
Math 602, Fall 2002, HW 2, due 10/14/2002

Part A

AI) A Fermat prime, p, is a prime number of the form 2α + 1. E.g., 2, 3, 5, 17, 257, . . ..

(a) Show if 2α + 1 is prime then α = 2β .

(b) Say p is a Fermat prime (they are quite big) and g0 is an odd number with g0 < p. Prove that
any group of order g0p is isomorphic to a product G0

∏
(Z/pZ), where #(G0) = g0. Hence, for

example, the groups of orders 51(= 3 ·17), 85(= 5 ·17), 119(= 7 ·17), 153(= 9 ·17), 187(= 11 ·17),
221(= 13 · 17), 255(= 3 · 5 · 17) are all abelian. Most we knew already, but 153 = 32 · 17 and
255 = 3 · 5 · 17 are new.

(c) Generalize to any prime, p, and g0 < p, with p 6≡ 1 mod g0. For example, find all groups of order
130.

AII) Recall that a group, G, is finitely generated (f.g.) ⇐⇒ (∃σ1, . . . , σn ∈ G)(G = Gp{σ1, . . . , σn}).

(a) If G is an abelian f.g. group, prove each of its subgroups is f.g.

(b) In an arbitrary group, G, an element σ ∈ G is called n-torsion (n ∈ N) ⇐⇒ σn = 1; σ is torsion
iff it is n-torsion for some n ∈ N. The element σ ∈ G is torsion free ⇐⇒ it is NOT torsion.
Show that in an abelian group, the set

t(G) = {σ ∈ G | σ is torsion}

is a subgroup and that G/t(G) is torsion free (i.e., all its non-identity elements are torsion free).

(c) In one of the groups discussed in class, namely the solvable group 0 → Z → G→ Z/2Z → 0 (split
extension, non-trivial action) find two elements x, y satisfying: x2 = y2 = 1 and xy is torsion
free. Can you construct a group, G̃, possessing elements x, y of order 2, so that xy has order n,
where n is predetermined in N? Can you construct G̃ solvable with these properties?

(d) Back to the abelian case. If G is abelian and finitely generated show that t(G) is a finite group.

(e) Say G is abelian, f.g., and torsion-free. Write d for the minimal number of generators of G. Prove
that G is isomorphic to a product of d copies of Z.

(f) If G is abelian and f.g., prove that

G ∼= t(G)
∏(

G/t(G)
)
.

AIII) Let (P) be a property of groups. We say a group, G, is locally (P) ⇐⇒ each f.g. subgroup of G has
(P). Usually, one says a locally cyclic group is a rank one group.

(a) Prove that a rank one group is abelian.

(b) Show that the additive group of rational numbers, Q+, is a rank one group.

(c) Show that every torsion-free, rank one group is isomorphic to a subgroup of Q+.

AIV) Fix a group, G, and consider the set, Mn(G), of n × n matrices with entries from G or so that
αij = 0 (i.e., entries are 0 or from G). Assume for each row and each column there is one and only
one non-zero entry. These matrices form a group under ordinary “matrix multiplication” if we define
0 · group element = group element · 0 = 0. Establish an isomorphism of this group with the wreath
product Gn \\// Sn. As an application, for the subgroup of GL(n,C) consisting of diagonal matrices,
call it ∆n, show that

NG(∆n) ∼= Cn \\//Sn, here G = GL(n,C).
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AV) (a) Say G is a simple group of order n and say p is a prime number dividing n. If σ1, . . . , σt is a
listing of the elements of G of exact order p, prove that G = Gp{σ1, . . . , σt}.

(b) Suppose G is any finite group of order n and that d is a positive integer relatively prime to n.
Show that every element of G is a dth power.

Part B

BI) In class, we stated that when G is a (finite) cyclic group, and A is any G-module, we have an isomor-
phism

AG/N (A) ∼−→ H2(G,A).

This problem is designed to lead you to a proof. I am quite aware of other proofs which you might dig
out of books (after some effort), but I want you to do this proof.

(a) Suppose G is any group and A, B, C are G-modules. Suppose further, we are given a G-pairing
of A

∏
B → C i.e., a map

θ : A
∏

B → C

which is bi-additive and “G-linear”:

σθ(a, b) = θ(σa, σb).

If f , g are r-, s-cochains of G with values in A, B (respectively) we can define an (r+ s)-cochain
of G with values in C via the formula:

(f `θ g)(σ1, . . . , σr, σr+1, . . . , σr+s) = θ
(
f(σ1, . . . , σr), σ1 . . . σrg(σr+1, . . . , σr+s)

)
.

Prove that δ(f `θ g) = δf `θ g + (−1)rf `θ δg. (It may be that the sign should be (−1)rs, I’m
not sure, but for what follows the “correct” sign will be irrelevant. Also, you will figure it out!)
Show how you conclude from this that we have a pairing of abelian groups

`θ: Hr(G,A)
∏

Hs(G,B) → Hr+s(G,C).

(Notation and nomenclature: α `θ β, cup-product.)

(b) Again G is any group, this time finite. Let Z and Q/Z be G-modules with trivial action. Consider
the abelian group Homgr(G,Q/Z) = G̃, where addition in G̃ is by pointwise operation on functions.
If χ ∈ G̃, then χ(σ) ∈ Q/Z, all σ ∈ G. Show that the function

fχ(σ, τ) = δχ(σ, τ) = σχ(τ)− χ(στ) + χ(σ)

has values in Z and actually is a 2-cocycle with values in Z. (This is an example of the “principle”:
“if it looks like a coboundary, it is certainly a cocycle.”) The map

χ ∈ G̃ 7→ cohomology class of fχ(σ, τ) (†)

gives a homomorphism G̃→ H2(G,Z).
Now any 2-cocycle g(σ, τ) with values in Z can be regarded as a 2-cocycle with values in Q
(corresponding to the injection Z ↪→ Q). Show that as a 2-cocycle in Q it is a coboundary (of
some h(σ), values in Q). So, g(σ, τ) = δh(σ, τ), some h. Use this construction to prove:

For any finite group, G, the map (†) above gives an isomorphism of G̃ with H2(G,Z).
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(c) Now let G be finite, A be any G-module, and Z have the trivial G-action. We have an obvious
G-pairing Z

∏
A→ A, namely (n, a) 7→ na, hence by (a) and (b) we obtain a pairing

G̃(= H2(G,Z))
∏

AG → H2(G,A).

Show that if ξ = Nα, α ∈ A, then (χ, ξ) goes to 0 in H2(G,A); hence, we obtain a pairing:

G̃
∏

(AG/NA) → H2(G,A).

(Hint: if f(σ, τ) is a 2-cocycle of G in A, consider the 1-cochain uf (τ) =
∑

σ∈G f(σ, τ). Using the
cocycle condition and suitable choices of the variables, show the values of uf are in AG and that
uf is related to N f , i.e., N f(τ, ρ) =

∑
σ σf(τ, ρ) can be expressed by uf .)

(d) Finally, when G is cyclic, we pick a generator σ0. There exists a distinguished element, χ0, of G̃
corresponding to σ0, namely χ0 is that homomorphism G → Q/Z whose value at σ0, χ0(σ0), is
1
n mod Z, where n = #(G). Show that the map

AG/NA→ H2(G,A)

via
α 7→ (χ0, α) 7→ δχ0 ` α ∈ H2(G,A)

is the required isomorphism. For surjectivity, I suggest you consider the construction of uf in
part (c) above.

BII) Let G = SL(2,Z) be the group of all 2 × 2 integral matrices of determinant 1; pick a prime, p, and
write U for the set of 2 × 2 integral matrices having determinant p. G acts on U via u(∈ U) 7→ σu,
where σ ∈ G.

(a) Show that the orbit space has p+1 elements: 0, 1, . . . , p−1,∞, where j corresponds to the matrix

wj =
(

1 j
0 p

)

and ∞ corresponds to the matrix w∞ =
(
p 0
0 1

)
.

(b) If τ ∈ G and r ∈ S = {0, 1, . . . , p− 1,∞} = G\U , show there exists a unique r′ ∈ S with wnτ
−1

in the orbit of wr′ . Write τ · r = r′ and prove this gives an action of G on S. Hence, we have a
group homomorphism P : G→ Aut(S) = Sp+1.

(c) If N = kerP , prove that G/N is isomorphic to the group PSL(2,Fp) consisting of all “fractional
linear transformations”

x 7→ x′ =
ax+ b

cx+ d
, a, b, c, d ∈ Fp, ad− bc = 1.

Show further that

i. #
(
PSL(2,Fp)

)
=


p(p+ 1)(p− 1)

2
if p 6= 2

6 if p = 2
and

ii. PSL(2,Fp) act transitively on S under the action of (b).

(d) Now prove: PSL(2,Fp) is simple if p ≥ 5. (Note: PSL(2,F3) is A4, PSL(2,F5) is A5, but
PSL(2,Fp) is not An if p ≥ 7. So, you now have a second infinite collection of simple finite
groups—these are the finite group analogs of the Lie groups PSL(2,C)).
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BIII) Let G be a finite group in this problem.

(a) Classify all group extensions
0 → Q → G → G→ 0 (E).

Your answer should be in terms of the collection of all subgroups of G, say H, with (G : H) ≤ 2,
plus, perhaps, other data.

(b) Same question as (a) for group extensions

0 → Z → G → G→ 0 (E),

same kind of answer.

(c) Write V for the “four-group” Z/2Z
∏

Z/2Z. There are two actions of Z/2Z on V : i. flip the
factors, ii. take each element to its inverse. Are these the only actions? Find all group extensions

0 → V → G → Z/pZ → 0 (E).

The group G is a group of order 8; compare your results with what you know from Assignment 1.

(d) Say H is any other group, G need no longer be finite and A, B are abelian groups. Suppose
ϕ : H → G is a homomorphism and we are given a group extension

0 → A→ G → G→ 0, (E).

Show that, in a canonical way, we can make a group extension

0 → A→ G̃ → H → 0 (ϕ∗E).

(Note: your answer has to be in terms of G, H, G and any homomorphisms between them as these
are the only “variables” present. You’ll get the idea if you view an extension as a fibre space as
remarked in class.)
Now say ψ : A→ B is a group homomorphism and we are given an extension

0 → A→ G → G→ 0 (E).

Construct, in a canonical way, an extension

0 → B → G̃ → G→ 0 (ψ∗E).

(e) Explain, carefully, the relevance of these two constructions to parts (a) and (b) of this problem.

BIV) Say A is any abelian group, and write G for the wreath product A oSn, as in class. Show:

(a) [G,G] 6= G

(b)
(
G : [G,G]

)
= ∞ ⇐⇒ A is infinite

(c) If n ≥ 2, then [G,G] 6= {1}.
(d) Give a restriction on n which prevents G from being solvable.

BV) If {Gα}α∈Λ is a family of abelian groups, write
∐
α

Gα for

∐
α

Gα =
{

(ξα) ∈
∏
α

Gα | for all but finitely many α, we have ξα = 0
}
.
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Let’s refer to
∐

αGα as the coproduct of the Gα. Write as well

(Q/Z)p = {ξ ∈ Q/Z | prξ = 0, some r > 0};

here, p is a prime. Further, call an abelian group A divisible iff

(∀n)(A n−→ A→ 0 is exact).

Prove: Theorem Every divisible (abelian) group is a coproduct of copies of Q and (Q/Z)p for various
primes p. The group is torsion iff no copies of Q appear, it is torsion-free iff no copies of (Q/Z)p appear
(any p). Every torsion-free, divisible, abelian group is naturally a vector space over Q.
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