
Math 602, Fall 2002, HW 5, due 12/10/2002

Part A

AI) (Vector bundles) As usual, TOP is the category of topological spaces and k will be either the real or
complex numbers. All vector spaces are to be finite dimensional. A vector space family over X, V , is
an object of TOPX , call p the map V → X, so that

i. (∀x ∈ X)(p−1(x) (denoted Vx) is a k-vector space)
ii. The induced topology on Vx is the usual topology it has as a vector space over k.

Example: the trivial family: X Π kn (fixed n).
Vector space families overX form a category, VF(X), if we define the morphisms to be those morphisms,
ϕ, from TOPX which satisfy:

(∀x ∈ X)(ϕx : Vx →Wx is a linear map.)

(a) Say Y θ−→ X is a continuous map. Define a functor θ∗ : VF(X) VF(Y ), called pullback. When
Y is a subspace of X, the pullback, θ∗(V ), is called the restriction of V to Y , written V � Y .
A vector space family is a vector bundle ⇐⇒ it is locally trivial, that is:
(∀x ∈ X)(∃ open U)(x ∈ U) so that V � U is isomorphic (in VF(U)) to U Π kn, some n. Let
Vect(X) denote the full subcategory of VF(X) formed by the objects that are vector bundles.

(b) Say X is an r-dimensional vector space considered in TOP. Write P(X) for the collection of
all hyperplanes through 0 ∈ X, then P(X) is a topological space and is covered by opens each
isomorphic to an (r − 1)-dimensional vector space. On P(X) we make an element of VF

(
P(X)

)
:

W is the set of pairs (ξ, ν) ∈ P(X) Π XD so that ξ ⊂ ker ν. Here, XD is the dual space of X.
Show that W is a line bundle on P(X).

(c) If V ∈ Vect(X) and X is connected, then dim(Vx) is constant on X. This number is the rank of
V .

(d) A section of V over U is a map σ : U → V � U so that p ◦ σ = idU . Write Γ(U, V ) for the
collection of sections of V over U . Show: if V ∈ Vect(X), each section of V over U is just a
compatible family of locally defined vector valued functions on U . Show further that Γ(U, V ) is a
vector space in a natural way.

(e) Say V and W are in Vect(X), with ranks p and q respectively. Show: Hom(V,W ) is isomorphic to
the collection of locally defined “compatible” families of continuous functions U → Hom(kp, kq),
via the local description

ϕ ∈ Hom(V,W ) ϕ̃ : U → Hom(kp, kq),

where ϕ(u, v) =
(
u, ϕ̃(u)(v)

)
.

Now Iso(kp, kq) = {ψ ∈ Hom(kp, kq) | ψ is invertible} is an open of Hom(kp, kq).
(f) Show: ϕ ∈ Hom(V,W ) is an isomorphism ⇐⇒ for a covering family of opens

U(⊆ X), ϕ̃(U) ⊆ Iso(kp, kq) ⇐⇒ (∀x ∈ X)(ϕx : Vx →Wx is an isomorphism).
(g) Show {x | ϕx is an isomorphism (here, ϕ ∈ Hom(U, V ))} is open in X.
(h) Show all of (a) to (g) go over when X ∈ Ck−MAN (0 ≤ k ≤ ∞) with appropriate modification

Ck replacing continuity where it appears.

AII) (Linear algebra for vector bundles). First just look at finite dimensional vector spaces over k and say
F is some functor from vector spaces to vector spaces (F might even be a several variable functor).
Call F continuous ⇐⇒ the map Hom(V,W ) → Hom

(
F (V ), F (W )

)
is continuous. (Same definition

for Ck, 1 ≤ k ≤ ∞, ω). If we have such an F , extend it to bundles via the following steps: first define
F (V ) (for V ∈ Vect(X)) as the vector space family

⋃
x∈X F (Vx)—we must still topologize this.

1



(a) V is the trivial bundle: X Π kp. As sets, F (X Π kp), via the definition above, is just X Π F (kp),
so we give F (X Π kp) the product topology. Prove: if ϕ ∈ Hom(V,W ), then F (ϕ) is continuous,
therefore F (ϕ) ∈ Hom

(
F (V ), F (U)

)
. Show, further, ϕ is an isomorphism =⇒ F (ϕ) is an

isomorphism.

(b) The topology on F (V ) when V is trivial appears to depend on the specific trivialization. Show
this is not true—it is actually independent of same.

(c) If V is any bundle, then V � U is trivial for small open U , so by (a) and (b), F (V � U) is a trivial
bundle. Topologize F (V ) by calling a set, Z, open iff Z ∩

(
F (V � U)

)
is open in F (V � U) for

all U where V � U is trivial. Show that if Y ⊆ X, then the topology on F (V � Y ) is just that on
F (V ) � Y , that ϕ : V → W continuous =⇒ F (ϕ) is continuous and extend all these things to
Ck. Finally prove: f : Y → X in TOP =⇒ f∗

(
F (V )

) ∼= F
(
f∗(V )

)
and similarly in Ck−MAN.

(d) If we apply (c) , we get for vector bundles:

i. V qW , more generally finite coproducts
ii. V D, the dual bundle
iii. V ⊗W

iv. Hom(V,W ), the vector bundle of (locally defined) homomorphisms.

Prove: Γ
(
U,Hom(V,W )

) ∼= Hom(V � U,W � U) for every open, U , of X. Is this true for the
bundles of i, ii and iii?

AIII) Recall that if R ∈ RNG, J(R)—the Jacobson radical of R— is just the intersection of all maximal
ideals of R. The ideal, J(R), is actually 2-sided.

(a) Say J(R) = (0) (e.g., R = Z). Show that no non-projective R-module has a projective cover.

(b) Suppose Mi, i = 1, . . . , t are R-modules with projective covers P1, . . . , Pt. Prove that
∐

i Pi is a
projective cover of

∐
iMi.

(c) Say M and N are R-modules and assume M and M q N have projective covers. Show that N
has one.

(d) In M is an R-module, write (as usual) MD = HomR(M,R). Then MD is an Rop-module. Prove
that if M is finitely generated and projective as an R-module, then MD has the same properties
as an Rop-module.

AIV) Let {Mα} be a given family of Rop-modules. Define, for R-modules, two functors:

U : N  
(( ∏

α

Mα

)
⊗R N

)
V : N  

∏
α

(Mα ⊗R N).

(a) Show that V is right-exact and is exact iff each Mα is flat over R.

(b) Show there exists a morphism of functors θ : U → V . Prove that θN : U(N) → V (N) is surjective
if N is finitely generated, while θN is an isomorphism if N is finitely presented.

Part B

BI) (Continuation of AI and AII). Let V and W be vector bundles and ϕ : V → W a homomorphism.
Call ϕ a monomorphism (respectively epimorphism) iff (∀x ∈ X)(ϕx : Vx → Wx is a monomorphism
(respectively epimorphism)). Note: ϕ is a monomorphism iff ϕD : WD → V D is an epimorphism. A
sub-bundle of V is a subset which is a vector bundle in the induced structure.
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(a) Prove: if ϕ : V →W is a monomorphism, then ϕ(V ) is a sub-bundle of W . Moreover, locally on
X, we have that there exists a vector bundle, G, an open U ⊆ X, so that
(V � U) q (G � U) ∼= W � U (i.e., every sub-bundle is locally part of a coproduct decomposition
of W ). Prove also: {x | ϕx is a monomorphism} is open in X. (Suggestion: say x ∈ X, pick
a subspace of Wx complementary to ϕ(Vx), call it Z. Form G = X Π Z. Then there exists a
homomorphism V qG→W , look at this homomorphism near the point x.)

(b) Say V is a sub-bundle of W , show that
⋃

x∈X Wx/Vx (with the quotient topology) is actually a
vector bundle (not just a vector space family) over X.

(c) Now note we took a full subcategory of VF(X), so for ϕ ∈ Hom(V,W ) (V,W ∈ Vect(X)) the
dimension of kerϕx need not be locally constant on X. When it is locally constant call ϕ a bundle
homomorphism. Prove that if ϕ is a bundle homomorphism from V to W , then

i.
⋃

x kerϕx is a sub-bundle of V
ii.

⋃
x Imϕx is a sub-bundle of W , hence

iii.
⋃

x cokerϕx is a vector bundle (quotient topology).
We refer to these bundles as kerϕ, Imϕ and cokerϕ respectively. Deduce from your argument for
i that
iv. Given x ∈ X, there exists an open U , x ∈ U , so that (∀ y ∈ U)(rankϕy ≥ rankϕx). Of

course, this ϕ is not necessarily a bundle homomorphism.
From now on to the end, X is COMPACT HAUSDORFF. We need as well two results from
analysis:
A) (Tietze extension theorem). X is a normal space, Y a closed subspace, V a real vector space.

Then every continuous map Y → V admits an extension to a continuous map X → V . Same
result for X ∈ Ck−MAN and Ck maps.

B) (Partitions of unity). Say X is compact Hausdorff, {Uα} a finite open cover of X. There
exist continuous maps, fα, taking X to R such that
A. fα ≥ 0, (all α)
B. supp(fα) ⊆ Uα (so fα ∈ C0

0 (Uα))
C. (∀x ∈ X)(

∑
α fα(x) = 1).

The same is true for Ck−MAN (X compact!) and Ck functions (1 ≤ k ≤ ∞).
(d) Extend Tietze to vector bundles: if X is compact Hausdorff, Y ⊆ X closed and V ∈ Vect(X),

then every section σ ∈ Γ(Y, V � Y ) extends to a section in Γ(X,V ). (Therefore, there exist
plenty of continuous or C∞ global sections of V . FALSE for holomorphic sections). Apply this to
the bundle Hom(V,W ) and prove: Y ↪→ X closed, X (as usual) compact Hausdorff or compact
Ck-manifold, if ϕ : V � Y → W � Y is an isomorphism of vector bundles, there exists open, U ,
Y ⊆ U , so that ϕ extends to an isomorphism V � U →W � U .

(e) Every vector space possesses a metric (take any of the p-norms, or take the 2-norm if you are
fussy). It’s easy to see that metrics then exist on trivial bundles. In fact, use the 2-norm, so
we can “bundleize” the notion of Hermitian form (AII) and get the bundle Herm(V ). Then a
Hermitian metric on V is a global section of Herm(V ) which is positive definite, at each x ∈ X.
Show every bundle possesses a Hermitian metric.

(f) Say we’re given vector bundles and bundle homomorphisms, we say the sequence

· · · → Vj → Vj+1 → Vj+2 → · · ·

of such is exact ⇐⇒ (∀x ∈ X) the sequence of vector spaces

· · · → Vj,x → Vj+1,x → Vj+2,x → · · ·

is exact. Prove: if 0 → V ′ → V → V ′′ → 0 is an exact sequence of vector bundles and bundle
homomorphisms, then V ∼= V ′ q V ′′.
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(g) Consider a vector bundle, V and a subspace, Σ of the vector space Γ(X,V ). We get the trivial
bundle X Π Σ and a natural homomorphism X Π Σ → V , via

(x, σ) → σ(x).

Prove: if X is compact Hausdorff (or compact Ck−HOM), there exists a finite dimensional
subspace, Σ, of Γ(X,V ) so that the map X Π Σ → V is surjective. Thus there exists a finite
dimensional surjective family of C (respectively Ck) sections of V . Use (f) to deduce: usual
assumption on X, then for each vector bundle, V , on X, there exists a vector bundle, W , on X,
so that V qW is a trivial bundle.

(h) Write C(X) (respectively Ck(X), 1 ≤ k ≤ ∞) for the ring of continuous (respectively Ck) func-
tions (values in our field) on X, where X is compact Hausdorff (respectively compact manifold).
In a natural way (pointwise multiplication) Γ(X,V ) is an A-module (A = C(X), Ck(X)), and Γ
gives a functor from vector bundles, V , to Mod(A). Trivial bundles go to free modules of finite
rank over A (why?) Further, show Γ is an equivalence of categories

(Trivial bundles, homs) (Free A-modules, f.g.).

Now use your results to prove:

Γ gives an equivalence of categories: (Vect(X), homs from V F ) and (f.g. projective
A-modules, module homs).

BII) (a) Say M is a f.g. Z-module, 6= (0). Prove there exists a prime p so that M ⊗Z Z/pZ 6= (0). Deduce:
no divisible group (abelian) [i.e., one such that N r−→ N → 0 is exact, all r ≥ 1] can be f.g.

(b) Say M , M ′′ are Z-modules and M is f.g. while M ′′ is torsion free. Given ϕ ∈ Hom(M,M ′′)
suppose (∀primes p)(the induced map M ⊗Z Z/pZ → M ′′ ⊗Z Z/pZ is a monomorphism). Show
that ϕ is a monomorphism and M is free.

BIII) Given Λ, Γ ∈ RNG and a ring homomorphism Λ → Γ (thus, Γ is a Λ-algebra), if M is a Λ-module,
then M ⊗Λ Γ has the natural structure of a Γop-module. Similarly, if Z is both a Λop-module and a
Γ-module, then Z ⊗Λ M is still a Γ-module. Now let N be a Γ-module,

(a) prove there is a natural isomorphism

(∗) HomΓ(Z ⊗Λ M,N) ∼−→ HomΛ(M,HomΓ(Z,N)).

Prove, in fact, the functors M  M ⊗Λ Z and N  HomΓ(Z,N) are adjoint functors, i.e., (∗) is
functorial.

(b) Establish an analog of (∗):

(∗∗) HomΓ(M,HomΛ(Z,N)) ∼= HomΛ(Z ⊗Γ M,N)

under appropriate conditions on Z, M and N (what are they?)

(c) Show: M projective as a Λop-module, Z projective as a Γop-module =⇒ M ⊗Λ Z is projective
as a Γop-module. In particular, M projective as a Λop-module =⇒ M ⊗Λ Γ is projective as a
Γop-module and of course, the same statement with the op for Z ⊗Λ M , Γ⊗Λ M . Show further,
that if N is Λ-injective, then HomΛ(Γ, N) is Γ-injective.

(d) For abelian groups, M , write MD = HomZ(M,Q/Z). Then, if M is free, MD is injective as a
Z-module (why?). From this deduce: every abelian group is a subgroup of an injective abelian
group.

(e) Give Eckmann’s proof of the Baer Embedding Theorem: for every ring, Γ, each Γ-module is a
submodule of an injective Γ-module. (Eckmann’s proof uses (c) and (d)).
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BIV) Here, A and B are commutative rings and ϕ : A→ B a ring homomorphism so that B is an A-algebra.
Assume B is flat (i.e., as an A-module, it’s flat). Define a homomorphism

θ : HomA(M,N)⊗A B → HomB(M ⊗A B,N ⊗A B)

(functorial in M and N)—how?

(a) If M is f.g. as an A-module, θ is injective.

(b) If M is f.p. as an A-module, θ is an isomorphism.

(c) Assume M is f.p. as an A-module, write a for Ann(M) =
(
M → (0)

)
. Prove that a⊗A B is the

annihilator of M ⊗A B in B.

BV) Here, k is a field and f is a monic polynomial of even degree in k[X].

(a) Prove there exist g, r ∈ k[X] such that f = g2 + r and deg r < 1
2 deg f . Moreover, g and r are

unique.

Now specialize to the case k = Q, and suppose f has integer coefficients. Assume f(X) is NOT the
square of a polynomial with rational coefficients.

(b) Prove there exist only finitely many integers, x, such that the value f(x) is a square, say y2, where
y ∈ Z. In which ways can you get the square of an integer, y, by adding 1 to third and fourth
powers of an integer, x?

(c) Show there exists a constant, KN , depending ONLY on the degree, N , of f so that:

if all coefficients of f are bounded in absolute value by C (≥ 1) then whenever 〈x, y〉 is
a solution of y2 = f(x) (with x, y ∈ Z) we have |x| ≤ KNC

N .

(d) What can you say about the number of points 〈x, y〉 with rational coordinates which lie on the
(hyper-elliptic) curve Y 2 = f(X)?

BVI) Consider Mod(Z) and copies of Z indexed by N = {1, 2, . . .}. Form the module
∏
Z

Z. It is a product

of ℵ0 projective modules. Show M =
∏
Z

Z is not projective as a Z-module. (Suggestions: establish

that each submodule of a free module over a PID is again free, therefore need to show M is not free.
Look at

K = {ξ = (ξj) ∈M | (∀n)(∃ k = k(n))(2n | ξj if j > k(n))}.

This is a submodule of M ; show K/2K is a vector space over Z/2Z of the same dimension as K and
finish up. Of course, 2 could be replaced by any prime). So, products of projectives need not be
projective.
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