
Math 602, Fall 2002, HW 1, due 9/30/2002

Part A

AI) (a) Suppose G is a finite group and that AutGr(G) = {1}. (Here, AutGr(G) is the group of all
bijections, G → G, which are also group homomorphisms.) Find all such groups G.

(b) Write Z/2Z for the cyclic group of order 2. If G = Z/2Z
∏

· · ·
∏

Z/2Z, t-times, compute
#

(
AutGr(G)

)
. When t = 2, determine the group AutGr(G). When t = 3, determine the structure

of the odd prime Sylows. Can you decide whether AutGr(G) has any normal subgroups in the
case t = 3?

AII) (a) (Poincaré). In an infinite group, prove that the intersection of two subgroups of finite index has
finite index itself.

(b) Show that if a group, G, has a subgroup of finite index, then it possesses a normal subgroup of
finite index. Hence, an infinite simple group has no subgroups of finite index.

(c) Sharpen (b) by proving: if (G : H) = r, then G possesses a normal subgroup, N , with (G : N) ≤ r!.
Conclude immediately that a group of order 36 cannot be simple.

AIII) Let G = GL(n, C) and ∆n be the subgroup of matrices with entries only along the diagonal. Describe
precisely NG(∆n) in terms of what the matrices look like.

AIV) Say G is a group and #(G) = png0, where p is a prime and (p, g0) = 1. Assume

r >

g0−1∑
j=1

∑
k>0

[j/pk]

(
[x] = largest integer ≤ x

)
. Prove that G is not simple. Show that this governs all groups of order

< 60, except for #(G) = 30, 40, 56. We know, from class, that #(G) = 30 =⇒ G not simple. Show
by explicit argument that groups of orders 40, 56 are not simple. (Here, of course, by simple we mean
non-abelian and simple.)

AV) In a p-group, G, we must have
(G : Z(G)) ≥ p2

(provided, of course, G is non-abelian). Show that for non-abelian groups of order p3, Z(G) ∼= Z/pZ
and G/Z(G) ∼= Z/pZ

∏
Z/pZ.

AVI) Let G be the group of automorphisms of a regular polyhedron with v vertices, e edges, and f faces.
Show that G has order g = fs = vr = 2e, where s is the number of sides to a face and r is the number
of edges emanating from a vertex. From the topology, one knows Euler’s formula

v − e + f = 2.

Find the only possible values for v, e, f, r, s, g. Make a table.

Part B

BI) Let p be a prime number. Find all non-abelian groups of order p3. Get started with the Burnside basis
theorem, but be careful to check that the groups on your list are non-isomorphic. Also make sure your
list is exhaustive. Your list should be a description of the generators of your groups and the relations
they satisfy.
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BII) Let G be a finite group and write c(G) for the number of distinct conjugacy classes in G. This number
will increase (in general) as #(G) →∞; so, look at

c(G) =
c(G)
#(G)

.

The number c(G) measures the “average number of conjugacy classes per element of G” and is 1 if G
is abelian. Assume G is non-abelian from now on. Then 0 < c(G) < 1.

(a) Prove for all such G, c(G) ≤ 5/8.

(b) Suppose p is the smallest prime with p |#(G). Prove that

c(G) ≤ 1
p

+
1
p2
− 1

p3
.

Is the bound of (a) sharp; that is, does there exist G with c(G) = 5/8? How about the bound of (b)?

BIII) If G is a finite group and H a normal subgroup of G, write P for a p-Sylow subgroup of H.

(a) Show that the natural injection
NG(P )/NH(P ) → G/H

(why does it exist, why injective?) is actually an isomorphism.

(b) Prove that the Frattini subgroup, ϕ(G), of ANY finite group, G, has property N.

BIV) We’ve remarked that ϕ(G) is a kind of “radical” in the group-theoretic setting. In this problem we
study various types of radicals.
A normal subgroup, H, of G is called small iff for every X C G, the equality H ·X = G implies that
X = G. (Note: {1} is small, ϕ(G) is small; so they exist.) Check that if H and L are small, so is HL,
and if H is small and K C G, then K ⊆ H =⇒ K is small.

(a) The small radical of G, J ∗∗(G), is

J ∗∗(G) =
{
x ∈ G

∣∣ Gp{Cl(x)} is small
}
.

(Here, Cl(x) is the conjugacy class of x in G, and Gp{S} is the group generated by S.) Prove
that J ∗∗(G) is a subgroup of G.

(b) The Jacobson radical of G, J ∗(G), is the intersection of all maximal, normal subgroups of G;
while the Baer radical of G, J (G), is the product (inside G) of all the small subgroups of G.
Prove

J ∗∗(G) ⊆ J (G) ⊆ J ∗(G).

(c) Prove Baer’s Theorem: J ∗∗(G) = J (G) = J ∗(G). (Suggestion: if x 6∈ J ∗∗(G), find N C G
(6= G) so that Gp{Cl(x)}N = G. Now construct an appropriate maximal normal subgroup not
containing x.)

BV) Recall that a characteristic subgroup is one taken into itself by all automorphisms of the group.

(a) Prove that a group possessing no proper characteristic subgroups is isomorphic to a product of
isomorphic simple groups. (Hints: choose G̃ of smallest possible order (> 1) normal in G. Consider
all subgroups, H, for which H ∼= G1

∏
· · ·

∏
Gt, where each Gj C G and each Gj

∼= G̃. Pick t
so that #(H) is maximal. Prove that H is characteristic. Show K C G1 (say) =⇒ K C G.)

(b) Prove: in every finite group, G, a minimal normal subgroup, H, is either an elementary abelian
p-group or is isomorphic to a product of mutually isomorphic, non-abelian, simple groups.
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(c) Show that in a solvable group, G, only the first case in (b) occurs.

BVI) Let G be a finite p-group and suppose ϕ ∈ Aut(G) has order n (i.e., ϕ
(
ϕ(· · · (ϕ(x)) · · · )

)
= Id, all

x ∈ G: we do ϕ n-times in succession and n is minimal). Suppose (n, p) = 1. Now ϕ induces an
automorphism of G/ϕ(G), call it ϕ, as ϕ(G) is characteristic. Remember that G/ϕ(G) is a vector
space over Fp; so, ϕ ∈ GL

(
G/ϕ(G)

)
.

(a) Prove ϕ = identity ⇐⇒ ϕ = identity.

(b) Show that if d is the Burnside dimension of G, then

#
(
GL(G/ϕ(G))

)
= p

d(d−1)
2

d∏
k=1

(pk − 1),

and that if P is a p-Sylow subgroup of GL
(
G/ϕ(G)

)
, then P ⊆ SL

(
G/ϕ(G)

)
; i.e., σ ∈ P =⇒

det(σ) = 1.

(c) Let P = {ϕ ∈ Aut(G) | ϕ ∈ P, no restriction on order of ϕ}. Show that P is a p-subgroup of
Aut(G).

(d) Call an element σ ∈ GL
(
G/ϕ(G)

)
liftable if it is ϕ for some ϕ ∈ Aut(G). Examine all G of order

p, p2, p3 to help answer the following: is every σ liftable? If not, how can you tell (given σ) if σ is
liftable?

BVII) Let p be a prime number and consider a set, S, of p objects: S = {α1, . . . , αp}. Assume G is a transitive
group of permutations of S (i.e., the elements of S form an orbit under G); further assume (α1α2) ∈ G
(here (α1α2) is the transposition). Prove: G = Sp. (Suggestion: let M = {αj |(α1αj) ∈ G}, show that
σ ∈ Sp and σ = 1 outside M =⇒ σ ∈ G. Now prove #(M)| p.)
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