Math 602, Fall 2002, HW 5, due 12/10/2002

Part A

- AI) (Vector bundles) As usual, TOP is the category of topological spaces and k will be either the real or complex numbers. All vector spaces are to be finite dimensional. A vector space family over X, V, is an object of TOP_X , call p the map $V \to X$, so that
 - i. $(\forall x \in X)(p^{-1}(x) \text{ (denoted } V_x) \text{ is a } k\text{-vector space})$
 - ii. The induced topology on V_x is the usual topology it has as a vector space over k.

Example: the trivial family: $X \prod k^n$ (fixed n).

Vector space families over X form a category, VF(X), if we define the morphisms to be those morphisms, φ , from TOP_X which satisfy:

$$(\forall x \in X)(\varphi_x : V_x \to W_x \text{ is a linear map.})$$

- (a) Say Y → X is a continuous map. Define a functor θ*: VF(X) → VF(Y), called pullback. When Y is a subspace of X, the pullback, θ*(V), is called the restriction of V to Y, written V ↾ Y. A vector space family is a vector bundle ⇔ it is locally trivial, that is:
 (∀x ∈ X)(∃ open U)(x ∈ U) so that V ↾ U is isomorphic (in VF(U)) to U Π kⁿ, some n. Let Vect(X) denote the full subcategory of VF(X) formed by the objects that are vector bundles.
- (b) Say X is an r-dimensional vector space considered in TOP. Write $\mathbb{P}(X)$ for the collection of all hyperplanes through $0 \in X$, then $\mathbb{P}(X)$ is a topological space and is covered by opens each isomorphic to an (r-1)-dimensional vector space. On $\mathbb{P}(X)$ we make an element of $VF(\mathbb{P}(X))$: W is the set of pairs $(\xi, \nu) \in \mathbb{P}(X) \amalg X^D$ so that $\xi \subset \ker \nu$. Here, X^D is the dual space of X. Show that W is a line bundle on $\mathbb{P}(X)$.
- (c) If $V \in \text{Vect}(X)$ and X is connected, then $\dim(V_x)$ is constant on X. This number is the rank of V.
- (d) A section of V over U is a map $\sigma : U \to V \upharpoonright U$ so that $p \circ \sigma = \mathrm{id}_U$. Write $\Gamma(U, V)$ for the collection of sections of V over U. Show: if $V \in \mathrm{Vect}(X)$, each section of V over U is just a compatible family of locally defined vector valued functions on U. Show further that $\Gamma(U, V)$ is a vector space in a natural way.
- (e) Say V and W are in Vect(X), with ranks p and q respectively. Show: Hom(V, W) is isomorphic to the collection of locally defined "compatible" families of *continuous* functions $U \to \text{Hom}(k^p, k^q)$, via the local description

$$\varphi \in \operatorname{Hom}(V, W) \rightsquigarrow \widetilde{\varphi} : U \to \operatorname{Hom}(k^p, k^q),$$

where $\varphi(u, v) = (u, \widetilde{\varphi}(u)(v)).$

Now $\operatorname{Iso}(k^p, k^q) = \{ \psi \in \operatorname{Hom}(k^p, k^q) \mid \psi \text{ is invertible} \}$ is an open of $\operatorname{Hom}(k^p, k^q)$.

- (f) Show: $\varphi \in \text{Hom}(V, W)$ is an isomorphism \iff for a covering family of opens $U(\subseteq X), \, \widetilde{\varphi}(U) \subseteq \text{Iso}(k^p, k^q) \iff (\forall x \in X)(\varphi_x : V_x \to W_x \text{ is an isomorphism}).$
- (g) Show $\{x \mid \varphi_x \text{ is an isomorphism (here, } \varphi \in \text{Hom}(U, V))\}$ is open in X.
- (h) Show all of (a) to (g) go over when $X \in C^k$ -MAN ($0 \le k \le \infty$) with appropriate modification C^k replacing continuity where it appears.
- AII) (Linear algebra for vector bundles). First just look at finite dimensional vector spaces over k and say F is some functor from vector spaces to vector spaces (F might even be a several variable functor). Call F continuous \iff the map $\operatorname{Hom}(V, W) \to \operatorname{Hom}(F(V), F(W))$ is continuous. (Same definition for C^k , $1 \le k \le \infty$, ω). If we have such an F, extend it to bundles via the following steps: first define F(V) (for $V \in \operatorname{Vect}(X)$) as the vector space family $\bigcup_{x \in X} F(V_x)$ —we must still topologize this.

- (a) V is the trivial bundle: $X \prod k^p$. As sets, $F(X \prod k^p)$, via the definition above, is just $X \prod F(k^p)$, so we give $F(X \prod k^p)$ the product topology. Prove: if $\varphi \in \text{Hom}(V, W)$, then $F(\varphi)$ is continuous, therefore $F(\varphi) \in \text{Hom}(F(V), F(U))$. Show, further, φ is an isomorphism $\implies F(\varphi)$ is an isomorphism.
- (b) The topology on F(V) when V is trivial appears to depend on the specific trivialization. Show this is not true—it is actually independent of same.
- (c) If V is any bundle, then $V \upharpoonright U$ is trivial for small open U, so by (a) and (b), $F(V \upharpoonright U)$ is a trivial bundle. Topologize F(V) by calling a set, Z, open iff $Z \cap (F(V \upharpoonright U))$ is open in $F(V \upharpoonright U)$ for all U where $V \upharpoonright U$ is trivial. Show that if $Y \subseteq X$, then the topology on $F(V \upharpoonright Y)$ is just that on $F(V) \upharpoonright Y$, that $\varphi : V \to W$ continuous $\implies F(\varphi)$ is continuous and extend all these things to C^k . Finally prove: $f: Y \to X$ in TOP $\implies f^*(F(V)) \cong F(f^*(V))$ and similarly in C^k -MAN.
- (d) If we apply (c) , we get for vector bundles:
 - i. $V \amalg W$, more generally finite coproducts
 - ii. V^D , the dual bundle
 - iii. $V\otimes W$

iv. $\mathcal{H}om(V, W)$, the vector bundle of (locally defined) homomorphisms.

Prove: $\Gamma(U, \mathcal{H}om(V, W)) \cong \operatorname{Hom}(V \upharpoonright U, W \upharpoonright U)$ for every open, U, of X. Is this true for the bundles of i, ii and iii?

- AIII) Recall that if $R \in \text{RNG}$, J(R)—the Jacobson radical of R— is just the intersection of all maximal ideals of R. The ideal, J(R), is actually 2-sided.
 - (a) Say J(R) = (0) (e.g., $R = \mathbb{Z}$). Show that no non-projective *R*-module has a projective cover.
 - (b) Suppose M_i , i = 1, ..., t are *R*-modules with projective covers $P_1, ..., P_t$. Prove that $\coprod_i P_i$ is a projective cover of $\coprod_i M_i$.
 - (c) Say M and N are R-modules and assume M and $M \amalg N$ have projective covers. Show that N has one.
 - (d) In M is an R-module, write (as usual) $M^D = \operatorname{Hom}_R(M, R)$. Then M^D is an R^{op} -module. Prove that if M is finitely generated and projective as an R-module, then M^D has the same properties as an R^{op} -module.
- AIV) Let $\{M_{\alpha}\}$ be a given family of R^{op} -modules. Define, for R-modules, two functors:

$$U: N \rightsquigarrow \left(\left(\prod_{\alpha} M_{\alpha} \right) \otimes_{R} N \right)$$
$$V: N \rightsquigarrow \prod_{\alpha} (M_{\alpha} \otimes_{R} N).$$

- (a) Show that V is right-exact and is exact iff each M_{α} is flat over R.
- (b) Show there exists a morphism of functors $\theta : U \to V$. Prove that $\theta_N : U(N) \to V(N)$ is surjective if N is finitely generated, while θ_N is an isomorphism if N is finitely presented.

Part B

BI) (Continuation of AI and AII). Let V and W be vector bundles and $\varphi : V \to W$ a homomorphism. Call φ a monomorphism (respectively epimorphism) iff $(\forall x \in X)(\varphi_x : V_x \to W_x \text{ is a monomorphism} (respectively epimorphism))$. Note: φ is a monomorphism iff $\varphi^D : W^D \to V^D$ is an epimorphism. A sub-bundle of V is a subset which is a vector bundle in the induced structure.

- (a) Prove: if $\varphi: V \to W$ is a monomorphism, then $\varphi(V)$ is a sub-bundle of W. Moreover, locally on X, we have that there exists a vector bundle, G, an open $U \subseteq X$, so that $(V \models U) = (G \models U) \cong W \models U$ (i.e., ensure sub-laws due is less line next of a source dust decomposition)
 - $(V \upharpoonright U) \amalg (G \upharpoonright U) \cong W \upharpoonright U$ (i.e., every sub-bundle is locally part of a coproduct decomposition of W). Prove also: $\{x \mid \varphi_x \text{ is a monomorphism}\}$ is open in X. (Suggestion: say $x \in X$, pick a subspace of W_x complementary to $\varphi(V_x)$, call it Z. Form $G = X \amalg Z$. Then there exists a homomorphism $V \amalg G \to W$, look at this homomorphism near the point x.)
- (b) Say V is a sub-bundle of W, show that $\bigcup_{x \in X} W_x/V_x$ (with the quotient topology) is actually a vector bundle (not just a vector space family) over X.
- (c) Now note we took a full subcategory of VF(X), so for $\varphi \in Hom(V, W)$ $(V, W \in Vect(X))$ the dimension of ker φ_x need not be locally constant on X. When it is locally constant call φ a bundle homomorphism. Prove that if φ is a bundle homomorphism from V to W, then
 - i. $\bigcup_x \ker \varphi_x$ is a sub-bundle of V
 - ii. $\bigcup_{x} \operatorname{Im} \varphi_{x}$ is a sub-bundle of W, hence
 - iii. $\bigcup_x \operatorname{coker} \varphi_x$ is a vector bundle (quotient topology).

We refer to these bundles as $\ker \varphi,\, {\rm Im}\, \varphi$ and coker φ respectively. Deduce from your argument for i that

iv. Given $x \in X$, there exists an open $U, x \in U$, so that $(\forall y \in U)(\operatorname{rank} \varphi_y \ge \operatorname{rank} \varphi_x)$. Of course, this φ is not necessarily a bundle homomorphism.

From now on to the end, X is COMPACT HAUSDORFF. We need as well two results from analysis:

- A) (Tietze extension theorem). X is a normal space, Y a closed subspace, V a real vector space. Then every continuous map $Y \to V$ admits an extension to a continuous map $X \to V$. Same result for $X \in C^k$ -MAN and C^k maps.
- B) (Partitions of unity). Say X is compact Hausdorff, $\{U_{\alpha}\}$ a finite open cover of X. There exist continuous maps, f_{α} , taking X to \mathbb{R} such that
 - A. $f_{\alpha} \geq 0$, (all α)
 - B. supp $(f_{\alpha}) \subseteq U_{\alpha}$ (so $f_{\alpha} \in C_0^0(U_{\alpha})$)
 - C. $(\forall x \in X)(\sum_{\alpha} f_{\alpha}(x) = 1).$

The same is true for C^k -MAN (X compact!) and C^k functions $(1 \le k \le \infty)$.

- (d) Extend Tietze to vector bundles: if X is compact Hausdorff, $Y \subseteq X$ closed and $V \in \operatorname{Vect}(X)$, then every section $\sigma \in \Gamma(Y, V \upharpoonright Y)$ extends to a section in $\Gamma(X, V)$. (Therefore, there exist *plenty* of continuous or C^{∞} global sections of V. FALSE for holomorphic sections). Apply this to the bundle $\mathcal{H}om(V, W)$ and prove: $Y \hookrightarrow X$ closed, X (as usual) compact Hausdorff or compact C^k -manifold, if $\varphi : V \upharpoonright Y \to W \upharpoonright Y$ is an isomorphism of vector bundles, there exists open, U, $Y \subseteq U$, so that φ extends to an isomorphism $V \upharpoonright U \to W \upharpoonright U$.
- (e) Every vector space possesses a metric (take any of the *p*-norms, or take the 2-norm if you are fussy). It's easy to see that metrics then exist on trivial bundles. In fact, use the 2-norm, so we can "bundleize" the notion of Hermitian form (AII) and get the bundle $\mathcal{H}erm(V)$. Then a Hermitian metric on V is a global section of $\mathcal{H}erm(V)$ which is positive definite, at each $x \in X$. Show every bundle possesses a Hermitian metric.
- (f) Say we're given vector bundles and bundle homomorphisms, we say the sequence

$$\cdots \rightarrow V_j \rightarrow V_{j+1} \rightarrow V_{j+2} \rightarrow \cdots$$

of such is exact $\iff (\forall x \in X)$ the sequence of vector spaces

$$\cdots \to V_{j,x} \to V_{j+1,x} \to V_{j+2,x} \to \cdots$$

is exact. Prove: if $0 \to V' \to V \to V'' \to 0$ is an exact sequence of vector bundles and bundle homomorphisms, then $V \cong V' \amalg V''$.

(g) Consider a vector bundle, V and a subspace, Σ of the vector space $\Gamma(X, V)$. We get the trivial bundle X $\Pi \Sigma$ and a natural homomorphism X $\Pi \Sigma \to V$, via

$$(x,\sigma) \to \sigma(x).$$

Prove: if X is compact Hausdorff (or compact C^k -HOM), there exists a finite dimensional subspace, Σ , of $\Gamma(X, V)$ so that the map $X \prod \Sigma \to V$ is surjective. Thus there exists a finite dimensional surjective family of C (respectively C^k) sections of V. Use (f) to deduce: usual assumption on X, then for each vector bundle, V, on X, there exists a vector bundle, W, on X, so that V II W is a trivial bundle.

(h) Write C(X) (respectively $C^k(X)$, $1 \le k \le \infty$) for the ring of continuous (respectively C^k) functions (values in our field) on X, where X is compact Hausdorff (respectively compact manifold). In a natural way (pointwise multiplication) $\Gamma(X, V)$ is an A-module $(A = C(X), C^k(X))$, and Γ gives a functor from vector bundles, V, to Mod(A). Trivial bundles go to free modules of finite rank over A (why?) Further, show Γ is an equivalence of categories

(Trivial bundles, homs) \rightsquigarrow (Free A-modules, f.g.).

Now use your results to prove:

 Γ gives an equivalence of categories: (Vect(X), homs from VF) and (f.g. projective A-modules, module homs).

- BII) (a) Say M is a f.g. \mathbb{Z} -module, $\neq (0)$. Prove there exists a prime p so that $M \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z} \neq (0)$. Deduce: no divisible group (abelian) [i.e., one such that $N \xrightarrow{r} N \to 0$ is exact, all $r \geq 1$] can be f.g.
 - (b) Say M, M'' are \mathbb{Z} -modules and M is f.g. while M'' is torsion free. Given $\varphi \in \text{Hom}(M, M'')$ suppose $(\forall \text{ primes } p)$ (the induced map $M \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z} \to M'' \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z}$ is a monomorphism). Show that φ is a monomorphism and M is free.
- BIII) Given Λ , $\Gamma \in \text{RNG}$ and a ring homomorphism $\Lambda \to \Gamma$ (thus, Γ is a Λ -algebra), if M is a Λ -module, then $M \otimes_{\Lambda} \Gamma$ has the natural structure of a Γ^{op} -module. Similarly, if Z is both a Λ^{op} -module and a Γ -module, then $Z \otimes_{\Lambda} M$ is still a Γ -module. Now let N be a Γ -module,
 - (a) prove there is a *natural* isomorphism

$$(*) \qquad \qquad \operatorname{Hom}_{\Gamma}(Z \otimes_{\Lambda} M, N) \xrightarrow{\sim} \operatorname{Hom}_{\Lambda}(M, \operatorname{Hom}_{\Gamma}(Z, N)).$$

Prove, in fact, the functors $M \rightsquigarrow M \otimes_{\Lambda} Z$ and $N \rightsquigarrow \operatorname{Hom}_{\Gamma}(Z, N)$ are adjoint functors, i.e., (*) is functorial.

(b) Establish an analog of (*):

(**)
$$\operatorname{Hom}_{\Gamma}(M, \operatorname{Hom}_{\Lambda}(Z, N)) \cong \operatorname{Hom}_{\Lambda}(Z \otimes_{\Gamma} M, N)$$

under appropriate conditions on Z, M and N (what are they?)

- (c) Show: M projective as a Λ^{op} -module, Z projective as a Γ^{op} -module $\implies M \otimes_{\Lambda} Z$ is projective as a Γ^{op} -module. In particular, M projective as a Λ^{op} -module $\implies M \otimes_{\Lambda} \Gamma$ is projective as a Γ^{op} -module and of course, the same statement with the op for $Z \otimes_{\Lambda} M$, $\Gamma \otimes_{\Lambda} M$. Show further, that if N is Λ -injective, then $\operatorname{Hom}_{\Lambda}(\Gamma, N)$ is Γ -injective.
- (d) For abelian groups, M, write $M^D = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$. Then, if M is free, M^D is injective as a \mathbb{Z} -module (why?). From this deduce: every abelian group is a subgroup of an injective abelian group.
- (e) Give Eckmann's proof of the Baer Embedding Theorem: for every ring, Γ , each Γ -module is a submodule of an injective Γ -module. (Eckmann's proof uses (c) and (d)).

BIV) Here, A and B are commutative rings and $\varphi : A \to B$ a ring homomorphism so that B is an A-algebra. Assume B is flat (i.e., as an A-module, it's flat). Define a homomorphism

 θ : Hom_A(M, N) $\otimes_A B \to$ Hom_B(M $\otimes_A B, N \otimes_A B)$

(functorial in M and N)—how?

- (a) If M is f.g. as an A-module, θ is injective.
- (b) If M is f.p. as an A-module, θ is an isomorphism.
- (c) Assume M is f.p. as an A-module, write \mathfrak{a} for $\operatorname{Ann}(M) = (M \to (0))$. Prove that $\mathfrak{a} \otimes_A B$ is the annihilator of $M \otimes_A B$ in B.
- BV) Here, k is a field and f is a monic polynomial of even degree in k[X].
 - (a) Prove there exist $g, r \in k[X]$ such that $f = g^2 + r$ and $\deg r < \frac{1}{2} \deg f$. Moreover, g and r are unique.

Now specialize to the case $k = \mathbb{Q}$, and suppose f has *integer* coefficients. Assume f(X) is NOT the square of a polynomial with rational coefficients.

- (b) Prove there exist only *finitely* many integers, x, such that the value f(x) is a square, say y², where y ∈ Z. In which ways can you get the square of an integer, y, by adding 1 to third and fourth powers of an integer, x?
- (c) Show there exists a constant, K_N , depending ONLY on the degree, N, of f so that:

if all coefficients of f are bounded in absolute value by $C (\geq 1)$ then whenever $\langle x, y \rangle$ is a solution of $y^2 = f(x)$ (with $x, y \in \mathbb{Z}$) we have $|x| \leq K_N C^N$.

- (d) What can you say about the number of points $\langle x, y \rangle$ with rational coordinates which lie on the (hyper-elliptic) curve $Y^2 = f(X)$?
- BVI) Consider $\mathcal{M}od(\mathbb{Z})$ and copies of \mathbb{Z} indexed by $\mathbb{N} = \{1, 2, \ldots\}$. Form the module $\prod_{\mathbb{Z}} \mathbb{Z}$. It is a product of \aleph_0 projective modules. Show $M = \prod_{\mathbb{Z}} \mathbb{Z}$ is *not* projective as a \mathbb{Z} -module. (Suggestions: establish that each submodule of a free module over a PID is again free, therefore need to show M is not free. Look at

$$K = \{\xi = (\xi_j) \in M \mid (\forall n) (\exists k = k(n)) (2^n \mid \xi_j \text{ if } j > k(n)) \}.$$

This is a submodule of M; show K/2K is a vector space over $\mathbb{Z}/2\mathbb{Z}$ of the same dimension as K and finish up. Of course, 2 could be replaced by any prime). So, products of projectives need not be projective.