Math 602, Fall 2002, HW 2, due 10/14/2002

Part A
AI) A Fermat prime, p, is a prime number of the form 2% + 1. E.g., 2,3,5,17,257,.. ..

(a) Show if 2@ + 1 is prime then a = 2.

(b) Say p is a Fermat prime (they are quite big) and gg is an odd number with gy < p. Prove that
any group of order gop is isomorphic to a product Go [[(Z/pZ), where #(Go) = go. Hence, for
example, the groups of orders 51(=3-17), 85(=5-17), 119(= 7-17), 153(=9-17), 187(= 11-17),
221(= 13 - 17), 255(= 3 - 5 - 17) are all abelian. Most we knew already, but 153 = 32 - 17 and
255 =35 17 are new.

(¢) Generalize to any prime, p, and go < p, with p #Z 1 mod go. For example, find all groups of order
130.
ATII) Recall that a group, G, is finitely generated (f.g.) < (Fo1,...,0n € G)(G = Gplo1,...,04}).

(a) If G is an abelian f.g. group, prove each of its subgroups is f.g.

(b) In an arbitrary group, G, an element o € G is called n-torsion (n € N) <= o™ = 1; o is torsion
iff it is n-torsion for some n € N. The element ¢ € G is torsion free <= it is NOT torsion.
Show that in an abelian group, the set

t(G) = {0 € G| o is torsion}

is a subgroup and that G/t(G) is torsion free (i.e., all its non-identity elements are torsion free).
(¢) In one of the groups discussed in class, namely the solvable group 0 — Z — G — Z/2Z — 0 (split
extension, non-trivial action) find two elements z, y satisfying: 22 = y? = 1 and wy is torsion
free. Can you construct a group, G, possessing elements x, y of order 2, so that zy has order n,
where n is predetermined in N? Can you construct G solvable with these properties?
(d) Back to the abelian case. If G is abelian and finitely generated show that ¢(G) is a finite group.

(e) Say G is abelian, f.g., and torsion-free. Write d for the minimal number of generators of G. Prove
that G is isomorphic to a product of d copies of Z.

(f) If G is abelian and f.g., prove that
G =G [[ (G/uG)).

AIIT) Let (P) be a property of groups. We say a group, G, is locally (P) <= each f.g. subgroup of G has
(P). Usually, one says a locally cyclic group is a rank one group.

(a) Prove that a rank one group is abelian.
(b) Show that the additive group of rational numbers, Q% is a rank one group.

(c) Show that every torsion-free, rank one group is isomorphic to a subgroup of Q¥.

AIV) Fix a group, G, and consider the set, M, (G), of n x n matrices with entries from G or so that
a;; = 0 (i.e., entries are 0 or from G). Assume for each row and each column there is one and only
one non-zero entry. These matrices form a group under ordinary “matrix multiplication” if we define
0 - group element = group element - 0 = 0. Establish an isomorphism of this group with the wreath
product G™ YX &,,. As an application, for the subgroup of GL(n,C) consisting of diagonal matrices,
call it A,,, show that

Ng(A,) =2C" Y &, here G = GL(n,C).



AV) (a) Say G is a simple group of order n and say p is a prime number dividing n. If o1,...,0; is a
listing of the elements of G of exact order p, prove that G = Gp{o1,...,0¢}.

(b) Suppose G is any finite group of order n and that d is a positive integer relatively prime to n.
Show that every element of G is a dth power.

Part B

BI) In class, we stated that when G is a (finite) cyclic group, and A is any G-module, we have an isomor-
phism
A% /N (A) = H?(G, A).

This problem is designed to lead you to a proof. I am quite aware of other proofs which you might dig
out of books (after some effort), but T want you to do this proof.

(a) Suppose G is any group and A, B, C are G-modules. Suppose further, we are given a G-pairing
of AT B — C i.e., a map
0:A][B—C

which is bi-additive and “G-linear”:
a0(a,b) = 6(ca,cb).

If f, g are -, s-cochains of G with values in A, B (respectively) we can define an (r + s)-cochain
of G with values in C' via the formula:

(f~09) (01, . 0r,0r41y.c.yOpps) = Q(f(ol, ey 00), 010 g(Ori1, - .,O—T+S)).

Prove that 6(f w9 g) =06f w9 g+ (—1)"f —p dg. (It may be that the sign should be (—1)"%, I'm
not sure, but for what follows the “correct” sign will be irrelevant. Also, you will figure it out!)
Show how you conclude from this that we have a pairing of abelian groups

—o: H"(G, A) | [ H*(G,B) — H"™(G,C).

(Notation and nomenclature: a ¢ 3, cup-product.)

(b) Again G is any group, this time finite. Let Z and Q/Z be G-modules with trivial action. Consider
the abelian group Hom,, (G, Q/Z) = G, where addition in G is by pointwise operation on functions.
If x € G, then x(0) € Q/Z, all ¢ € G. Show that the function

fx(o,1) = ox(o,7) = ox(1) — x(o7) + x(0)

has values in Z and actually is a 2-cocycle with values in Z. (This is an example of the “principle”:
“if it looks like a coboundary, it is certainly a cocycle.”) The map

y € G — cohomology class of fx(o,7) @)

gives a homomorphism G— H?(G,Z).

Now any 2-cocycle g(o,7) with values in Z can be regarded as a 2-cocycle with values in Q
(corresponding to the injection Z — Q). Show that as a 2-cocycle in Q it is a coboundary (of
some h(o), values in Q). So, g(o,7) = dh(o,T), some h. Use this construction to prove:

For any finite group, G, the map (f) above gives an isomorphism of G with H?(G,7Z).
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Now let G be finite, A be any G-module, and Z have the trivial G-action. We have an obvious
G-pairing Z|[ A — A, namely (n,a) — na, hence by (a) and (b) we obtain a pairing

G(= H*(G,z)) [[ A — H*(G, A).
Show that if £ = Na, a € A, then (x,€) goes to 0 in H?(G, A); hence, we obtain a pairing:
G[[A%/NA) — B2 (G, A).

(Hint: if f(o,7) is a 2-cocycle of G in A, consider the 1-cochain uy(7) = >° . f(o, 7). Using the
cocycle condition and suitable choices of the variables, show the values of us are in A% and that
uy is related to Nf, i.e., Nf(r,p) = >, o f(7,p) can be expressed by uy.)

Finally, when G is cyclic, we pick a generator og. There exists a distinguished element, g, of G
corresponding to oy, namely o is that homomorphism G — Q/Z whose value at g, xo0(00), is
% mod Z, where n = #(G). Show that the map

AY/NA — H?(G, A)
via
a (xo,a) — dxo — a € H*(G, A)

is the required isomorphism. For surjectivity, I suggest you consider the construction of us in
part (c) above.

BII) Let G = SL(2,Z) be the group of all 2 x 2 integral matrices of determinant 1; pick a prime, p, and
write U for the set of 2 x 2 integral matrices having determinant p. G acts on U wvia u(€ U) — ou,
where o € G.

(a)

Show that the orbit space has p+1 elements: 0,1,...,p—1, 00, where j corresponds to the matrix

1
wj:(o p)

and oo corresponds to the matrix we, = <€ (1)>

IfreGandreS={0,1,...,p— 1,00} = G\U, show there exists a unique ' € S with w, 771
in the orbit of w,,. Write 7 -7 = r’ and prove this gives an action of G on S. Hence, we have a
group homomorphism P : G — Aut(S) = &,41.

If N = ker P, prove that G/N is isomorphic to the group PSL(2,F,) consisting of all “fractional
linear transformations”
,__ar+b

rT—r =—-— abcdelF, ad—bc=1
cx+d

Show further that
plp+Dlp—-1) .
i #(PSL@va)) = 2 ifp#2
6 ifp=2
and
ii. PSL(2,F,) act transitively on S under the action of (b).
Now prove: PSL(2,F,) is simple if p > 5. (Note: PSL(2,F3) is A4, PSL(2,F5) is A5, but
PSL(2,F,) is not A, if p > 7. So, you now have a second infinite collection of simple finite
groups—these are the finite group analogs of the Lie groups PSL(2,C)).



BIII) Let G be a finite group in this problem.

(a) Classify all group extensions
0-Q—-G¢G—-G—0 (E).

Your answer should be in terms of the collection of all subgroups of G, say H, with (G : H) < 2,
plus, perhaps, other data.

(b) Same question as (a) for group extensions
0—-Z—-G—-G—0 (E),

same kind of answer.

(¢) Write V for the “four-group” Z/2Z][[Z/2Z. There are two actions of Z/2Z on V: i. flip the
factors, ii. take each element to its inverse. Are these the only actions? Find all group extensions

0-V—->G—-Z/pZ—0 (E).

The group G is a group of order 8; compare your results with what you know from Assignment 1.

(d) Say H is any other group, G need no longer be finite and A, B are abelian groups. Suppose
¢ : H — G is a homomorphism and we are given a group extension

0—-A—-G—G—0, (E).

Show that, in a canonical way, we can make a group extension

0-A—-G—>H—0 (p"E).

(Note: your answer has to be in terms of G, H, G and any homomorphisms between them as these
are the only “variables” present. You'll get the idea if you view an extension as a fibre space as
remarked in class.)

Now say ¥ : A — B is a group homomorphism and we are given an extension

0—-A—-G—-G—0 (E).
Construct, in a canonical way, an extension

0—-B—-G—G—0 (Vi E).

(e) Explain, carefully, the relevance of these two constructions to parts (a) and (b) of this problem.
BIV) Say A is any abelian group, and write G for the wreath product A &, as in class. Show:
(a) [G,G] # G
(b) (G:[G,G]) =00 <= Ais infinite
(¢) If n > 2, then [G, G] # {1}.
)

(d) Give a restriction on n which prevents G from being solvable.

BV) If {Gs}aca is a family of abelian groups, write HGQ for

«

HGO‘ = {(fa) € H G, | for all but finitely many «, we have &, = 0}.



Let’s refer to [ [, G as the coproduct of the G. Write as well
(Q/Z), ={£€Q/Z|p ¢ =0, some r > 0};
here, p is a prime. Further, call an abelian group A divisible iff
(Vn)(A " A — 0 is exact).
Prove: Theorem Every divisible (abelian) group is a coproduct of copies of Q and (Q/Z), for various

primes p. The group is torsion iff no copies of Q appear, it is torsion-free iff no copies of (Q/Z), appear
(any p). Every torsion-free, divisible, abelian group is naturally a vector space over Q.



