)^{D} \cong \lim_{\alpha} G_{\alpha}^{D}$$

as topological groups. We call a group profinite \iff it is isomorphic, as a topological group, to a left limit of finite groups.

- (c) Prove the following three conditions are equivalent for an abelian topological group, G:
 - i. G is profinite
 - ii. G is a compact, Hausdorff, totally disconnected group
 - iii. G^D is a discrete torsion group.
- (d) For this part, $\{G_{\alpha}\}$ is a family of *compact* groups, not necessarily abelian, and the index set has Moore–Smith. Assume $(\forall \alpha)(\exists S_{\alpha})(S_{\alpha} = \text{closed}, \text{ normal subgroup of } G_{\alpha})$ and that $b \geq \alpha \implies$ $G_{\beta} \subseteq G_{\alpha}$ and $S_{\beta} \subseteq S_{\alpha}$. Show that the family $\{H_{\alpha} = G_{\alpha}/S_{\alpha}\}_{\alpha}$ can be made into a left mapping family, in a natural way, and that

$$\lim_{\alpha} H_{\alpha} \cong \bigcap_{\alpha} G_{\alpha} / \bigcap_{\alpha} S_{\alpha} \quad (as \text{ topological groups.})$$

(e) If G is a compact topological group, write $\{U_{\alpha} | \alpha \in I\}$ for the family of all open, normal subgroups of G. Continue (c) by proving:

$$G$$
 is profinite $\iff G$ is compact and $\bigcap_{\alpha} U_{\alpha} = \{1\}.$

- (f) In class, we defined \mathbb{Z}_p as $\varprojlim \mathbb{Z}/p^n \mathbb{Z}$ and $\hat{\mathbb{Z}}$ as $\varprojlim_n \mathbb{Z}/n\mathbb{Z}$ (Artin ordering for the *n*'s). Quickly use (b) to compute \mathbb{Z}_p^D and $(\hat{\mathbb{Z}})^D$. Now consider the following mathematical statements:
 - i. $\hat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p$ ii. $\mathbb{O}^* \simeq \mathbb{Z}/2\mathbb{Z}$ I

iii.
$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \frac{1}{1 - 1/p^s}$$
, if Re $s > 1$

iv. A statement you know well and are to fill in here concerning arithmetic in \mathbb{Z} .

Show i-iv are mutually equivalent.

BII) Fix an abelian group, A, for what follows. Write $A_n = A$, all $n \in \mathbb{N}$ and give \mathbb{N} the Artin ordering. If $n \leq m$ (i.e. n|m) define $\varphi_n^m : A_n \to A_m$ by $\varphi_n^m(\xi) = m\xi/n$, and define $\psi_m^n : A_m \to A_n$ by $\psi_m^n(\xi) = m\xi/n$, too. Let

$$\tilde{A} = \underset{\leftarrow}{\lim} \{A_n, \varphi_n^m\} \text{ and } T(A) = \underset{\leftarrow}{\lim} \{A_m, \psi_m^n\}.$$

(T(A) = full Tate group of A).

- (a) Prove that both \tilde{A} and T(A) are divisible groups.
- (b) Show that if $A = A_1 \xrightarrow{\varphi} \tilde{A}$ is the canonical map into the direct limit, then $\ker(\varphi) = t(A)$, the torsion subgroup of A. Hence, every torsion free abelian group is a subgroup of a divisible group. Given any abelian group, A, write

$$0 \to K \to F \to A \to 0,$$

for some free abelian group F. Show that A may be embedded in \tilde{F}/K ; hence deduce anew that every abelian group embeds in a divisible abelian group.

- (c) If A is a free \mathbb{Z} -module, what is T(A)?
- (d) If $A \to B \to 0$ is exact, need $T(A) \to T(B) \to 0$ also be exact? Proof or counterexample.
- (e) Show that if $T(A) \neq (0)$, then A is not finitely generated.
- BIII) Again, as in AI), let $\theta : A \to B$ be a homomorphism of commutative rings and assume B is faithfully flat over A via θ . If M is an A-module, write M_B for $M \otimes_A B$.
 - (a) Prove: M is finitely generated as an A-module iff M_B is finitely generated as a B-module.
 - (b) Same as (a) but for finite presentation instead of finite generation.
 - (c) Show: M is locally free over A iff M_B is locally free over B.
 - (d) When, if ever, is $S^{-1}A$ faithfully flat over A?
- BIV) Here, $\Lambda \in RNG$. Say

$$0 \to M' \to M \to M'' \to 0$$

is an exact sequence of Λ -modules.

(a) Assume M'' is a flat Λ -module. Prove: for all Λ^{op} -modules, N, the sequence

$$0 \to N \otimes_{\Lambda} M' \to N \otimes_{\Lambda} M \to N \otimes_{\Lambda} M'' \to 0$$

is again exact. (You might look at the special case when M is free first.)

(b) Again assume M'' is flat; prove M and M' are flat \iff either is flat. Give an example of Λ , M', M, M'' in which both M and M' are flat but M'' is NOT flat.