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ON THE EXISTENCE AND UNIQUENESS OF THE 

REAL LOGARITHM OF A MATRIX 


1. Introduction. Consider the exponential matrix equation 

where C is a given real matrix of dimension nXn .  What we shall 
examine in this paper are the conditions under which a real matrix X 
exists to satisfy (1.1) and, obtaining existence, the conditions under 
which such a solution is unique. 

The significance of this study can derive from a number of sources, 
one of which is the mathematical modeling of dynamic systems [ I ] .  

2. A sketch of the results. According to Gantmacher [2, pp. 239- 
2411, the solution to (1.1) proceeds in the following way: 

We reduce C to its Jordan normal f o ~ m  J via the similarity trans- 
formation 

(2.1) S-'CS = .I, 

whereby (1.1) becomes 

(2.2) J = S1eXS= exp(S-I X S). 

We then take the natural logarithm of both sides of (2.2) and invert 
the similarity transformation to obtain the desired solution(s) X. 

As we will show rigorously, a real solution exists provided C is non- 
singular and each elementary divisor (Jordan block) of C correspond- 
ing to a negative eigenvalue occurs an even number of times. This 
assures that  the complex part of X will have complex conjugate ele- 
mentary divisors (Jordan blocks). 

The possible nonuniqueness of the solution can arise in two ways as 
we will demonstrate: (1) because the matrix C has complex eigen- 
values and hence provides log J with a t  least a countable infinity of 
periodic values, and (2) because the similarity transformation which 
relates J to C uniquely2 via (2.1) may not relate log J to X uniquely 
via (2.2), in which case an uncountable infinity of solutions results. 

Received by the editors August 28, 1964 and, in revised form, March 31, 1966. 
1 Surface Division, Westinghouse Defense and Space Center, P.O. Box 1897, 

Baltimore 3, Maryland. 
2 A Jordan form J is unique to within an  ordering of diagonal blocks. 
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Case ( 2 ) corresponds to the situation where log J cannot be expressed 
as a power series in J. 

3. The mathematical preliminaries. I t  is well known that  the ma- 
trix S in (2.1) is not unique, although J is uniquely related to C. In 
this regard, the following lemma is of interest. 

LEMMA1. Every matrix S which takes a given matrix C into its 
Jordan form J via the relation 

di fers  from any other matrix 3 which does the same thing, i.e., 

(3 s 2 )  	 c = 3~3-1 
only by a multi$licative nonsingular matrix factor K which i s  one of 
a continuum of such matrices that commute with J and erovide the 
identity 

(3 	3) 3 = SK.  

PROOF.Equate (3.1) to (3.2) and rearrange terms to obtain 

From this i t  is obvious that S-'3 must be a matrix, say K ,  which 
commutes with J ,  and is nonsingular, wherefrom (3.3) follows di- 
rectly to complete the proof of the lemma. 

Clearly, now, if S is replaced by the more general transformation 
S =  SK, equations (2.1) and (2.2) remain exactly the same, since 
every K commutes with J.However, after the logarithm of J is taken, 
K may not commute with log J, so tha t  for complete generality we 
must write 

The logarithm of J is well defined [2, p. 1001 in terms of its real 
Jordan blocks JI,. . , J,, m S n :  

(3 .5)  log J = diag(logJI,. . , log J,). 

'Typically, if the kth block is of dimension ( a k + l )  X ( a k + l )  and cor- 
responds to the real elementary divisor 

where X k  is a real eigenvalue of C not necessarily different from 
A h  (h# k ) ,  then 
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and 

I
log X k  l / h c  . . . - ( ( - X k ) - a k ) / a k  

log X k  ' 
( 3 . 8 )  log JI,  = . . 

l/Xk 
0 . . . . . . . log Xk 

If, on the other hand, the kth block corresponds to the complex 
conjugate elementary divisors 

( 3 . 9 )  ( A  - X k ) @ k + l  and ( A  - Xk*)@kfl, 

where hk=~k+ivk is a complex eigenvalue of C and is its complex 
conjugate, then the block dimensions are 2(Pk+1 )  X 2(Pk+ 1 )  and 

where 

(3 .11)  

For this complex case, 

I
log Lk Lkl  ' . .-((- Lr1)bk)/pk 

log Lk . 
(3 .12)  logJk= . . 

Lkl  
o . . . . . . . . .  log Lk 

Since all matrix logarithms are defined ultimately by the matrix 
exponential, e.g., 

JI,= exp(log Jk), 

i t  follows that  such logarithms are multivalued functions of the type 

(3 .13) log JI ,  = LOG Jk + D, 
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where LOG is the principal value and D is one of an infinity of 
matrices that  commute with LOG Jkand satisfy the relation eD =I. 

The nature of D depends on whether the X k  belonging to JI,is real 
or complex. If X k  is real, the eigenvalues of log J k  are its diagonal 
elements, and from a theorem in Gantmacher [2, p. 1581, these must 
be equal. Thus 

(3.14) log JI,= LOG J k  + i2nqkl, Ak real, 

where pk=O, f 1, f2, . . . . 
On the other hand, if Im A h #  0, the real and imaginary parts of 

the eigenvalues of log J k  appear respectively on the main and skew 
diagonals of the 2 X2 diagonal blocks of log J k .  Again Gantmacher's 
theorem can be used, this time to infer that  the diagonal blocks of 
log J k  must be equal. Thus 

where both qk and rk can assume the values 0, f 1, + 2 ,  . . . , and 
where 

4. Development of results. From expressions (3.14) and (3.15) 
we can see that  if no constraints are put on the solution X =  
.SiY(diag { log JI,. . . , log J, ] )K-' S-I, then a t  least a countable in- 
finity of X's  are produced. In this paper we apply, for physical 
reasons [I] ,  the constraint that  X be real, the immediate conse-
quence of which is that  the complex elementary divisors (Jordan 
blocks) of X must appear in complex conjugate pairs. The question 
of existence under this constraint is answered by the following 
theorem. 

THEOREM1. Let C be a real square matrix. Then there exists a real 
solution X to the equation C=ex if and only if (*) C is nonsingular and 
each elementary divisor (Jordan block) of C belonging to a negative 
eigenvalue occurs an  even number of times. 

PROOF.^ (i) Necessity. Let X be real such that  C=er. If any com- 
plex eigenvalues of X exist, they must correspond to complex con- 
jugate elementary divisors. Hence, we may suppose that  the elemen- 
tary divisors of X are 

(A - zk real, 
(4.1) 

(A - zdbk and (A - g)bk, I m  zk # 0. 

a The proof in this form is due essentially to the reviewer of the paper. 
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Since deh/dA#O for all finite A, i t  follows from a theorem in Gant- 
macher [2, p. 1581 that  the elementary divisors of C =  ex are 

(A - ezk)ak, z k  real 
(4.2) 

(A - ezk)bk and (A - ezk*)b'c, Imzk # 0. 

In no event is ezk=O. i\/Ioreover, eZ"O only if Im zk#O, in which case 
e"=ezk*. Thus the negative eigenvalues of C must associate with 
elementary divisors which occur in pairs. Hence C must satisfy (*). 

(ii) Suficiency. Conversely, let C satisfy (*). I ts  eigenvalues X k  are 
as specified by (3.6) or (3.9). For those X k  that  are real and negative 
we can write X k  =ezk=ezk*, where zk =LOG/X k  I + i ~ .Moreover, by the 
last part of (*), the corresponding elementary divisors are (X-ezk)ak+L 
and (X-e~k*)~k+l. Since, also, C is real, we may suppose that  all the 
elementary divisors of C are given by (4.2). Consider, now, the class 
of matrices with elementary divisors (4.1). Clearly there exists some 
real matrix Y in this class. By the theorem quoted from Gantmacher, 
the function eY must be similar to C, so that  a real matrix T can be 
found such that  

Identify X with T-'YT to confirm the sufficiency of (*). 

THEOREM2. Let C be a real square matrix. Then the equation C=eX 
has a unique real solution X if and only if (**) all the eigenvalues of C 
are positive real and no elementary divisor (Jordan block) of C belonging 
to any eigenvalue appears more than once. 

PROOF. (i) Suficiency. All the solutions to C=eX are given by 
(3.4), (3.5) : 

X = SK(diag{ log J1, . . . , log J,)) K-1s-1, 

where log Jkis given by (3.14) or (3.15). Clearly, if (**) holds, 
LOG Jkis real, whereas log J k  =LOG Jk+ i2~qkI  is complex and has 
no complex conjugate in the set log Jh=LOG JhS-iZaqhI, h#k. 
Hence, for every k the parameter qk must be zero, and for every set 
of blocks (say J k ,  J~+I,. + , Jk+Yk) which belongs to the eigenvalue 
XI, there exists the unique set LOG Jk, LOG J k + l ,  . - - , LOG J k + y k  

which belongs to the eigenvalue LOG Xa. Hence [2, p. 2201 every K 
that  commutes with J must also commute with log J in (3.4), and 
(**) is sufficient for X to be real and unique. 

(ii) Necessity. Take the contradictions to (**) which satisfy con- 
dition (*) of Theorem 1. For example, assume C to have positive real 
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eigenvalues which belong to Jordan blocks that  appear more than 
once, or assume C to have negative real eigenvalues (whose blocks 
must occur in pairs), or assume C to have complex conjugate eigen- 
values. 

Suppose, first, tha t  X k  is real and corresponds to the identical 
blocks JA,J ~ + I .If in (3.14) we choose qk= -q~+ l  for X k  positive real 
and qk = - (1 +qk+l) for X k  negative real, we obtain the complex con- 
jugate blocks log Jk,log J k + l .  Hence a continuum set of K matrices 
that  commuted with J will not commute with log J,and a continuum 
of real X's will arise from (3.4). 

Suppose now, tha t  some pair of eigenvalues of C are complex 
conjugate. If they correspond to Jordan blocks that  appear more 
than once (say Jk, Jk+l), then by taking qk = -¶,+I in (3.15) we ob- 
tain a continuum set of X's from (3.4). If the blocks appear only once, 
qk must be zero for all k or else log J k  will be a complex block without 
a conjugate. However, rk in (3.15) can be any integer. If any two 
blocks (say J k ,  Jk+l) are not identical but  belong to the same eigen- 
value Xk, the fact that  rk need not equal rk+l makes i t  possible for 
log Jkand log J k + l  to belong to different eigenvalues. Hence not 
every K will commute with log J and again a continuum of X's re- 
sult. Finally, if no two blocks of J belong to the same complex eigen- 
value, every K that  commutes with J will also commute with log J, 
provided the Jordan blocks for the real eigenvalues appear only once, 
But rk can still be any integer, which leads to a countable infinity 
of log J's, and hence to a countable infinity of X's. Thus (**) is 
necessary. 

COROLLARY.Let C be a real square matrix and let C =ex have more 
than one real solution X. Then there exists an  injinity of real solutions X 
which are 

(a) Countable if all real eigenvalues of C are positive such that their 
Jordan blocks appear only once and C has com@lex eigenvalues none of 
which belongs to more than one Jordan block; 

(b) Uncountable if any real eigenvalues of C are negative, or if any 
positive real eigenvalues belong to Jordan blocks that a@@ear more than 
once, or if any complex conjugate eigew~alues belong to more than one 
Jordan block. 
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