
Math 602, Fall 2002, HW 3, due 10/28/2002

Part A

AI) (a) If G is a group of order n, show that G \\// Aut(G) is isomorphic to a subgroup of Sn.

(b) Consider the cycle (1, 2, . . . , n) ∈ Sn; let H be the subgroup (of Sn) generated by the cycle.
Prove that

NSn(H) ∼= (Z/nZ) \\// Aut(Z/nZ).

AII) Let TOP denote the category of topological spaces.

(a) Show that TOP possesses finite fibred products and finite fibred coproducts.

(b) Is (a) true without the word “finite”?

(c) Write T2TOP for the full subcategory of TOP consisting of Hausdorff topological spaces. Are (a)
and (b) true in T2TOP? If you decide the answer is “no”, give reasonable conditions under which
a positive result holds. What relation is there between the product (coproduct) you construct in
(a) (or (b)) and the corresponding objects in this part of the problem?

AIII) Let R be a ring (not necessarily commutative) and write Mod(R) for the category of (left) R-modules;
i.e., the action of R on a module, M , is on the left. We know Mod(R) has finite products and finite
fibred products.

(a) What is the situation for infinite products and infinite fibred products?

(b) What is the situation for coproducts (finite or infinite) and for fibred coproducts (both finite and
infinite)?

AIV) As usual, write Gr for the category of groups. Say G and G′ are groups and ϕ : G → G′ is a
homomorphism. Then (G, ϕ) ∈ GrG′ , the comma category of “groups over G′”. The group {1} possess
a canonical morphism to G′, namely the inclusion, i. Thus,

(
{1}, i

)
∈ GrG′ , as well. We form their

product in GrG′ , i.e., we form the fibred product G
∏
G′

{1}. Prove that there exists a canonical

monomorphism
G

∏
G′

{1} → G.

Identify its image in G.
Now consider the “dual” situation: G′ maps to G, so G ∈ GrG′

(via ϕ) the “groups co-over G′”. We
also have the canonical map G′ → {1}, killing all the elements of G′; so, as above, we can form the

fibred coproduct of G and {1}: G
G′

q {1}. Prove that there exists a canonical epimorphism

G → G
G′

q {1},

identify its kernel in G.

Part B

BI) Write CR for the category of commutative rings with unity and RNG for the category of rings with
unity.

(a) Consider the following two functors from CR to Sets:

i. |Mpq| : A underlying set of p× q matrices with entries from A

ii. |GLn| : A underlying set of all invertible n× n matrices with entries from A.
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Prove the these two functors are representable.

(b) A slight modification of ii. above yields a functor from CR to Gr: namely,

GLn : A group of all invertible n× n matrices with entries from A.

When n = 1, we can extend this to a functor from RNG to Gr. That is we get the functor

Gm : A group of all invertible elements of A.

Prove that the functor Gm has a left adjoint, let’s temporarily call it (†); that is: ∃ a functor (†)
from Gr to RNG, so that

(∀G ∈ Gr)(∀R ∈ RNG)(HomRNG((†)(G), R) ∼= HomGr(G, Gm(R))),

via a functorial isomorphism.

(c) Show that without knowing what ring (†)(G) is, namely that is exists and that (†) is left ad-
joint to Gm, we can prove: the category of (†)(G)-modules, Mod

(
(†)(G)

)
, is equivalent—in fact

isomorphic—to the category of G-modules.

(d) There is a functor from Gr to Ab, namely send G to Gab = G/[G, G]. Show this functor has a
right adjoint, call it I. Namely, there exists a functor I : Ab → Gr, so that

(∀G ∈ Gr)(∀H ∈ Ab)(HomGr(G, I(H)) ∼= HomAb(Gab,H)).

Does G Gab have a left adjoint?

BII) We fix a commutative ring with unity, A, and write M for Mpq(A), the p× q matrices with entries in
A. Choose a q × p matrix, Γ, and make M a ring via:

Addition: as usual among p× q matrices
Multiplication: if R,S ∈ M, set R ∗ S = RΓS, where RΓS is the ordinary product of
matrices.

Write M(Γ) for M with these operations, then M(Γ) is an A-algebra (a ring which is an A-module).

(a) Suppose that A is a field. Prove that the isomorphism classes of M(Γ)’s are finite in number
(here p and q are fixed while Γ varies); in fact, are in one-to-one correspondence with the integers
0, 1, 2, . . . , B where B is to be determined by you.

(b) Given two q × p matrices Γ and Γ̃ we call them equivalent iff Γ̃ = WΓZ, where W ∈ GL(q, A)
and Z ∈ GL(p, A). Prove: each Γ is equivalent to a matrix(

Ir 0
0 H

)
where Ir = r×r identity matrix and the entries of H are non-units of A. Is r uniquely determined
by Γ? How about the matrix H?

(c) Call the commutative ring, A, a local ring provided it possesses exactly one maximal ideal, mA.
For example, any field is a local ring; the ring Z/pnZ is local if p is a prime; other examples of
this large, important class of rings will appear below. We have the descending chain of ideals

A ⊇ mA ⊇ m2
A ⊇ · · · .

For some local rings one knows that
⋃
t≥0

mt
A = (0); let’s call such local rings “good local rings” for

temporary nomenclature. If A is a good local ring, we can define a function on A to Z ∪ {∞},
call it ord, as follows:
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ord(ξ) = 0 if ξ 6∈ mA

ord(ξ) = n if ξ ∈ mn
A but ξ 6∈ mn+1

A

ord(0) = ∞.

The following properties are simple to prove:

ord(ξ ± η) ≥ min{ord(ξ), ord(η)}
ord(ξη) ≥ ord(ξ) + ord(η).

Consider the q × p matrices under equivalence and look at the following three conditions:

i. Γ is equivalent to
(

Ir 0
0 H

)
, with H = (0)

ii. Γ is equivalent to
(

Ir 0
0 H

)
with H having non-unit entries and r ≥ 1

iii. (∃Q ∈M)(ΓQΓ = Γ).

Of course, i. =⇒ ii. if Γ 6= (0), A any ring. Prove: if A is any (commutative) ring then i. =⇒ iii.,
and if A is good local i. and iii. are equivalent. Show further that if A is good local then M(Γ)
possesses a non-trivial idempotent, P , (an element such that P ∗ P = P , P 6= 0, 6= 1) if and only
if Γ has ii.

(d) Write I = {U ∈M(Γ) | ΓUΓ = 0} and given P ∈M(Γ), set

B(P ) = {V ∈M(Γ) | (∃Z ∈M(Γ))(V = P ∗ Z ∗ P )}.

If iii. above holds, show there exists P ∈ M(Γ) so that P ∗ P = P and ΓPΓ = Γ. For such a
P , prove that B(P ) is a subring of M(Γ), that M(Γ) ∼= B(P )q I in the category of A-modules,
and that I is a two-sided ideal of M(Γ) (by exhibiting I as the kernel of a surjective ring
homomorphism whose image you should find). Further show if i. holds, then B(P ) is isomorphic
to the ring of r × r matrices with entries from A. When A is a field show I is a maximal 2-sided
ideal of M(Γ), here Γ 6= (0). Is I the unique maximal (2-sided) ideal in this case?

(e) Call an idempotent, P , of a ring maximal (also called principal) iff when L is another idempotent,
then PL = 0 =⇒ L = 0. Suppose Γ satisfies condition iii. above, prove that an idempotent, P ,
of M(Γ) is maximal iff ΓPΓ = Γ.

BIII) Let A be the field of real numbers R and conserve the notations of problem BII. Write X for a p × q
matrix of functions of one variable, t, and consider the Γ-Riccati Equation

dX

dt
= XΓX (∗)Γ.

(a) If q = p and Γ is invertible, show that either the solution, X(t), blows up at some finite t, or else
X(t) is equivalent to a matrix

X̃(t) =


0 O(1) O(t) . . . O(tp−1)
0 0 O(1) . . . O(tp−2)
. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0

 ,

where O(ts) means a polynomial of degree ≤ s. Hence, in this case, X(t) must be nilpotent.

(b) Suppose q 6= p and Γ has rank r. Let P be an idempotent of M(Γ) with ΓPΓ = Γ. If Z ∈M(Γ),
write Z[ for Z−P ∗Z ∗P ; so Z[ ∈ I. Observe that I has dimension pq− r2 as an R-vector space.
Now assume that for a solution, X(t), of (∗)Γ, we have X(0) ∈ I. Prove that X(t) exists for all
t. Can you give necessary and sufficient conditions for X(t) to exist for all t?

(c) Apply the methods of (b) to the case p = q but r = rankΓ < p. Give a similar discussion.
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BIV) A module, M , over a ring, R, is called indecomposable iff we cannot find two submodules M1 and M2

of M so that M
∼−→ M1 qM2 in the category of R-modules.

(a) Every ring is a module over itself. Show that if R is a local ring, then R is indecomposable as an
R-module.

(b) Every ring, R, with unity admits a homomorphism Z → R (i.e., Z is an initial object in the
category RNG). The kernel of Z → R is the principal ideal nZ for some n ≥ 0; this n is the
characteristic of R. Show that the characteristic of a local ring must be 0 or a prime power. Show
by example that every possibility occurs as a characteristic of some local ring.

(c) Pick a point in R or C; without loss of generality, we may assume this point is 0. If f is a function
we say f is locally defined at 0 iff f has a domain containing some (small) open set, U , about 0
(in either R or C). Here, f is R- or C-valued, independent of where its domain is. When f and
g are locally defined at 0, say f makes sense on U and g on V , we’ll call f and g equivalent at 0
⇐⇒ there exists open W , 0 ∈ W , W ⊆ U ∩ V and f �W = g �W . A germ of a function at 0 is
an equivalence class of a function. If we consider germs of functions that are at least continuous
near 0, then when they form a ring they form a local ring.
Consider the case C and complex valued germs of holomorphic functions at 0. This is a local ring.
Show it is a good local ring.
In the case R, consider the germs of real valued Ck functions at 0, for some k with 0 ≤ k ≤ ∞.
Again, this is a local ring; however, show it is NOT a good local ring.
Back to the case C and the good local ring of germs of complex valued holomorphic functions at
0. Show that this local ring is also a principal ideal domain.
In the case of real valued C∞ germs at 0 ∈ R, exhibit an infinite set of germs, each in the maximal
ideal, no finite subset of which generates the maximal ideal (in the sense of ideals). These germs
are NOT to belong to m2.
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