Math 602, Fall 2002, HW 5, due 12/10/2002

Part A

AI) (Vector bundles) As usual, TOP is the category of topological spaces and k will be either the real or
complex numbers. All vector spaces are to be finite dimensional. A wvector space family over X, V, is
an object of TOPx, call p the map V — X, so that

i. (Vze X)(p~t(z) (denoted V;,) is a k-vector space)

ii. The induced topology on V, is the usual topology it has as a vector space over k.

Example: the trivial family: X IT k™ (fixed n).
Vector space families over X form a category, VF(X), if we define the morphisms to be those morphisms,
o, from TOPx which satisfy:

(Vz € X)(pz : Vy — W, is a linear map.)

(a) Say Y %, X is a continuous map. Define a functor 6* : VF(X) ~» VF(Y), called pullback. When
Y is a subspace of X, the pullback, 6*(V), is called the restriction of V' to Y, written V [ Y.
A vector space family is a vector bundle <= it is locally trivial, that is:
(Vz € X)(Fopen U)(z € U) so that V' | U is isomorphic (in VF(U)) to U II k™, some n. Let
Vect(X) denote the full subcategory of VF(X) formed by the objects that are vector bundles.

(b) Say X is an r-dimensional vector space considered in TOP. Write P(X) for the collection of
all hyperplanes through 0 € X, then P(X) is a topological space and is covered by opens each
isomorphic to an (r — 1)-dimensional vector space. On P(X) we make an element of VF(P(X)):
W is the set of pairs (¢,v) € P(X) IT XP so that £ C kerv. Here, XP is the dual space of X.
Show that W is a line bundle on P(X).

(¢) If V € Vect(X) and X is connected, then dim(V,) is constant on X. This number is the rank of
V.

(d) A section of V over U isamap o : U — V | U so that poo = idy. Write I'(U, V) for the
collection of sections of V' over U. Show: if V' € Vect(X), each section of V over U is just a
compatible family of locally defined vector valued functions on U. Show further that T'(U, V) is a
vector space in a natural way.

(e) Say V and W are in Vect(X), with ranks p and g respectively. Show: Hom(V, W) is isomorphic to
the collection of locally defined “compatible” families of continuous functions U — Hom(kP, k),
via the local description

v € Hom(V,W) ~» ¢ : U — Hom(kP, k?),

where ¢(u,v) = (u, §(u)(v)).
Now Iso(kP, k%) = {tp € Hom(kP, k?) | ¢ is invertible} is an open of Hom(kP, k7).
(f) Show: ¢ € Hom(V, W) is an isomorphism <= for a covering family of opens
U(C X), p(U) CIso(kP, k1) < (Vz € X)(py : Vu — W, is an isomorphism).
(g) Show {z | ¢, is an isomorphism (here, ¢ € Hom(U,V))} is open in X.
(h) Show all of (a) to (g) go over when X € C*~MAN (0 < k < o) with appropriate modification
C* replacing continuity where it appears.

ATII) (Linear algebra for vector bundles). First just look at finite dimensional vector spaces over k and say
F is some functor from vector spaces to vector spaces (F might even be a several variable functor).
Call F continuous <= the map Hom(V, W) — Hom(F(V), F(W)) is continuous. (Same definition
for C*, 1 < k < 00, w). If we have such an F, extend it to bundles wvia the following steps: first define
F(V) (for V € Vect(X)) as the vector space family | J, .y F'(V;)—we must still topologize this.



(a) V is the trivial bundle: X II kP. As sets, F/(X II kP), via the definition above, is just X II F'(kP),
so we give F'(X II kP) the product topology. Prove: if ¢ € Hom(V, W), then F(p) is continuous,
therefore F(p) € Hom(F(V),F(U)). Show, further, ¢ is an isomorphism = F(y) is an

isomorphism.

(b) The topology on F(V) when V is trivial appears to depend on the specific trivialization. Show
this is not true—it is actually independent of same.

(¢) If V is any bundle, then V' | U is trivial for small open U, so by (a) and (b), F(V [ U) is a trivial
bundle. Topologize F(V) by calling a set, Z, open iff Z N (F(V i U)) is open in F(V | U) for
all U where V | U is trivial. Show that if Y C X, then the topology on F(V | Y) is just that on
F(V) Y, that ¢ : V. — W continuous = F(yp) is continuous and extend all these things to
C*. Finally prove: f:Y — X in TOP = f*(F(V)) 2 F(f*(V)) and similarly in C*—~MAN.

(d) If we apply (c) , we get for vector bundles:
i. VII W, more generally finite coproducts
ii. VP, the dual bundle
iii. Veow
iv. Hom(V, W), the vector bundle of (locally defined) homomorphisms.

Prove: I'(U, Hom(V,W)) = Hom(V | U,W | U) for every open, U, of X. Is this true for the
bundles of i, ii and iii?

ATIT) Recall that if R € RNG, J(R)—the Jacobson radical of R— is just the intersection of all maximal
ideals of R. The ideal, J(R), is actually 2-sided.
(a) Say J(R) = (0) (e.g., R =17Z). Show that no non-projective R-module has a projective cover.

(b) Suppose M;, i =1,...,t are R-modules with projective covers Py,...,P;. Prove that [[, P; is a
projective cover of [, M;.

(¢) Say M and N are R-modules and assume M and M IT N have projective covers. Show that N
has one.

(d) In M is an R-module, write (as usual) M? = Hompg (M, R). Then MP is an R°P-module. Prove
that if M is finitely generated and projective as an R-module, then MP has the same properties
as an R°P-module.

AIV) Let {M,} be a given family of R°P-modules. Define, for R-modules, two functors:

U:N~ ((E[Ma) ®RN)

VN~ [[(Mo @5 N).

(a) Show that V is right-exact and is exact iff each M, is flat over R.

(b) Show there exists a morphism of functors 6 : U — V. Prove that 8 : U(N) — V(N) is surjective
if IV is finitely generated, while 6y is an isomorphism if N is finitely presented.

Part B

BI) (Continuation of AI and AII). Let V and W be vector bundles and ¢ : V' — W a homomorphism.
Call ¢ a monomorphism (respectively epimorphism) iff (Vz € X)(p, : Vo — W, is a monomorphism
(respectively epimorphism)). Note: ¢ is a monomorphism iff ¢” : WP — VP is an epimorphism. A
sub-bundle of V is a subset which is a vector bundle in the induced structure.



(a)

Prove: if ¢ : V' — W is a monomorphism, then ¢(V) is a sub-bundle of W. Moreover, locally on
X, we have that there exists a vector bundle, G, an open U C X, so that
(VI1U)O(GU)=2W |U (ie., every sub-bundle is locally part of a coproduct decomposition
of W). Prove also: {z | ¢, is a monomorphism} is open in X. (Suggestion: say = € X, pick
a subspace of W, complementary to ¢(V;), call it Z. Form G = X II Z. Then there exists a
homomorphism V II G — W, look at this homomorphism near the point x.)

Say V is a sub-bundle of W, show that |J,.x W./V: (with the quotient topology) is actually a

vector bundle (not just a vector space family) over X.

Now note we took a full subcategory of VF(X), so for ¢ € Hom(V,W) (V,W € Vect(X)) the

dimension of ker ¢, need not be locally constant on X. When it is locally constant call ¢ a bundle

homomorphism. Prove that if ¢ is a bundle homomorphism from V to W, then
i. U, ker ¢, is a sub-bundle of V
ii. J,Im e, is a sub-bundle of W, hence

ili. |J, coker ¢, is a vector bundle (quotient topology).

We refer to these bundles as ker ¢, Im ¢ and coker ¢ respectively. Deduce from your argument for

i that

iv. Given € X, there exists an open U, « € U, so that (Vy € U)(rankyp, > ranky,). Of
course, this ¢ is not necessarily a bundle homomorphism.

From now on to the end, X is COMPACT HAUSDORFF. We need as well two results from

analysis:

A) (Tietze extension theorem). X is a normal space, Y a closed subspace, V' a real vector space.
Then every continuous map ¥ — V admits an extension to a continuous map X — V. Same
result for X € C*~MAN and C* maps.

B) (Partitions of unity). Say X is compact Hausdorff, {U,} a finite open cover of X. There
exist continuous maps, f,, taking X to R such that
A fo >0, (all @)

B. supp(fa) € Us (s0 fo € C§(Us))
C. VeeX)>, falzx)=1).

The same is true for C¥—MAN (X compact!) and C* functions (1 < k < 00).

Extend Tietze to vector bundles: if X is compact Hausdorff, ¥ C X closed and V' € Vect(X),

then every section ¢ € T'(Y,V | Y) extends to a section in I'(X,V). (Therefore, there exist

plenty of continuous or C*° global sections of V. FALSE for holomorphic sections). Apply this to
the bundle Hom(V, W) and prove: Y — X closed, X (as usual) compact Hausdorff or compact

C*-manifold, if ¢ : V | Y — W | Y is an isomorphism of vector bundles, there exists open, U,

Y C U, so that ¢ extends to an isomorphism V [ U — W [ U.

Every vector space possesses a metric (take any of the p-norms, or take the 2-norm if you are

fussy). It’s easy to see that metrics then exist on trivial bundles. In fact, use the 2-norm, so

we can “bundleize” the notion of Hermitian form (AII) and get the bundle Herm(V'). Then a

Hermitian metric on V' is a global section of Herm(V') which is positive definite, at each = € X.

Show every bundle possesses a Hermitian metric.

Say we’re given vector bundles and bundle homomorphisms, we say the sequence
= V= Vigr — Vigg — -
of such is exact < (Va € X) the sequence of vector spaces
= Vie—=Vigre = Vigoz — -

is exact. Prove: if 0 - V' — V — V" — 0 is an exact sequence of vector bundles and bundle
homomorphisms, then V = V' 11 V",



(2)

BII) (a)

(b)

Consider a vector bundle, V' and a subspace, ¥ of the vector space I'(X,V). We get the trivial
bundle X II ¥ and a natural homomorphism X II ¥ — V| via

(z,0) = o(x).

Prove: if X is compact Hausdorff (or compact C*—~HOM), there exists a finite dimensional
subspace, X, of T'(X, V) so that the map X II ¥ — V is surjective. Thus there exists a finite
dimensional surjective family of C (respectively C¥) sections of V. Use (f) to deduce: usual
assumption on X, then for each vector bundle, V| on X, there exists a vector bundle, W, on X,
so that V II W is a trivial bundle.

Write C(X) (respectively C*(X), 1 < k < co) for the ring of continuous (respectively C*) func-
tions (values in our field) on X, where X is compact Hausdorff (respectively compact manifold).
In a natural way (pointwise multiplication) I'(X, V) is an A-module (A4 = C(X), C*(X)), and T’
gives a functor from vector bundles, V, to Mod(A). Trivial bundles go to free modules of finite
rank over A (why?) Further, show I' is an equivalence of categories

(Trivial bundles, homs) ~~ (Free A-modules, f.g.).

Now use your results to prove:

I' gives an equivalence of categories: (Vect(X), homs from VF) and (f.g. projective
A-modules, module homs).

Say M is a f.g. Z-module, # (0). Prove there exists a prime p so that M ®zZ/pZ # (0). Deduce:
no divisible group (abelian) [i.e., one such that N - N — 0 is exact, all » > 1] can be f.g.
Say M, M" are Z-modules and M is f.g. while M" is torsion free. Given ¢ € Hom(M, M")

suppose (V primes p)(the induced map M ®z Z/pZ — M" ®z Z/pZ is a monomorphism). Show
that ¢ is a monomorphism and M is free.

BIIT) Given A, I' € RNG and a ring homomorphism A — T (thus, I is a A-algebra), if M is a A-module,
then M ®, I has the natural structure of a I'°P-module. Similarly, if Z is both a A°°-module and a
I'-module, then Z ® M is still a I'-module. Now let N be a I'-module,

(a)

prove there is a natural isomorphism
(*) HOH]F(Z XA M,N) ;HomA(M,Homp(Z,N)).
Prove, in fact, the functors M ~~ M ®, Z and N ~» Homr(Z, N) are adjoint functors, i.e., (x) is

functorial.

Establish an analog of (x):
(%) Homr(M,Homp (Z, N)) =2 Homp (Z ®r M, N)

under appropriate conditions on Z, M and N (what are they?)

Show: M projective as a A°P-module, Z projective as a ['°P-module = M ®, Z is projective
as a ['°P-module. In particular, M projective as a A°’-module = M ®, I' is projective as a
I'°P-module and of course, the same statement with the op for Z @, M, I' ® M. Show further,
that if N is A-injective, then Homp (I", N) is I-injective.

For abelian groups, M, write M? = Homgz(M,Q/Z). Then, if M is free, M is injective as a
Z-module (why?). From this deduce: every abelian group is a subgroup of an injective abelian
group.

Give Eckmann’s proof of the Baer Embedding Theorem: for every ring, I', each I'-module is a
submodule of an injective I'-module. (Eckmann’s proof uses (c) and (d)).



BIV)

BV)

BVI)

Here, A and B are commutative rings and ¢ : A — B a ring homomorphism so that B is an A-algebra.
Assume B is flat (i.e., as an A-module, it’s flat). Define a homomorphism

0 : HomA(M,N) ®a B — HomB(M R4 B, N ®4 B)
(functorial in M and N)—how?

(a) If M is f.g. as an A-module, 6 is injective.

(b) If M is f.p. as an A-module, 6 is an isomorphism.

(c) Assume M is f.p. as an A-module, write a for Ann(M) = (M — (0)). Prove that a ®4 B is the
annihilator of M ® 4 B in B.

Here, k is a field and f is a monic polynomial of even degree in k[X].

a) Prove there exist g, € k[X] such that f = ¢?> +r and degr < i deg f. Moreover, g and r are
2
unique.

Now specialize to the case k = Q, and suppose f has integer coefficients. Assume f(X) is NOT the
square of a polynomial with rational coefficients.

(b) Prove there exist only finitely many integers, =, such that the value f(z) is a square, say 32, where
y € Z. In which ways can you get the square of an integer, y, by adding 1 to third and fourth
powers of an integer, x?

(¢) Show there exists a constant, K, depending ONLY on the degree, N, of f so that:
if all coefficients of f are bounded in absolute value by C' (> 1) then whenever (z,y) is
a solution of y? = f(x) (with x, y € Z) we have |z| < KxCN.
(d) What can you say about the number of points (x,y) with rational coordinates which lie on the
(hyper-elliptic) curve Y2 = f(X)?
Consider Mod(Z) and copies of Z indexed by N = {1,2,...}. Form the module [] Z. It is a product

z
of Vg projective modules. Show M =]] Z is not projective as a Z-module. (Suggestions: establish

z
that each submodule of a free module over a PID is again free, therefore need to show M is not free.
Look at
K={¢=(§) e M| (Vn)3Fk =k(n))(2" | § if j > k(n))}.

This is a submodule of M; show K/2K is a vector space over Z/2Z of the same dimension as K and
finish up. Of course, 2 could be replaced by any prime). So, products of projectives need not be
projective.



