Math 602, Fall 2002, HW 2, due 10/14/2002

Part A

- AI) A Fermat prime, p, is a prime number of the form $2^{\alpha} + 1$. E.g., 2, 3, 5, 17, 257,
 - (a) Show if $2^{\alpha} + 1$ is prime then $\alpha = 2^{\beta}$.
 - (b) Say p is a Fermat prime (they are quite big) and g_0 is an odd number with $g_0 < p$. Prove that any group of order g_0p is isomorphic to a product $G_0 \prod (\mathbb{Z}/p\mathbb{Z})$, where $\#(G_0) = g_0$. Hence, for example, the groups of orders $51(=3 \cdot 17)$, $85(=5 \cdot 17)$, $119(=7 \cdot 17)$, $153(=9 \cdot 17)$, $187(=11 \cdot 17)$, $221(=13 \cdot 17)$, $255(=3 \cdot 5 \cdot 17)$ are all abelian. Most we knew already, but $153 = 3^2 \cdot 17$ and $255 = 3 \cdot 5 \cdot 17$ are new.
 - (c) Generalize to any prime, p, and $g_0 < p$, with $p \not\equiv 1 \mod g_0$. For example, find all groups of order 130.
- AII) Recall that a group, G, is finitely generated (f.g.) $\iff (\exists \sigma_1, \ldots, \sigma_n \in G)(G = \operatorname{Gp}\{\sigma_1, \ldots, \sigma_n\}).$
 - (a) If G is an *abelian* f.g. group, prove each of its subgroups is f.g.
 - (b) In an arbitrary group, G, an element $\sigma \in G$ is called *n*-torsion $(n \in \mathbb{N}) \iff \sigma^n = 1$; σ is torsion iff it is *n*-torsion for some $n \in \mathbb{N}$. The element $\sigma \in G$ is torsion free \iff it is NOT torsion. Show that in an abelian group, the set

$$t(G) = \{ \sigma \in G \mid \sigma \text{ is torsion} \}$$

is a subgroup and that G/t(G) is torsion free (i.e., all its non-identity elements are torsion free).

- (c) In one of the groups discussed in class, namely the solvable group $0 \to \mathbb{Z} \to G \to \mathbb{Z}/2\mathbb{Z} \to 0$ (split extension, non-trivial action) find two elements x, y satisfying: $x^2 = y^2 = 1$ and xy is torsion free. Can you construct a group, \tilde{G} , possessing elements x, y of order 2, so that xy has order n, where n is predetermined in \mathbb{N} ? Can you construct \tilde{G} solvable with these properties?
- (d) Back to the abelian case. If G is abelian and finitely generated show that t(G) is a finite group.
- (e) Say G is abelian, f.g., and torsion-free. Write d for the minimal number of generators of G. Prove that G is isomorphic to a product of d copies of \mathbb{Z} .
- (f) If G is abelian and f.g., prove that

$$G \cong t(G) \prod (G/t(G)).$$

- AIII) Let (P) be a property of groups. We say a group, G, is *locally* (P) \iff each f.g. subgroup of G has (P). Usually, one says a locally cyclic group is a *rank one group*.
 - (a) Prove that a rank one group is abelian.
 - (b) Show that the additive group of rational numbers, \mathbb{Q}^+ , is a rank one group.
 - (c) Show that every torsion-free, rank one group is isomorphic to a subgroup of \mathbb{Q}^+ .
- AIV) Fix a group, G, and consider the set, $\mathcal{M}_n(G)$, of $n \times n$ matrices with entries from G or so that $\alpha_{ij} = 0$ (i.e., entries are 0 or from G). Assume for each row and each column there is one and only one non-zero entry. These matrices form a group under ordinary "matrix multiplication" if we define $0 \cdot \text{group element} = \text{group element} \cdot 0 = 0$. Establish an isomorphism of this group with the wreath product $G^n \bigotimes \mathfrak{S}_n$. As an application, for the subgroup of $\text{GL}(n, \mathbb{C})$ consisting of diagonal matrices, call it Δ_n , show that

$$N_G(\Delta_n) \cong \mathbb{C}^n \boxtimes \mathfrak{S}_n$$
, here $G = \mathrm{GL}(n, \mathbb{C})$.

- AV) (a) Say G is a simple group of order n and say p is a prime number dividing n. If $\sigma_1, \ldots, \sigma_t$ is a listing of the elements of G of exact order p, prove that $G = \text{Gp}\{\sigma_1, \ldots, \sigma_t\}$.
 - (b) Suppose G is any finite group of order n and that d is a positive integer relatively prime to n. Show that every element of G is a dth power.

Part B

BI) In class, we stated that when G is a (finite) cyclic group, and A is any G-module, we have an isomorphism

$$A^G/\mathcal{N}(A) \xrightarrow{\sim} H^2(G, A).$$

This problem is designed to lead you to a proof. I am quite aware of other proofs which you might dig out of books (after some effort), but I want you to do *this* proof.

(a) Suppose G is any group and A, B, C are G-modules. Suppose further, we are given a G-pairing of $A \prod B \to C$ i.e., a map

$$\theta:A\prod B\to C$$

which is bi-additive and "G-linear":

$$\sigma\theta(a,b) = \theta(\sigma a, \sigma b).$$

If f, g are r-, s-cochains of G with values in A, B (respectively) we can define an (r + s)-cochain of G with values in C via the formula:

$$(f \sim_{\theta} g)(\sigma_1, \dots, \sigma_r, \sigma_{r+1}, \dots, \sigma_{r+s}) = \theta(f(\sigma_1, \dots, \sigma_r), \sigma_1 \dots \sigma_r g(\sigma_{r+1}, \dots, \sigma_{r+s})).$$

Prove that $\delta(f \smile_{\theta} g) = \delta f \smile_{\theta} g + (-1)^r f \smile_{\theta} \delta g$. (It may be that the sign should be $(-1)^{rs}$, I'm not sure, but for what follows the "correct" sign will be irrelevant. Also, you will figure it out!) Show how you conclude from this that we have a pairing of abelian groups

$$\sim_{\theta}$$
: $H^{r}(G, A) \prod H^{s}(G, B) \to H^{r+s}(G, C)$

(Notation and nomenclature: $\alpha \sim_{\theta} \beta$, *cup-product*.)

(b) Again G is any group, this time finite. Let Z and Q/Z be G-modules with trivial action. Consider the abelian group Hom_{gr}(G, Q/Z) = G̃, where addition in G̃ is by pointwise operation on functions. If χ ∈ G̃, then χ(σ) ∈ Q/Z, all σ ∈ G. Show that the function

$$f_{\chi}(\sigma,\tau) = \delta\chi(\sigma,\tau) = \sigma\chi(\tau) - \chi(\sigma\tau) + \chi(\sigma)$$

has values in \mathbb{Z} and actually is a 2-cocycle with values in \mathbb{Z} . (This is an example of the "principle": "if it looks like a coboundary, it is certainly a cocycle.") The map

$$\chi \in G \mapsto \text{cohomology class of } f_{\chi}(\sigma, \tau)$$
 (†)

gives a homomorphism $\widetilde{G} \to H^2(G, \mathbb{Z})$.

Now any 2-cocycle $g(\sigma, \tau)$ with values in \mathbb{Z} can be regarded as a 2-cocycle with values in \mathbb{Q} (corresponding to the injection $\mathbb{Z} \hookrightarrow \mathbb{Q}$). Show that as a 2-cocycle in \mathbb{Q} it is a coboundary (of some $h(\sigma)$, values in \mathbb{Q}). So, $g(\sigma, \tau) = \delta h(\sigma, \tau)$, some h. Use this construction to prove:

For any finite group, G, the map (\dagger) above gives an *isomorphism* of \widetilde{G} with $H^2(G,\mathbb{Z})$.

(c) Now let G be finite, A be any G-module, and \mathbb{Z} have the trivial G-action. We have an obvious G-pairing $\mathbb{Z} \prod A \to A$, namely $(n, a) \mapsto na$, hence by (a) and (b) we obtain a pairing

$$\widetilde{G}(=H^2(G,\mathbb{Z}))\prod A^G\to H^2(G,A).$$

Show that if $\xi = \mathcal{N}\alpha$, $\alpha \in A$, then (χ, ξ) goes to 0 in $H^2(G, A)$; hence, we obtain a pairing:

$$\widetilde{G}\prod(A^G/\mathcal{N}A) \to H^2(G,A).$$

(Hint: if $f(\sigma, \tau)$ is a 2-cocycle of G in A, consider the 1-cochain $u_f(\tau) = \sum_{\sigma \in G} f(\sigma, \tau)$. Using the cocycle condition and suitable choices of the variables, show the values of u_f are in A^G and that u_f is related to $\mathcal{N}f$, i.e., $\mathcal{N}f(\tau, \rho) = \sum_{\sigma} \sigma f(\tau, \rho)$ can be expressed by u_f .)

(d) Finally, when G is cyclic, we pick a generator σ_0 . There exists a distinguished element, χ_0 , of G corresponding to σ_0 , namely χ_0 is that homomorphism $G \to \mathbb{Q}/\mathbb{Z}$ whose value at σ_0 , $\chi_0(\sigma_0)$, is $\frac{1}{n} \mod \mathbb{Z}$, where n = #(G). Show that the map

$$A^G/\mathcal{N}A \to H^2(G,A)$$

via

$$\alpha \mapsto (\chi_0, \alpha) \mapsto \delta \chi_0 \smile \alpha \in H^2(G, A)$$

is the required isomorphism. For surjectivity, I suggest you consider the construction of u_f in part (c) above.

- BII) Let $G = SL(2, \mathbb{Z})$ be the group of all 2×2 integral matrices of determinant 1; pick a prime, p, and write U for the set of 2×2 integral matrices having determinant p. G acts on U via $u \in U \mapsto \sigma u$, where $\sigma \in G$.
 - (a) Show that the orbit space has p+1 elements: $0, 1, \ldots, p-1, \infty$, where j corresponds to the matrix

$$w_j = \begin{pmatrix} 1 & j \\ 0 & p \end{pmatrix}$$

and ∞ corresponds to the matrix $w_{\infty} = \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$.

- (b) If $\tau \in G$ and $r \in S = \{0, 1, \dots, p-1, \infty\} = G \setminus U$, show there exists a unique $r' \in S$ with $w_n \tau^{-1}$ in the orbit of $w_{r'}$. Write $\tau \cdot r = r'$ and prove this gives an action of G on S. Hence, we have a group homomorphism $P: G \to \operatorname{Aut}(S) = \mathfrak{S}_{p+1}$.
- (c) If $N = \ker P$, prove that G/N is isomorphic to the group $PSL(2, \mathbb{F}_p)$ consisting of all "fractional linear transformations"

$$x \mapsto x' = \frac{ax+b}{cx+d}, \quad a, b, c, d \in \mathbb{F}_p, ad-bc = 1.$$

Show further that

i.
$$\#(\text{PSL}(2, \mathbb{F}_p)) = \begin{cases} \frac{p(p+1)(p-1)}{2} & \text{if } p \neq 2\\ 6 & \text{if } p = 2 \end{cases}$$

and

ii. $PSL(2, \mathbb{F}_p)$ act transitively on S under the action of (b).

(d) Now prove: $PSL(2, \mathbb{F}_p)$ is simple if $p \geq 5$. (Note: $PSL(2, \mathbb{F}_3)$ is A_4 , $PSL(2, \mathbb{F}_5)$ is A_5 , but $PSL(2, \mathbb{F}_p)$ is not A_n if $p \geq 7$. So, you now have a second infinite collection of simple finite groups—these are the finite group analogs of the Lie groups $PSL(2, \mathbb{C})$).

- BIII) Let G be a finite group in this problem.
 - (a) Classify all group extensions

$$0 \to \mathbb{Q} \to \mathcal{G} \to G \to 0 \qquad (E)$$

Your answer should be in terms of the collection of all subgroups of G, say H, with $(G:H) \leq 2$, plus, perhaps, other data.

(b) Same question as (a) for group extensions

$$0 \to \mathbb{Z} \to \mathcal{G} \to G \to 0 \qquad (E).$$

same kind of answer.

(c) Write V for the "four-group" $\mathbb{Z}/2\mathbb{Z} \prod \mathbb{Z}/2\mathbb{Z}$. There are two actions of $\mathbb{Z}/2\mathbb{Z}$ on V: i. flip the factors, ii. take each element to its inverse. Are these the only actions? Find all group extensions

$$0 \to V \to \mathcal{G} \to \mathbb{Z}/p\mathbb{Z} \to 0 \qquad (E).$$

The group \mathcal{G} is a group of order 8; compare your results with what you know from Assignment 1.

(d) Say H is any other group, G need no longer be finite and A, B are abelian groups. Suppose $\varphi: H \to G$ is a homomorphism and we are given a group extension

$$0 \to A \to \mathcal{G} \to G \to 0, \qquad (E)$$

Show that, in a canonical way, we can make a group extension

$$0 \to A \to \widetilde{\mathcal{G}} \to H \to 0 \qquad (\varphi^* E).$$

(Note: your answer has to be in terms of G, H, \mathcal{G} and any homomorphisms between them as these are the only "variables" present. You'll get the idea if you view an extension as a fibre space as remarked in class.)

Now say $\psi: A \to B$ is a group homomorphism and we are given an extension

 $0 \to A \to \mathcal{G} \to G \to 0 \qquad (E).$

Construct, in a canonical way, an extension

$$0 \to B \to \widetilde{\mathcal{G}} \to G \to 0 \qquad (\psi_* E).$$

(e) Explain, carefully, the relevance of these two constructions to parts (a) and (b) of this problem.

BIV) Say A is any abelian group, and write G for the wreath product $A \wr \mathfrak{S}_n$, as in class. Show:

- (a) $[G,G] \neq G$
- (b) $(G:[G,G]) = \infty \iff A$ is infinite
- (c) If $n \ge 2$, then $[G, G] \ne \{1\}$.
- (d) Give a restriction on n which prevents G from being solvable.

BV) If $\{G_{\alpha}\}_{\alpha \in \Lambda}$ is a family of *abelian* groups, write $\coprod G_{\alpha}$ for

$$\coprod_{\alpha} G_{\alpha} = \bigg\{ (\xi_{\alpha}) \in \prod_{\alpha} G_{\alpha} \mid \text{ for all but finitely many } \alpha, \text{ we have } \xi_{\alpha} = 0 \bigg\}.$$

Let's refer to $\coprod_{\alpha} G_{\alpha}$ as the *coproduct* of the G_{α} . Write as well

$$(\mathbb{Q}/\mathbb{Z})_p = \{\xi \in \mathbb{Q}/\mathbb{Z} \mid p^r \xi = 0, \text{ some } r > 0\};$$

here, p is a prime. Further, call an *abelian* group A *divisible* iff

$$(\forall n)(A \xrightarrow{n} A \to 0 \text{ is exact}).$$

Prove: Theorem Every divisible (abelian) group is a coproduct of copies of \mathbb{Q} and $(\mathbb{Q}/\mathbb{Z})_p$ for various primes p. The group is torsion iff no copies of \mathbb{Q} appear, it is torsion-free iff no copies of $(\mathbb{Q}/\mathbb{Z})_p$ appear (any p). Every torsion-free, divisible, abelian group is naturally a vector space over \mathbb{Q} .