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Chapter 1

Introduction

1.1 Motivations and Goals

The motivations for writing these notes arose while I was coteaching a seminar on Special
Topics in Machine Perception with Kostas Daniilidis in the Spring 2004. The main theme
of the seminar was group-theoretical methods in visual perception. In particular, Kostas
decided to present some exciting results from Christopher Geyer’s Ph.D. thesis [29] on scene
reconstruction using two parabolic catadioptric cameras (Chapters 4 and 5). Catadioptric
cameras are devices which use both mirrors (catioptric elements) and lenses (dioptric ele-
ments) to form images. Catadioptric cameras have been used in computer vision and robotics
to obtain a wide field of view, often greater than 180◦, unobtainable from perspective cam-
eras. Applications of such devices include navigation, surveillance and vizualization, among
others. Technically, certain matrices called catadioptric fundamental matrices come up.
Geyer was able to give several equivalent characterizations of these matrices (see Chapter 5,
Theorem 5.2). To my surprise, the Lorentz group O(3, 1) (of the theory of special relativity)
comes up naturally! The set of fundamental matrices turns out to form a manifold, F , and
the question then arises: What is the dimension of this manifold? Knowing the answer to
this question is not only theoretically important but it is also practically very significant
because it tells us what are the “degrees of freedom” of the problem.

Chris Geyer found an elegant and beautiful answer using some rather sophisticated con-
cepts from the theory of group actions and Lie groups (Theorem 5.10): The space F is
isomorphic to the quotient

O(3, 1)×O(3, 1)/HF ,

whereHF is the stabilizer of any element, F , in F . Now, it is easy to determine the dimension
of HF by determining the dimension of its Lie algebra, which is 3. As dimO(3, 1) = 6, we
find that dimF = 2 · 6− 3 = 9.

Of course, a certain amount of machinery is needed in order to understand how the above
results are obtained: group actions, manifolds, Lie groups, homogenous spaces, Lorentz
groups, etc. As most computer science students, even those specialized in computer vision
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6 CHAPTER 1. INTRODUCTION

or robotics, are not familiar with these concepts, we thought that it would be useful to give
a fairly detailed exposition of these theories.

During the seminar, I also used some material from my book, Gallier [27], especially from
Chapters 11, 12 and 14. Readers might find it useful to read some of this material before-
hand or in parallel with these notes, especially Chapter 14, which gives a more elementary
introduction to Lie groups and manifolds. In fact, during the seminar, I lectured on most of
Chapter 2, but only on the “gentler” versions of Chapters 3, 4, as in [27] and not at all on
Chapter 5, which was written after the course had ended.

One feature worth pointing out is that we give a complete proof of the surjectivity of
the exponential map, exp: so(1, 3) → SO0(1, 3), for the Lorentz group SO0(3, 1) (see Section
4.5, Theorem 4.21). Although we searched the literature quite thoroughly, we did not find
a proof of this specific fact (the physics books we looked at, even the most reputable ones,
seem to take this fact as obvious and there are also wrong proofs, see the Remark following
Theorem 2.6). We are aware of two proofs of the surjectivity of exp: so(1, n) → SO0(1, n)
in the general case where where n is arbitrary: One due to Nishikawa [48] (1983) and an
earlier one due to Marcel Riesz [52] (1957). In both cases, the proof is quite involved (40
pages or so). In the case of SO0(1, 3), a much simpler argument can be made using the fact
that ϕ:SL(2,C) → SO0(1, 3), is surjective and that its kernel is {I,−I} (see Proposition
4.20). Actually, a proof of this fact is not easy to find in the literature either (and, beware
there are wrong proofs, again, see the Remark following Theorem 2.6). We have made sure
to provide all the steps of the proof of the surjectivity of exp: so(1, 3) → SO0(1, 3). For more
on this subject, see the discussion in Section 4.5, after Corollary 4.17.

We hope that our readers will not be put off by the level of abstraction in Chapters 3
and 5 and instead will be inspired to read more about these concepts, even fibre bundles!



Chapter 2

Review of Groups and Group Actions

2.1 Groups

Definition 2.1 A group is a set, G, equipped with an operation, ·:G×G→ G, having the
following properties: · is associative, has an identity element , e ∈ G, and every element in
G is invertible (w.r.t. ·). More explicitly, this means that the following equations hold for
all a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity);

(G2) a · e = e · a = a. (identity);

(G3) For every a ∈ G, there is some a−1 ∈ G such that a · a−1 = a−1 · a = e (inverse).

A group G is abelian (or commutative) if

a · b = b · a

for all a, b ∈ G.

A set M together with an operation ·:M ×M → M and an element e satisfying only
conditions (G1) and (G2) is called a monoid . For example, the set N = {0, 1, . . . , n . . .} of
natural numbers is a (commutative) monoid. However, it is not a group.

Observe that a group (or a monoid) is never empty, since e ∈ G.

Some examples of groups are given below:

Example 2.1

1. The set Z = {. . . ,−n, . . . ,−1, 0, 1, . . . , n . . .} of integers is a group under addition,
with identity element 0. However, Z∗ = Z− {0} is not a group under multiplication.

2. The set Q of rational numbers is a group under addition, with identity element 0. The
set Q∗ = Q− {0} is also a group under multiplication, with identity element 1.
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8 CHAPTER 2. REVIEW OF GROUPS AND GROUP ACTIONS

3. Similarly, the sets R of real numbers and C of complex numbers are groups under
addition (with identity element 0), and R∗ = R − {0} and C∗ = C − {0} are groups
under multiplication (with identity element 1).

4. The sets Rn and Cn of n-tuples of real or complex numbers are groups under compo-
nentwise addition:

(x1, . . . , xn) + (y1, · · · , yn) = (x1 + yn, . . . , xn + yn),

with identity element (0, . . . , 0). All these groups are abelian.

5. Given any nonempty set S, the set of bijections f :S → S, also called permutations
of S, is a group under function composition (i.e., the multiplication of f and g is the
composition g ◦ f), with identity element the identity function idS. This group is not
abelian as soon as S has more than two elements.

6. The set of n× n matrices with real (or complex) coefficients is a group under addition
of matrices, with identity element the null matrix. It is denoted by Mn(R) (or Mn(C)).

7. The set R[X] of polynomials in one variable with real coefficients is a group under
addition of polynomials.

8. The set of n×n invertible matrices with real (or complex) coefficients is a group under
matrix multiplication, with identity element the identity matrix In. This group is
called the general linear group and is usually denoted by GL(n,R) (or GL(n,C)).

9. The set of n×n invertible matrices with real (or complex) coefficients and determinant
+1 is a group under matrix multiplication, with identity element the identity matrix
In. This group is called the special linear group and is usually denoted by SL(n,R)
(or SL(n,C)).

10. The set of n × n invertible matrices with real coefficients such that RR> = In and
of determinant +1 is a group called the orthogonal group and is usually denoted by
SO(n) (where R> is the transpose of the matrix R, i.e., the rows of R> are the columns
of R). It corresponds to the rotations in Rn.

11. Given an open interval ]a, b[, the set C(]a, b[) of continuous functions f : ]a, b[→ R is a
group under the operation f + g defined such that

(f + g)(x) = f(x) + g(x)

for all x ∈]a, b[.

Given a group, G, for any two subsets R,S ⊆ G, we let

RS = {r · s | r ∈ R, s ∈ S}.
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In particular, for any g ∈ G, if R = {g}, we write

gS = {g · s | s ∈ S}

and similarly, if S = {g}, we write

Rg = {r · g | r ∈ R}.

From now on, we will drop the multiplication sign and write g1g2 for g1 · g2.

Definition 2.2 Given a group, G, a subset, H, of G is a subgroup of G iff

(1) The identity element, e, of G also belongs to H (e ∈ H);

(2) For all h1, h2 ∈ H, we have h1h2 ∈ H;

(3) For all h ∈ H, we have h−1 ∈ H.

It is easily checked that a subset, H ⊆ G, is a subgroup of G iff H is nonempty and
whenever h1, h2 ∈ H, then h1h

−1
2 ∈ H.

If H is a subgroup of G and g ∈ G is any element, the sets of the form gH are called left
cosets of H in G and the sets of the form Hg are called right cosets of H in G. The left
cosets (resp. right cosets) of H induce an equivalence relation, ∼, defined as follows: For all
g1, g2 ∈ G,

g1 ∼ g2 iff g1H = g2H

(resp. g1 ∼ g2 iff Hg1 = Hg2).

Obviously, ∼ is an equivalence relation. Now, it is easy to see that g1H = g2H iff
g−1
2 g1 ∈ H, so the equivalence class of an element g ∈ G is the coset gH (resp. Hg). The set

of left cosets of H in G (which, in general, is not a group) is denoted G/H. The “points”
of G/H are obtained by “collapsing” all the elements in a coset into a single element.

It is tempting to define a multiplication operation on left cosets (or right cosets) by
setting

(g1H)(g2H) = (g1g2)H,

but this operation is not well defined in general, unless the subgroup H possesses a special
property. This property is typical of the kernels of group homomorphisms, so we are led to

Definition 2.3 Given any two groups, G,G′, a function ϕ:G→ G′ is a homomorphism iff

ϕ(g1g2) = ϕ(g1)ϕ(g2), for all g1, g2 ∈ G.
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Taking g1 = g2 = e (in G), we see that

ϕ(e) = e′,

and taking g1 = g and g2 = g−1, we see that

ϕ(g−1) = ϕ(g)−1.

If ϕ:G → G′ and ψ:G′ → G′′ are group homomorphisms, then ψ ◦ ϕ:G → G′′ is also a
homomorphism. If ϕ:G → G′ is a homomorphism of groups and H ⊆ G and H ′ ⊆ G′ are
two subgroups, then it is easily checked that

Im H = ϕ(H) = {ϕ(g) | g ∈ H} is a subgroup of G′

(Im H is called the image of H by ϕ) and

ϕ−1(H ′) = {g ∈ G | ϕ(g) ∈ H ′} is a subgroup of G.

In particular, when H ′ = {e′}, we obtain the kernel , Ker ϕ, of ϕ. Thus,

Ker ϕ = {g ∈ G | ϕ(g) = e′}.

It is immediately verified that ϕ:G → G′ is injective iff Ker ϕ = {e}. (We also write
Ker ϕ = (0).) We say that ϕ is an isomorphism if there is a homomorphism, ψ:G′ → G, so
that

ψ ◦ ϕ = idG and ϕ ◦ ψ = idG′ .

In this case, ψ is unique and it is denoted ϕ−1. When ϕ is an isomorphism we say the
the groups G and G′ are isomorphic. When G′ = G, a group isomorphism is called an
automorphism.

We claim that H = Ker ϕ satisfies the following property:

gH = Hg, for all g ∈ G. (∗)

First, note that (∗) is equivalent to

gHg−1 = H, for all g ∈ G,

and the above is equivalent to

gHg−1 ⊆ H, for all g ∈ G. (∗∗)

This is because gHg−1 ⊆ H implies H ⊆ g−1Hg, and this for all g ∈ G. But,

ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g−1) = ϕ(g)e′ϕ(g)−1 = ϕ(g)ϕ(g)−1 = e′,

for all h ∈ H = Ker ϕ and all g ∈ G. Thus, by definition ofH = Ker ϕ, we have gHg−1 ⊆ H.
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Definition 2.4 For any group, G, a subgroup, N ⊆ G, is a normal subgroup of G iff

gNg−1 = N, for all g ∈ G.

This is denoted by N CG.

If N is a normal subgroup of G, the equivalence relation induced by left cosets is the
same as the equivalence induced by right cosets. Furthermore, this equivalence relation, ∼,
is a congruence, which means that: For all g1, g2, g

′
1, g

′
2 ∈ G,

(1) If g1N = g′1N and g2N = g′2N , then g1g2N = g′1g
′
2N , and

(2) If g1N = g2N , then g−1
1 N = g−1

2 N .

As a consequence, we can define a group structure on the set G/ ∼ of equivalence classes
modulo ∼, by setting

(g1N)(g2N) = (g1g2)N.

This group is denoted G/N . The equivalence class, gN , of an element g ∈ G is also denoted
g. The map π:G→ G/N , given by

π(g) = g = gN,

is clearly a group homomorphism called the canonical projection.

Given a homomorphism of groups, ϕ:G→ G′, we easily check that the groups G/Ker ϕ
and Im ϕ = ϕ(G) are isomorphic.

2.2 Group Actions and Homogeneous Spaces, I

If X is a set (usually, some kind of geometric space, for example, the sphere in R3, the upper
half-plane, etc.), the “symmetries” of X are often captured by the action of a group, G, on
X. In fact, if G is a Lie group and the action satisfies some simple properties, the set X
can be given a manifold structure which makes it a projection (quotient) of G, a so-called
“homogeneous space”.

Definition 2.5 Given a set, X, and a group, G, a left action of G on X (for short, an action
of G on X) is a function, ϕ:G×X → X, such that

(1) For all g, h ∈ G and all x ∈ X,

ϕ(g, ϕ(h, x)) = ϕ(gh, x),

(2) For all x ∈ X,
ϕ(1, x) = x,

where 1 ∈ G is the identity element of G.
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To alleviate the notation, we usually write g · x or even gx for ϕ(g, x), in which case, the
above axioms read:

(1) For all g, h ∈ G and all x ∈ X,

g · (h · x) = gh · x,

(2) For all x ∈ X,
1 · x = x.

The set X is called a (left) G-set . The action ϕ is faithful or effective iff for any g, if g ·x = x
for all x ∈ X, then g = 1; the action ϕ is transitive iff for any two elements x, y ∈ X, there
is some g ∈ G so that g · x = y.

Given an action, ϕ:G×X → X, for every g ∈ G, we have a function, ϕg:X → X, defined
by

ϕg(x) = g · x, for all x ∈ X.
Observe that ϕg has ϕg−1 as inverse, since

ϕg−1(ϕg(x)) = ϕg−1(g · x) = g−1 · (g · x) = (g−1g) · x = 1 · x = x,

and similarly, ϕg ◦ ϕg−1 = id. Therefore, ϕ is a bijection of X, i.e., a permutation of X.
Moreover, we check immediately that

ϕg ◦ ϕh = ϕgh,

so, the map g 7→ ϕg is a group homomorphism from G to SX , the group of permutations of
X. With a slight abuse of notation, this group homomorphism G −→ SX is also denoted ϕ.

Conversely, it is easy to see that any group homomorphism, ϕ:G→ SX , yields a group
action, ·:G×X −→ X, by setting

g · x = ϕ(g)(x).

Observe that an action, ϕ, is faithful iff the group homomorphism, ϕ:G→ SX , is injective.
Also, we have g · x = y iff g−1 · y = x, since (gh) · x = g · (h · x) and 1 · x = x, for all g, h ∈ G
and all x ∈ X.

Definition 2.6 Given two G-sets, X and Y , a function, f :X → Y , is said to be equivariant ,
or a G-map iff for all x ∈ X and all g ∈ G, we have

f(g · x) = g · f(x).

Remark: We can also define a right action, ·:X × G → X, of a group G on a set X, as a
map satisfying the conditions
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(1) For all g, h ∈ G and all x ∈ X,

(x · g) · h = x · gh,

(2) For all x ∈ X,
x · 1 = x.

Every notion defined for left actions is also defined for right actions, in the obvious way.

Here are some examples of (left) group actions.

Example 1: The unit sphere S2 (more generally, Sn−1).

Recall that for any n ≥ 1, the (real) unit sphere, Sn−1, is the set of points in Rn given by

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n = 1}.

In particular, S2 is the usual sphere in R3. Since the group SO(3) = SO(3,R) consists of
(orientation preserving) linear isometries, i.e., linear maps that are distance preserving (and
of determinant +1), and every linear map leaves the origin fixed, we see that any rotation
maps S2 into itself.

� Beware that this would be false if we considered the group of affine isometries, SE(3), of
E3. For example, a screw motion does not map S2 into itself, even though it is distance

preserving, because the origin is translated.

Thus, we have an action, ·:SO(3)× S2 → S2, given by

R · x = Rx.

The verification that the above is indeed an action is trivial. This action is transitive.
This is because, for any two points x, y on the sphere S2, there is a rotation whose axis is
perpendicular to the plane containing x, y and the center, O, of the sphere (this plane is not
unique when x and y are antipodal, i.e., on a diameter) mapping x to y.

Similarly, for any n ≥ 1, we get an action, ·:SO(n) × Sn−1 → Sn−1. It is easy to show
that this action is transitive.

Analogously, we can define the (complex) unit sphere, Σn−1, as the set of points in Cn

given by
Σn−1 = {(z1, . . . , zn) ∈ Cn | z1z1 + · · ·+ znzn = 1}.

If we write zj = xj + iyj, with xj, yj ∈ R, then

Σn−1 = {(x1, . . . , xn, y1, . . . , yn) ∈ R2n | x2
1 + · · ·+ x2

n + y2
1 + · · ·+ y2

n = 1}.

Therefore, we can view the complex sphere, Σn−1 (in Cn), as the real sphere, S2n−1 (in R2n).
By analogy with the real case, we can define an action, ·:SU(n) × Σn−1 → Σn−1, of the
group, SU(n), of linear maps of Cn preserving the hermitian inner product (and the origin,
as all linear maps do) and this action is transitive.
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� One should not confuse the unit sphere, Σn−1, with the hypersurface, Sn−1
C , given by

Sn−1
C = {(z1, . . . , zn) ∈ Cn | z2

1 + · · ·+ z2
n = 1}.

For instance, one should check that a line, L, through the origin intersects Σn−1 in a circle,
whereas it intersects Sn−1

C in exactly two points!

Example 2: The upper half-plane.

The upper half-plane, H, is the open subset of R2 consisting of all points, (x, y) ∈ R2,
with y > 0. It is convenient to identify H with the set of complex numbers, z ∈ C, such
that = z > 0. Then, we can define an action, ·:SL(2,R) × H → H, of the group SL(2,R)
on H, as follows: For any z ∈ H, for any A ∈ SL(2,R),

A · z =
az + b

cz + d
,

where

A =

(
a b
c d

)
with ad− bc = 1. It is easily verified that A · z is indeed always well defined and in H when
z ∈ H. This action is transitive (check this).

Maps of the form

z 7→ az + b

cz + d
,

where z ∈ C and ad− bc = 1, are called Möbius transformations . Here, a, b, c, d ∈ R, but in
general, we allow a, b, c, d ∈ C. Actually, these transformations are not necessarily defined
everywhere on C, for example, for z = −d/c if c 6= 0. To fix this problem, we add a “point
at infinity”, ∞, to C and define Möbius transformations as functions C∪{∞} −→ C∪{∞}.
If c = 0, the Möbius transformation sends ∞ to itself, otherwise, −d/c 7→ ∞ and ∞ 7→ a/c.
The space C∪{∞} can be viewed as the plane, R2, extended with a point at infinity. Using
a stereographic projection from the sphere S2 to the plane, (say from the north pole to the
equatorial plane), we see that there is a bijection between the sphere, S2, and C∪{∞}. More
precisely, the stereographic projection of the sphere S2 from the north pole, N = (0, 0, 1), to
the plane z = 0 (extended with the point at infinity, ∞) is given by

(x, y, z) ∈ S2 − {(0, 0, 1)} 7→
(

x

1− z
,

y

1− z

)
=
x+ iy

1− z
∈ C, with (0, 0, 1) 7→ ∞.

The inverse stereographic projection is given by

(x, y) 7→
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
, with ∞ 7→ (0, 0, 1).

Intuitively, the inverse stereographic projection “wraps” the equatorial plane around the
sphere. The space C ∪ {∞} is known as the Riemann sphere. We will see shortly that
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C ∪ {∞} ∼= S2 is also the complex projective line, CP1. In summary, Möbius transforma-
tions are bijections of the Riemann sphere. It is easy to check that these transformations
form a group under composition for all a, b, c, d ∈ C, with ad − bc = 1. This is the Möbius
group, denoted Möb+. The Möbius transformations corresponding to the case a, b, c, d ∈ R,
with ad − bc = 1 form a subgroup of Möb+ denoted Möb+

R . The map from SL(2,C) to
Möb+ that sends A ∈ SL(2,C) to the corresponding Möbius transformation is a surjec-
tive group homomorphism and one checks easily that its kernel is {−I, I} (where I is the
2 × 2 identity matrix). Therefore, the Möbius group Möb+ is isomorphic to the quotient
group SL(2,C)/{−I, I}, denoted PSL(2,C). This latter group turns out to be the group of
projective transformations of the projective space CP1. The same reasoning shows that the
subgroup Möb+

R is isomorphic to SL(2,R)/{−I, I}, denoted PSL(2,R).

The group SL(2,C) acts on C ∪ {∞} ∼= S2 the same way that SL(2,R) acts on H,
namely: For any A ∈ SL(2,C), for any z ∈ C ∪ {∞},

A · z =
az + b

cz + d
,

where

A =

(
a b
c d

)
with ad− bc = 1.

This action is clearly transitive.

One may recall from complex analysis that the (complex) Möbius transformation

z 7→ z − i

z + i

is a biholomorphic isomorphism between the upper half plane, H, and the open unit disk,

D = {z ∈ C | |z| < 1}.

As a consequence, it is possible to define a transitive action of SL(2,R) on D. This can be
done in a more direct fashion, using a group isomorphic to SL(2,R), namely, SU(1, 1) (a
group of complex matrices), but we don’t want to do this right now.

Example 3: The set of n× n symmetric, positive, definite matrices, SPD(n).

The group GL(n) = GL(n,R) acts on SPD(n) as follows: For all A ∈ GL(n) and all
S ∈ SPD(n),

A · S = ASA>.

It is easily checked that ASA> is in SPD(n) if S is in SPD(n). This action is transitive
because every SPD matrix, S, can be written as S = AA>, for some invertible matrix, A
(prove this as an exercise).

Example 4: The projective spaces RPn and CPn.



16 CHAPTER 2. REVIEW OF GROUPS AND GROUP ACTIONS

The (real) projective space, RPn, is the set of all lines through the origin in Rn+1, i.e., the
set of one-dimensional subspaces of Rn+1 (where n ≥ 0). Since a one-dimensional subspace,
L ⊆ Rn+1, is spanned by any nonzero vector, u ∈ L, we can view RPn as the set of equivalence
classes of vectors in Rn+1 − {0} modulo the equivalence relation,

u ∼ v iff v = λu, for some λ 6= 0 ∈ R.

In terms of this definition, there is a projection, pr: Rn+1−{0} → RPn, given by pr(u) = [u]∼,
the equivalence class of u modulo ∼. Write [u] for the line defined by the nonzero vector, u.
Since every line, L, in Rn+1 intersects the sphere Sn in two antipodal points, we can view
RPn as the quotient of the sphere Sn by identification of antipodal points. We write

Sn/{I,−I} ∼= RPn.

We define an action of SO(n + 1) on RPn as follows: For any line, L = [u], for any
R ∈ SO(n+ 1),

R · L = [Ru].

Since R is linear, the line [Ru] is well defined, i.e., does not depend on the choice of u ∈ L.
It is clear that this action is transitive.

The (complex) projective space, CPn, is defined analogously as the set of all lines through
the origin in Cn+1, i.e., the set of one-dimensional subspaces of Cn+1 (where n ≥ 0). This
time, we can view CPn as the set of equivalence classes of vectors in Cn+1−{0} modulo the
equivalence relation,

u ∼ v iff v = λu, for some λ 6= 0 ∈ C.

We have the projection, pr: Cn+1 −{0} → CPn, given by pr(u) = [u]∼, the equivalence class
of u modulo ∼. Again, write [u] for the line defined by the nonzero vector, u.

Remark: Algebraic geometers write Pn
R for RPn and Pn

C (or even Pn) for CPn.

Recall that Σn ⊆ Cn+1, the unit sphere in Cn+1, is defined by

Σn = {(z1, . . . , zn+1) ∈ Cn+1 | z1z1 + · · ·+ zn+1zn+1 = 1}.

For any line, L = [u], where u ∈ Cn+1 is a nonzero vector, writing u = (u1, . . . , un+1), a point
z ∈ Cn+1 belongs to L iff z = λ(u1, . . . , un+1), for some λ ∈ C. Therefore, the intersection,
L ∩ Σn, of the line L and the sphere Σn is given by

L ∩ Σn = {λ(u1, . . . , un+1) ∈ Cn+1 | λ ∈ C, λλ(u1u1 + · · ·+ un+1un+1) = 1},

i.e.,

L ∩ Σn =

{
λ(u1, . . . , un+1) ∈ Cn+1

∣∣∣∣∣ λ ∈ C, |λ| = 1√
|u1|2 + · · ·+ |un+1|2

}
.
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Thus, we see that there is a bijection between L ∩ Σn and the circle, S1, i.e., geometrically,
L ∩Σn is a circle. Moreover, since any line, L, through the origin is determined by just one
other point, we see that for any two lines L1 and L2 through the origin,

L1 6= L2 iff (L1 ∩ Σn) ∩ (L2 ∩ Σn) = ∅.

However, Σn is the sphere S2n+1 in R2n+2. It follows that CPn is the quotient of S2n+1 by
the equivalence relation, ∼, defined such that

y ∼ z iff y, z ∈ L ∩ Σn, for some line, L, through the origin.

Therefore, we can write
S2n+1/S1 ∼= CPn.

The case n = 1 is particularly interesting, as it turns out that

S3/S1 ∼= S2.

This is the famous Hopf fibration. To show this, proceed as follows: As

S3 ∼= Σ1 = {(z, z′) ∈ C2 | |z|2 + |z′|2 = 1},

define a map, HF:S3 → S2, by

HF((z, z′)) = (2zz′, |z|2 − |z′|2).

We leave as a homework exercise to prove that this map has range S2 and that

HF((z1, z
′
1)) = HF((z2, z

′
2)) iff (z1, z

′
1) = λ(z2, z

′
2), for some λ with |λ| = 1.

In other words, for any point, p ∈ S2, the inverse image, HF−1(p) (also called fibre over
p), is a circle on S3. Consequently, S3 can be viewed as the union of a family of disjoint
circles. This is the Hopf fibration. It is possible to visualize the Hopf fibration using the
stereographic projection from S3 onto R3. This is a beautiful and puzzling picture. For
example, see Berger [4]. Therefore, HF induces a bijection from CP1 to S2, and it is a
homeomorphism.

We define an action of SU(n + 1) on CPn as follows: For any line, L = [u], for any
R ∈ SU(n+ 1),

R · L = [Ru].

Again, this action is well defined and it is transitive.

Example 5: Affine spaces.

If E is any (real) vector space and X is any set, a transitive and faithful action,
·:E×X → X, of the additive group of E on X makes X into an affine space. The intuition
is that the members of E are translations.
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Those familiar with affine spaces as in Gallier [27] (Chapter 2) or Berger [4] will point
out that if X is an affine space, then, not only is the action of E on X transitive, but more
is true: For any two points, a, b ∈ E, there is a unique vector, u ∈ E, such that u · a = b.
By the way, the action of E on X is usually considered to be a right action and is written
additively, so u · a is written a + u (the result of translating a by u). Thus, it would seem
that we have to require more of our action. However, this is not necessary because E (under
addition) is abelian. More precisely, we have the proposition

Proposition 2.1 If G is an abelian group acting on a set X and the action ·:G×X → X
is transitive and faithful, then for any two elements x, y ∈ X, there is a unique g ∈ G so
that g · x = y (the action is simply transitive).

Proof . Since our action is transitive, there is at least some g ∈ G so that g · x = y. Assume
that we have g1, g2 ∈ G with

g1 · x = g2 · x = y.

We shall prove that, actually,

g1 · z = g2 · z, for all z ∈ X.

As our action is faithful we must have g1 = g2, and this proves our proposition.

Pick any z ∈ X. As our action is transitive, there is some h ∈ G so that z = h · x. Then,
we have

g1 · z = g1 · (h · x)
= (g1h) · x
= (hg1) · x (since G is abelian)

= h · (g1 · x)
= h · (g2 · x) (since g1 · x = g2 · x)
= (hg2) · x
= (g2h) · x (since G is abelian)

= g2 · (h · x)
= g2 · z.

Therefore, g1 · z = g2 · z, for all z ∈ X, as claimed.

More examples will be considered later.

The subset of group elements that leave some given element x ∈ X fixed plays an impor-
tant role.

Definition 2.7 Given an action, ·:G ×X → X, of a group G on a set X, for any x ∈ X,
the group Gx (also denoted StabG(x)), called the stabilizer of x or isotropy group at x is
given by

Gx = {g ∈ G | g · x = x}.
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We have to verify that Gx is indeed a subgroup of G, but this is easy. Indeed, if g ·x = x
and h · x = x, then we also have h−1 · x = x and so, we get gh−1 · x = x, proving that Gx is
a subgroup of G. In general, Gx is not a normal subgroup.

Observe that
Gg·x = gGxg

−1,

for all g ∈ G and all x ∈ X.

Indeed,

Gg·x = {h ∈ G | h · (g · x) = g · x}
= {h ∈ G | hg · x = g · x}
= {h ∈ G | g−1hg · x = x}
= gGxg

−1.

Therefore, the stabilizers of x and g · x are conjugate of each other.

When the action of G on X is transitive, for any fixed x ∈ G, the set X is a quotient (as
set, not as group) of G by Gx. Indeed, we can define the map, πx:G→ X, by

πx(g) = g · x, for all g ∈ G.

Observe that
πx(gGx) = (gGx) · x = g · (Gx · x) = g · x = πx(g).

This shows that πx:G→ X induces a quotient map, πx:G/Gx → X, from the set, G/Gx, of
(left) cosets of Gx to X, defined by

πx(gGx) = g · x.

Since

πx(g) = πx(h) iff g · x = h · x iff g−1h · x = x iff g−1h ∈ Gx iff gGx = hGx,

we deduce that πx:G/Gx → X is injective. However, since our action is transitive, for every
y ∈ X, there is some g ∈ G so that g · x = y and so, πx(gGx) = g · x = y, i.e., the map πx is
also surjective. Therefore, the map πx:G/Gx → X is a bijection (of sets, not groups). The
map πx:G→ X is also surjective. Let us record this important fact as

Proposition 2.2 If ·:G×X → X is a transitive action of a group G on a set X, for every
fixed x ∈ X, the surjection, π:G→ X, given by

π(g) = g · x

induces a bijection
π:G/Gx → X,

where Gx is the stabilizer of x.
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The map π:G → X (corresponding to a fixed x ∈ X) is sometimes called a projection
of G onto X. Proposition 2.2 shows that for every y ∈ X, the subset, π−1(y), of G (called
the fibre above y) is equal to some coset, gGx, of G and thus, is in bijection with the group
Gx itself. We can think of G as a moving family of fibres, Gx, parametrized by X. This
point of view of viewing a space as a moving family of simpler spaces is typical in (algebraic)
geometry, and underlies the notion of (principal) fibre bundle.

Note that if the action ·:G×X → X is transitive, then the stabilizers Gx and Gy of any
two elements x, y ∈ X are isomorphic, as they as conjugates. Thus, in this case, it is enough
to compute one of these stabilizers for a “convenient” x.

As the situation of Proposition 2.2 is of particular interest, we make the following defi-
nition:

Definition 2.8 A set, X, is said to be a homogeneous space if there is a transitive action,
·:G×X → X, of some group, G, on X.

We see that all the spaces of Example 1–5 are homogeneous spaces. Another example
that will play an important role when we deal with Lie groups is the situation where we have
a group, G, a subgroup, H, of G (not necessarily normal) and where X = G/H, the set of
left cosets of G modulo H. The group G acts on G/H by left multiplication:

a · (gH) = (ag)H,

where a, g ∈ G. This action is clearly transitive and one checks that the stabilizer of gH
is gHg−1. If G is a topological group and H is a closed subgroup of G (see later for an
explanation), it turns out that G/H is Hausdorff (Recall that a topological space, X, is
Hausdorff iff for any two distinct points x 6= y ∈ X, there exists two disjoint open subsets,
U and V , with x ∈ U and y ∈ V .) If G is a Lie group, we obtain a manifold.

� Even if G and X are topological spaces and the action, ·:G × X → X, is continuous,
the space G/Gx under the quotient topology is, in general, not homeomorphic to X.

We will give later sufficient conditions that insure that X is indeed a topological space
or even a manifold. In particular, X will be a manifold when G is a Lie group.

In general, an action ·:G × X → X is not transitive on X, but for every x ∈ X, it is
transitive on the set

O(x) = G · x = {g · x | g ∈ G}.
Such a set is called the orbit of x. The orbits are the equivalence classes of the following
equivalence relation:

Definition 2.9 Given an action, ·:G × X → X, of some group, G, on X, the equivalence
relation, ∼, on X is defined so that, for all x, y ∈ X,

x ∼ y iff y = g · x, for some g ∈ G.
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For every x ∈ X, the equivalence class of x is the orbit of x, denoted O(x) or OrbG(x), with

O(x) = {g · x | g ∈ G}.

The set of orbits is denoted X/G.

The orbit space, X/G, is obtained from X by an identification (or merging) process: For
every orbit, all points in that orbit are merged into a single point. For example, if X = S2

and G is the group consisting of the restrictions of the two linear maps I and −I of R3 to
S2 (where −I(x, y, z) = (−x,−y,−z)), then

X/G = S2/{I,−I} ∼= RP2.

Many manifolds can be obtained in this fashion, including the torus, the Klein bottle, the
Möbius band, etc.

Since the action of G is transitive on O(x), by Proposition 2.2, we see that for every
x ∈ X, we have a bijection

O(x) ∼= G/Gx.

As a corollary, if both X and G are finite, for any set, A ⊆ X, of representatives from
every orbit, we have the orbit formula:

|X| =
∑
a∈A

[G:Gx] =
∑
a∈A

|G|/|Gx|.

Even if a group action, ·:G × X → X, is not transitive, when X is a manifold, we can
consider the set of orbits, X/G, and if the action of G on X satisfies certain conditions,
X/G is actually a manifold. Manifolds arising in this fashion are often called orbifolds . In
summary, we see that manifolds arise in at least two ways from a group action:

(1) As homogeneous spaces, G/Gx, if the action is transitive.

(2) As orbifolds, X/G.

Of course, in both cases, the action must satisfy some additional properties.

Let us now determine some stabilizers for the actions of Examples 1–4, and for more
examples of homogeneous spaces.

(a) Consider the action, ·:SO(n)× Sn−1 → Sn−1, of SO(n) on the sphere Sn−1 (n ≥ 1)
defined in Example 1. Since this action is transitive, we can determine the stabilizer of any
convenient element of Sn−1, say e1 = (1, 0, . . . , 0). In order for any R ∈ SO(n) to leave e1
fixed, the first column of R must be e1, so R is an orthogonal matrix of the form

R =

(
1 U
0 S

)
, with det(S) = 1.
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As the rows of R must be unit vector, we see that U = 0 and S ∈ SO(n − 1). Therefore,
the stabilizer of e1 is isomorphic to SO(n− 1), and we deduce the bijection

SO(n)/SO(n− 1) ∼= Sn−1.

� Strictly speaking, SO(n − 1) is not a subgroup of SO(n) and in all rigor, we should

consider the subgroup, S̃O(n− 1), of SO(n) consisting of all matrices of the form(
1 0
0 S

)
, with det(S) = 1

and write
SO(n)/S̃O(n− 1) ∼= Sn−1.

However, it is common practice to identify SO(n− 1) with S̃O(n− 1).

When n = 2, as SO(1) = {1}, we find that SO(2) ∼= S1, a circle, a fact that we already
knew. When n = 3, we find that SO(3)/SO(2) ∼= S2. This says that SO(3) is somehow the
result of glueing circles to the surface of a sphere (in R3), in such a way that these circles do
not intersect. This is hard to visualize!

A similar argument for the complex unit sphere, Σn−1, shows that

SU(n)/SU(n− 1) ∼= Σn−1 ∼= S2n−1.

Again, we identify SU(n− 1) with a subgroup of SU(n), as in the real case. In particular,
when n = 2, as SU(1) = {1}, we find that

SU(2) ∼= S3,

i.e., the group SU(2) is topologically the sphere S3! Actually, this is not surprising if we
remember that SU(2) is in fact the group of unit quaternions.

(b) We saw in Example 2 that the action, ·:SL(2,R)×H → H, of the group SL(2,R) on
the upper half plane is transitive. Let us find out what the stabilizer of z = i is. We should
have

ai+ b

ci+ d
= i,

that is, ai+ b = −c+ di, i.e.,
(d− a)i = b+ c.

Since a, b, c, d are real, we must have d = a and b = −c. Moreover, ad − bc = 1, so we get
a2 + b2 = 1. We conclude that a matrix in SL(2,R) fixes i iff it is of the form(

a −b
b a

)
, with a2 + b2 = 1.



2.2. GROUP ACTIONS AND HOMOGENEOUS SPACES, I 23

Clearly, these are the rotation matrices in SO(2) and so, the stabilizer of i is SO(2). We
conclude that

SL(2,R)/SO(2) ∼= H.

This time, we can view SL(2,R) as the result of glueing circles to the upper half plane. This
is not so easy to visualize. There is a better way to visualize the topology of SL(2,R) by
making it act on the open disk, D. We will return to this action in a little while.

Now, consider the action of SL(2,C) on C ∪ {∞} ∼= S2. As it is transitive, let us find
the stabilizer of z = 0. We must have

b

d
= 0,

and as ad−bc = 1, we must have b = 0 and ad = 1. Thus, the stabilizer of 0 is the subgroup,
SL(2,C)0, of SL(2,C) consisting of all matrices of the form(

a 0
c a−1

)
, where a ∈ C− {0} and c ∈ C.

We get
SL(2,C)/SL(2,C)0

∼= C ∪ {∞} ∼= S2,

but this is not very illuminating.

(c) In Example 3, we considered the action, ·:GL(n) × SPD(n) → SPD(n), of GL(n)
on SPD(n), the set of symmetric positive definite matrices. As this action is transitive, let
us find the stabilizer of I. For any A ∈ GL(n), the matrix A stabilizes I iff

AIA> = AA> = I.

Therefore, the stabilizer of I is O(n) and we find that

GL(n)/O(n) = SPD(n).

Observe that if GL+(n) denotes the subgroup of GL(n) consisting of all matrices with
a strictly positive determinant, then we have an action ·:GL+(n)× SPD(n) → SPD(n) of
GL+(n) on SPD(n). This action is transtive and we find that the stabilizer of I is SO(n);
consequently, we get

GL+(n)/SO(n) = SPD(n).

(d) In Example 4, we considered the action, ·:SO(n+1)×RPn → RPn, of SO(n+1) on
the (real) projective space, RPn. As this action is transitive, let us find the stabilizer of the
line, L = [e1], where e1 = (1, 0, . . . , 0). For any R ∈ SO(n + 1), the line L is fixed iff either
R(e1) = e1 or R(e1) = −e1, since e1 and −e1 define the same line. As R is orthogonal with
det(R) = 1, this means that R is of the form

R =

(
α 0
0 S

)
, with α = ±1 and det(S) = α.
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But, S must be orthogonal, so we conclude S ∈ O(n). Therefore, the stabilizer of L = [e1]
is isomorphic to the group O(n) and we find that

SO(n+ 1)/O(n) ∼= RPn.

� Strictly speaking, O(n) is not a subgroup of SO(n+ 1), so the above equation does not
make sense. We should write

SO(n+ 1)/Õ(n) ∼= RPn,

where Õ(n) is the subgroup of SO(n+ 1) consisting of all matrices of the form(
α 0
0 S

)
, with S ∈ O(n), α = ±1 and det(S) = α.

However, the common practice is to write O(n) instead of Õ(n).

We should mention that RP3 and SO(3) are homeomorphic spaces. This is shown using
the quaternions, for example, see Gallier [27], Chapter 8.

A similar argument applies to the action, ·:SU(n + 1) × CPn → CPn, of SU(n + 1) on
the (complex) projective space, CPn. We find that

SU(n+ 1)/U(n) ∼= CPn.

Again, the above is a bit sloppy as U(n) is not a subgroup of SU(n + 1). To be rigorous,

we should use the subgroup, Ũ(n), consisting of all matrices of the form(
α 0
0 S

)
, with S ∈ U(n), |α| = 1 and det(S) = α.

The common practice is to write U(n) instead of Ũ(n). In particular, when n = 1, we find
that

SU(2)/U(1) ∼= CP1.

But, we know that SU(2) ∼= S3 and, clearly, U(1) ∼= S1. So, again, we find that S3/S1 ∼= CP1

(but we know, more, namely, S3/S1 ∼= S2 ∼= CP1.)

(e) We now consider a generalization of projective spaces (real and complex). First,
consider the real case. Given any n ≥ 1, for any k, with 0 ≤ k ≤ n, let G(k, n) be the
set of all linear k-dimensional subspaces of Rn (also called k-planes). Any k-dimensional
subspace, U , of R is spanned by k linearly independent vectors, u1, . . . , uk, in Rn; write
U = span(u1, . . . , uk). We can define an action, ·:O(n)×G(k, n) → G(k, n), as follows: For
any R ∈ O(n), for any U = span(u1, . . . , uk), let

R · U = span(Ru1, . . . , Ruk).
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We have to check that the above is well defined. If U = span(v1, . . . , vk) for any other k
linearly independent vectors, v1, . . . , vk, we have

vi =
k∑

j=1

aijuj, 1 ≤ i ≤ k,

for some aij ∈ R, and so,

Rvi =
k∑

j=1

aijRuj, 1 ≤ i ≤ k,

which shows that
span(Ru1, . . . , Ruk) = span(Rv1, . . . , Rvk),

i.e., the above action is well defined. This action is transitive. This is because if U and V are
any two k-planes, we may assume that U = span(u1, . . . , uk) and V = span(v1, . . . , vk), where
the ui’s form an orthonormal family and similarly for the vi’s. Then, we can extend these
families to orthonormal bases (u1, . . . , un) and (v1, . . . , vn) or Rn, and w.r.t. the orthonormal
basis (u1, . . . , un), the matrix of the linear map sending ui to vi is orthogonal. Thus, it is
enough to find the stabilizer of any k-plane. Pick U = span(e1, . . . , ek), where (e1, . . . , en)
is the canonical basis of Rn (i.e., ei = (0, . . . , 0, 1, 0, . . . , 0), with the 1 in the ith position).
Now, any R ∈ O(n) stabilizes U iff R maps e1, . . . , ek to k linearly independent vectors in
the subspace U = span(e1, . . . , ek), i.e., R is of the form

R =

(
S 0
0 T

)
,

where S is k × k and T is (n − k) × (n − k). Moreover, as R is orthogonal, S and T must
be orthogonal, i.e., S ∈ O(k) and T ∈ O(n − k). We deduce that the stabilizer of U is
isomorphic to O(k)×O(n− k) and we find that

O(n)/(O(k)×O(n− k)) ∼= G(k, n).

It turns out that this makes G(k, n) into a smooth manifold of dimension k(n− k) called a
Grassmannian.

If we recall the projection pr: Rn+1 − {0} → RPn, by definition, a k-plane in RPn is the
image under pr of any (k + 1)-plane in Rn+1. So, for example, a line in RPn is the image
of a 2-plane in Rn+1, and a hyperplane in RPn is the image of a hyperplane in Rn+1. The
advantage of this point of view is that the k-planes in RPn are arbitrary, i.e., they do not
have to go through “the origin” (which does not make sense, anyway!). Then, we see that
we can interpret the Grassmannian, G(k + 1, n + 1), as a space of “parameters” for the
k-planes in RPn. For example, G(2, n+ 1) parametrizes the lines in RPn. In this viewpoint,
G(k + 1, n+ 1) is usually denoted G(k, n).

It can be proved (using some exterior algebra) that G(k, n) can be embedded in RP(n
k )−1.

Much more is true. For example, G(k, n) is a projective variety, which means that it can be
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defined as a subset of RP(n
k )−1 equal to the zero locus of a set of homogeneous equations.

There is even a set of quadratic equations, known as the Plücker equations , defining G(k, n).
In particular, when n = 4 and k = 2, we have G(2, 4) ⊆ RP5 and G(2, 4) is defined by
a single equation of degree 2. The Grassmannian G(2, 4) = G(1, 3) is known as the Klein
quadric. This hypersurface in RP5 parametrizes the lines in RP3.

Complex Grassmannians are defined in a similar way, by replacing R by C throughout.
The complex Grassmannian, GC(k, n), is a complex manifold as well as a real manifold and
we have

U(n)/(U(k)×U(n− k)) ∼= GC(k, n).

We now return to case (b) to give a better picture of SL(2,R). Instead of having SL(2,R)
act on the upper half plane we define an action of SL(2,R) on the open unit disk, D.
Technically, it is easier to consider the group, SU(1, 1), which is isomorphic to SL(2,R), and
to make SU(1, 1) act on D. The group SU(1, 1) is the group of 2 × 2 complex matrices of
the form (

a b
b a

)
, with aa− bb = 1.

The reader should check that if we let

g =

(
1 −i
1 i

)
,

then the map from SL(2,R) to SU(1, 1) given by

A 7→ gAg−1

is an isomorphism. Observe that the Möbius transformation associated with g is

z 7→ z − i

z + 1
,

which is the holomorphic isomorphism mapping H to D mentionned earlier! Now, we can
define a bijection between SU(1, 1) and S1 ×D given by(

a b
b a

)
7→ (a/|a|, b/a).

We conclude that SL(2,R) ∼= SU(1, 1) is topologically an open solid torus (i.e., with the
surface of the torus removed). It is possible to further classify the elements of SL(2,R) into
three categories and to have geometric interpretations of these as certain regions of the torus.
For details, the reader should consult Carter, Segal and Macdonald [14] or Duistermatt and
Kolk [25] (Chapter 1, Section 1.2).

The group SU(1, 1) acts on D by interpreting any matrix in SU(1, 1) as a Möbius tran-
formation, i.e., (

a b
b a

)
7→
(
z 7→ az + b

bz + a

)
.
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The reader should check that these transformations preserve D. Both the upper half-plane
and the open disk are models of Lobachevsky’s non-Euclidean geometry (where the parallel
postulate fails). They are also models of hyperbolic spaces (Riemannian manifolds with
constant negative curvature, see Gallot, Hulin and Lafontaine [28], Chapter III). According
to Dubrovin, Fomenko, and Novikov [23] (Chapter 2, Section 13.2), the open disk model is
due to Poincaré and the upper half-plane model to Klein, although Poincaré was the first to
realize that the upper half-plane is a hyperbolic space.

2.3 The Lorentz Groups O(n, 1), SO(n, 1) and SO0(n, 1)

The Lorentz group provides another interesting example. Moreover, the Lorentz group
SO(3, 1) shows up in an interesting way in computer vision.

Denote the p× p-identity matrix by Ip, for p, q,≥ 1, and define

Ip,q =

(
Ip 0
0 −Iq

)
.

If n = p+ q, the matrix Ip,q is associated with the nondegenerate symmetric bilinear form

ϕp,q((x1, . . . , xn), (y1, . . . , yn)) =

p∑
i=1

xiyi −
n∑

j=p+1

xjyj

with associated quadratic form

Φp,q((x1, . . . , xn)) =

p∑
i=1

x2
i −

n∑
j=p+1

x2
j .

In particular, when p = 1 and q = 3, we have the Lorentz metric

x2
1 − x2

2 − x2
3 − x2

4.

In physics, x1 is interpreted as time and written t and x2, x3, x4 as coordinates in R3 and
written x, y, z. Thus, the Lozentz metric is usually written a

t2 − x2 − y2 − z2,

although it also appears as

x2 + y2 + z2 − t2,

which is equivalent but slightly less convenient for certain purposes, as we will see later. The
space R4 with the Lorentz metric is called Minkowski space. It plays an important role in
Einstein’s theory of special relativity.



28 CHAPTER 2. REVIEW OF GROUPS AND GROUP ACTIONS

The group O(p, q) is the set of all n× n-matrices

O(p, q) = {A ∈ GL(n,R) | A>Ip,qA = Ip,q}.

This is the group of all invertible linear maps of Rn that preserve the quadratic form, Φp,q,
i.e., the group of isometries of Φp,q. Clearly, I2

p,q = I, so the condition A>Ip,qA = Ip,q is
equivalent to Ip,qA

>Ip,qA = I, which means that

A−1 = Ip,qA
>Ip,q.

Thus, AIp,qA
> = Ip,q also holds, which shows that O(p, q) is closed under transposition (i.e.,

if A ∈ O(p, q), then A> ∈ O(p, q)). We have the subgroup

SO(p, q) = {A ∈ O(p, q) | det(A) = 1}

consisting of the isometries of (Rn,Φp,q) with determinant +1. It is clear that SO(p, q) is
also closed under transposition. The condition A>Ip,qA = Ip,q has an interpretation in terms
of the inner product ϕp,q and the columns (and rows) of A. Indeed, if we denote the jth
column of A by Aj, then

A>Ip,qA = (ϕp,q(Ai, Aj)),

so A ∈ O(p, q) iff the columns of A form an “orthonormal basis” w.r.t. ϕp,q, i.e.,

ϕp,q(Ai, Aj) =

{
δij if 1 ≤ i, j ≤ p;
−δij if p+ 1 ≤ i, j ≤ p+ q.

The difference with the usual orthogonal matrices is that ϕp,q(Ai, Ai) = −1, if
p + 1 ≤ i ≤ p + q. As O(p, q) is closed under transposition, the rows of A also form an
orthonormal basis w.r.t. ϕp,q.

It turns out that SO(p, q) has two connected components and the component containing
the identity is a subgroup of SO(p, q) denoted SO0(p, q). The group SO0(p, q) turns out to
be homeomorphic to SO(p)×SO(q)×Rpq, but this is not easy to prove. (One way to prove
it is to use results on pseudo-algebraic subgroups of GL(n,C), see Knapp [36] or Gallier’s
notes on Clifford algebras (on the web)).

We will now determine the polar decomposition and the SVD decomposition of matrices
in the Lorentz groups O(n, 1) and SO(n, 1). Write J = In,1 and, given any A ∈ O(n, 1),
write

A =

(
B u
v> c

)
,

where B is an n× n matrix, u, v are (column) vectors in Rn and c ∈ R. We begin with the
polar decomposition of matrices in the Lorentz groups O(n, 1).

Proposition 2.3 Every matrix A ∈ O(n, 1) has a polar decomposition of the form

A =

(
Q 0
0 1

)(√
I + vv> v
v> c

)
or A =

(
Q 0
0 −1

)(√
I + vv> v
v> c

)
,

where Q ∈ O(n) and c =
√
‖v‖2 + 1.
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Proof . Write A in block form as above. As the condition for A to be in O(n, 1) is A>JA = J ,
we get (

B> v
u> c

)(
B u
−v> −c

)
=

(
In 0
0 −1

)
,

i.e,.

B>B = I + vv>

u>u = c2 − 1

B>u = cv.

If we remember that we also have AJA> = J , then

Bv = cu,

which can also be deduced from the three equations above. From u>u = ‖u‖2 = c2 − 1, we
deduce that |c| ≥ 1, and from B>B = I + vv>, we deduce that B>B is symmetric, positive
definite. Now, geometrically, it is well known that vv>/v>v is the orthogonal projection onto
the line determined by v. Consequently, the kernel of vv> is the orthogonal complement of
v and vv> has the eigenvalue 0 with multiplicity n − 1 and the eigenvalue c2 − 1 = ‖v‖2 =
v>v with multiplicity 1. The eigenvectors associated with 0 are orthogonal to v and the
eigenvectors associated with c2 − 1 are proportional with v. It follows that I + vv> has the
eigenvalue 1 with multiplicity n−1 and the eigenvalue c2 with multiplicity 1, the eigenvectors
being as before. Now, B has polar form B = QS1, where Q is orthogonal and S1 is symmetric
positive definite and S2

1 = B>B = I + vv>. Therefore, if c > 0, then S1 =
√
I + vv> is a

symmetric positive definite matrix with eigenvalue 1 with multiplicity n− 1 and eigenvalue
c with multiplicity 1, the eigenvectors being as before. If c < 0, then change c to −c.

Case 1: c > 0. Then, v is an eigenvector of S1 for c and we must also have Bv = cu,
which implies

Bv = QS1v = Q(cv) = cQv = cu,

so
Qv = u.

It follows that

A =

(
B u
v> c

)
=

(
QS1 Qv
v> c

)
=

(
Q 0
0 1

)(√
I + vv> v
v> c

)
.

Therefore, the polar decomposition of A ∈ O(n, 1) is

A =

(
Q 0
0 1

)(√
I + vv> v
v> c

)
,

where Q ∈ O(n) and c =
√
‖v‖2 + 1.
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Case 2: c < 0. Then, v is an eigenvector of S1 for −c and we must also have Bv = cu,
which implies

Bv = QS1v = Q(−cv) = cQ(−v) = cu,

so

Q(−v) = u.

It follows that

A =

(
B u
v> c

)
=

(
QS1 Q(−v)
v> c

)
=

(
Q 0
0 −1

)(√
I + vv> −v
−v> −c

)
.

In this case, the polar decomposition of A ∈ O(n, 1) is

A =

(
Q 0
0 −1

)(√
I + vv> −v
−v> −c

)
,

where Q ∈ O(n) and c = −
√
‖v‖2 + 1. Therefore, we conclude that any A ∈ O(n, 1) has a

polar decomposition of the form

A =

(
Q 0
0 1

)(√
I + vv> v
v> c

)
or A =

(
Q 0
0 −1

)(√
I + vv> v
v> c

)
,

where Q ∈ O(n) and c =
√
‖v‖2 + 1.

Thus, we see that O(n, 1) has four components corresponding to the cases:

(1) Q ∈ O(n); det(Q) < 0; +1 as the lower right entry of the orthogonal matrix;

(2) Q ∈ SO(n); −1 as the lower right entry of the orthogonal matrix;

(3) Q ∈ O(n); det(Q) < 0; −1 as the lower right entry of the orthogonal matrix;

(4) Q ∈ SO(n); +1 as the lower right entry of the orthogonal matrix.

Observe that det(A) = −1 in cases (1) and (2) and that det(A) = +1 in cases (3) and (4).
Thus, (3) and (4) correspond to the group SO(n, 1), in which case the polar decomposition
is of the form

A =

(
Q 0
0 −1

)(√
I + vv> v
v> c

)
,

where Q ∈ O(n), with det(Q) = −1 and c =
√
‖v‖2 + 1 or

A =

(
Q 0
0 1

)(√
I + vv> v
v> c

)
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where Q ∈ SO(n) and c =
√
‖v‖2 + 1. The components in (1) and (2) are not groups. We

will show later that all four components are connected and that case (4) corresponds to a
group (Proposition 2.8). This group is the connected component of the identity and it is
denoted SO0(n, 1) (see Corollary 2.27). For the time being, note that A ∈ SO0(n, 1) iff
A ∈ SO(n, 1) and an+1 n+1 (= c) > 0 (here, A = (ai j).) In fact, we proved above that if
an+1 n+1 > 0, then an+1 n+1 ≥ 1.

Remark: If we let

ΛP =

(
In−1,1 0

0 1

)
and ΛT = In,1, where In,1 =

(
In 0
0 −1

)
,

then we have the disjoint union

O(n, 1) = SO0(n, 1) ∪ ΛPSO0(n, 1) ∪ ΛTSO0(n, 1) ∪ ΛP ΛTSO0(n, 1).

In order to determine the SVD of matrices in SO0(n, 1), we analyze the eigenvectors and
the eigenvalues of the positive definite symmetric matrix

S =

(√
I + vv> v
v> c

)
involved in Proposition 2.3. Such a matrix is called a Lorentz boost . Observe that if v = 0,
then c = 1 and S = In+1.

Proposition 2.4 Assume v 6= 0. The eigenvalues of the symmetric positive definite matrix

S =

(√
I + vv> v
v> c

)
,

where c =
√
‖v‖2 + 1, are 1 with multiplicity n− 1, and eα and e−α each with multiplicity 1

(for some α ≥ 0). An orthonormal basis of eigenvectors of S consists of vectors of the form(
u1

0

)
, . . . ,

(
un−1

0

)
,

( v√
2‖v‖
1√
2

)
,

( v√
2‖v‖
− 1√

2

)
,

where the ui ∈ Rn are all orthogonal to v and pairwise orthogonal.

Proof . Let us solve the linear system(√
I + vv> v
v> c

)(
v
d

)
= λ

(
v
d

)
.

We get √
I + vv>(v) + dv = λv

v>v + cd = λd,



32 CHAPTER 2. REVIEW OF GROUPS AND GROUP ACTIONS

that is (since c =
√
‖v‖2 + 1 and

√
I + vv>(v) = cv),

(c+ d)v = λv

c2 − 1 + cd = λd.

Since v 6= 0, we get λ = c+ d. Substituting in the second equation, we get

c2 − 1 + cd = (c+ d)d,

that is,
d2 = c2 − 1.

Thus, either λ1 = c +
√
c2 − 1 and d =

√
c2 − 1, or λ2 = c −

√
c2 − 1 and d = −

√
c2 − 1.

Since c ≥ 1 and λ1λ2 = 1, set α = log(c+
√
c2 − 1) ≥ 0, so that −α = log(c−

√
c2 − 1) and

then, λ1 = eα and λ2 = e−α. On the other hand, if u is orthogonal to v, observe that(√
I + vv> v
v> c

)(
u
0

)
=

(
u
0

)
,

since the kernel of vv> is the orthogonal complement of v. The rest is clear.

Corollary 2.5 The singular values of any matrix A ∈ O(n, 1) are 1 with multiplicity n− 1,
eα, and e−α, for some α ≥ 0.

Note that the case α = 0 is possible, in which case, A is an orthogonal matrix of the form(
Q 0
0 1

)
or

(
Q 0
0 −1

)
,

with Q ∈ O(n). The two singular values eα and e−α tell us how much A deviates from being
orthogonal.

We can now determine a convenient form for the SVD of matrices in O(n, 1).

Theorem 2.6 Every matrix A ∈ O(n, 1) can be written as

A =

(
P 0
0 ε

)
1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα


(
Q> 0
0 1

)

with ε = ±1, P ∈ O(n) and Q ∈ SO(n). When A ∈ SO(n, 1), we have det(P )ε = +1, and
when A ∈ SO0(n, 1), we have ε = +1 and P ∈ SO(n), that is,

A =

(
P 0
0 1

)
1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα


(
Q> 0
0 1

)

with P ∈ SO(n) and Q ∈ SO(n).
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Proof . By Proposition 2.3, any matrix A ∈ O(n) can be written as

A =

(
R 0
0 ε

)(√
I + vv> v
v> c

)

where ε = ±1, R ∈ O(n) and c =
√
‖v‖2 + 1. The case where c = 1 is trivial, so assume

c > 1, which means that α from Proposition 2.4 is such that α > 0. The key fact is that the
eigenvalues of the matrix (

coshα sinhα
sinhα coshα

)
are eα and e−α and that(

eα 0
0 e−α

)
=

( 1√
2

1√
2

1√
2

− 1√
2

)(
coshα sinhα
sinhα coshα

)( 1√
2

1√
2

1√
2

− 1√
2

)
.

From this fact, we see that the diagonal matrix

D =


1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 eα 0
0 · · · 0 0 e−α


of eigenvalues of S is given by

D =


1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1√

2
1√
2

0 · · · 0 1√
2

− 1√
2




1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα




1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1√

2
1√
2

0 · · · 0 1√
2

− 1√
2

 .

By Proposition 2.4, an orthonormal basis of eigenvectors of S consists of vectors of the form(
u1

0

)
, . . . ,

(
un−1

0

)
,

( v√
2‖v‖
1√
2

)
,

( v√
2‖v‖
− 1√

2

)
,

where the ui ∈ Rn are all orthogonal to v and pairwise orthogonal. Now, if we multiply the
matrices

(
u1 · · · un−1

v√
2‖v‖

v√
2‖v‖

0 · · · 0 1√
2

− 1√
2

)
1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1√

2
1√
2

0 · · · 0 1√
2

− 1√
2

 ,
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we get an orthogonal matrix of the form (
Q 0
0 1

)
where the columns of Q are the vectors

u1, · · · , un−1,
v

‖v‖
.

By flipping u1 to −u1 if necessary, we can make sure that this matrix has determinant +1.
Consequently,

S =

(
Q 0
0 1

)
1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα


(
Q> 0
0 1

)
,

so

A =

(
R 0
0 ε

)(
Q 0
0 1

)
1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα


(
Q> 0
0 1

)
,

and if we let P = RQ, we get the desired decomposition.

Remark: We warn our readers about Chapter 6 of Baker’s book [3]. Indeed, this chapter
is seriously flawed. The main two Theorems (Theorem 6.9 and Theorem 6.10) are false
and as consequence, the proof of Theorem 6.11 is wrong too. Theorem 6.11 states that the
exponential map exp: so(n, 1) → SO0(n, 1) is surjective, which is correct, but known proofs
are nontrivial and quite lengthy (see Section 4.5). The proof of Theorem 6.12 is also false,
although the theorem itself is correct (this is our Theorem 4.21, see Section 4.5). The main
problem with Theorem 6.9 (in Baker) is that the existence of the normal form for matrices
in SO0(n, 1) claimed by this theorem is unfortunately false on several accounts. Firstly, it
would imply that every matrix in SO0(n, 1) can be diagonalized, but this is false for n ≥ 2.
Secondly, even if a matrix A ∈ SO0(n, 1) is diagonalizable as A = PDP−1, Theorem 6.9
(and Theorem 6.10) miss some possible eigenvalues and the matrix P is not necessarily in
SO0(n, 1) (as the case n = 1 already shows). For a thorough analysis of the eigenvalues of
Lorentz isometries (and much more), one should consult Riesz [52] (Chapter III).

Clearly, a result similar to Theorem 2.6 also holds for the matrices in the groups O(1, n),
SO(1, n) and SO0(1, n). For example, every matrix A ∈ SO0(1, n) can be written as

A =

(
1 0
0 P

)
coshα sinhα 0 · · · 0
sinhα coshα 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


(

1 0
0 Q>

)
,
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where P,Q ∈ SO(n).

In the case n = 3, we obtain the proper orthochronous Lorentz group, SO0(1, 3), also
denoted Lor(1, 3). By the way, O(1, 3) is called the (full) Lorentz group and SO(1, 3) is the
special Lorentz group.

Theorem 2.6 (really, the version for SO0(1, n)) shows that the Lorentz group SO0(1, 3)
is generated by the matrices of the form(

1 0
0 P

)
with P ∈ SO(3)

and the matrices of the form 
coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1

 .

This fact will be useful when we prove that the homomorphism ϕ:SL(2,C) → SO0(1, 3) is
surjective.

Remark: Unfortunately, unlike orthogonal matrices which can always be diagonalized over
C, not every matrix in SO(1, n) can be diagonalized for n ≥ 2. This has to do with the fact
that the Lie algebra so(1, n) has non-zero idempotents (see Section 4.5).

It turns out that the group SO0(1, 3) admits another interesting characterization involv-
ing the hypersurface

H = {(t, x, y, z) ∈ R4 | t2 − x2 − y2 − z2 = 1}.

This surface has two sheets and it is not hard to show that SO0(1, 3) is the subgroup of
SO(1, 3) that preserves these two sheets (does not swap them). Actually, we will prove this
fact for any n. In preparation for this we need some definitions and a few propositions.

Let us switch back to SO(n, 1). First, as a matter of notation, we write every u ∈ Rn+1

as u = (u, t), where u ∈ Rn and t ∈ R, so that the Lorentz inner product can be expressed
as

〈u, v〉 = 〈(u, t), (v, s)〉 = u · v − ts,

where u · v is the standard Euclidean inner product (the Euclidean norm of x is denoted
‖x‖). Then, we can classify the vectors in Rn+1 as follows:

Definition 2.10 A nonzero vector, u = (u, t) ∈ Rn+1 is called

(a) spacelike iff 〈u, u〉 > 0, i.e., iff ‖u‖2 > t2;

(b) timelike iff 〈u, u〉 < 0, i.e., iff ‖u‖2 < t2;
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(c) lightlike or isotropic iff 〈u, u〉 = 0, i.e., iff ‖u‖2 = t2.

A spacelike (resp. timelike, resp. lightlike) vector is said to be positive iff t > 0 and negative
iff t < 0. The set of all isotropic vectors

Hn(0) = {u = (u, t) ∈ Rn+1 | ‖u‖2 = t2}

is called the light cone. For every r > 0, let

Hn(r) = {u = (u, t) ∈ Rn+1 | ‖u‖2 − t2 = −r},

a hyperboloid of two sheets.

It is easy to check that Hn(r) has two connected components as follows: First, since
r > 0 and

‖u‖2 + r = t2,

we have |t| ≥
√
r. Now, for any x = (x1, . . . , xn, t) ∈ Hn(r) with t ≥

√
r, we have the

continuous path from (0, . . . , 0,
√
r) to x given by

λ 7→ (λx1, . . . , λxn,
√
r + λ2(t2 − r)),

where λ ∈ [0, 1], proving that the component of (0, . . . , 0,
√
r) is connected. Similarly, when

t ≤ −
√
r, we have the continuous path from (0, . . . , 0,−

√
r) to x given by

λ 7→ (λx1, . . . , λxn,−
√
r + λ2(t2 − r)),

where λ ∈ [0, 1], proving that the component of (0, . . . , 0,−
√
r) is connected. We denote the

sheet containing (0, . . . , 0,
√
r) by H+

n (r) and sheet containing (0, . . . , 0,−
√
r) by H−

n (r)

Since every Lorentz isometry, A ∈ SO(n, 1), preserves the Lorentz inner product, we
conclude that A globally preserves every hyperboloid, Hn(r), for r > 0. We claim that every
A ∈ SO0(n, 1) preserves both H+

n (r) and H−
n (r). This follows immediately from

Proposition 2.7 If an+1 n+1 > 0, then every isometry, A ∈ SO(n, 1), preserves all positive
(resp. negative) timelike vectors and all positive (resp. negative) lightlike vectors. Moreover,
if A ∈ SO(n, 1) preserves all positive timelike vectors, then an+1 n+1 > 0.

Proof . Let u = (u, t) be a nonzero timelike or lightlike vector. This means that

‖u‖2 ≤ t2 and t 6= 0.

Since A ∈ SO(n, 1), the matrix A preserves the inner product; if 〈u, u〉 = ‖u‖2 − t2 < 0,
we get 〈Au,Au〉 < 0, which shows that Au is also timelike. Similarly, if 〈u, u〉 = 0, then
〈Au,Au〉 = 0. As A ∈ SO(n, 1), we know that

〈An+1, An+1〉 = −1,
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that is,
‖An+1‖2 − a2

n+1, n+1 = −1,

where An+1 = (An+1, an+1, n+1) is the (n+1)th row of the matrix A. The (n+1)th component
of the vector Au is

u ·An+1 + an+1, n+1t.

By Cauchy-Schwarz,
(u ·An+1)

2 ≤ ‖u‖2 ‖An+1‖2 ,

so we get,

(u ·An+1)
2 ≤ ‖u‖2 ‖An+1‖2

≤ t2(a2
n+1, n+1 − 1) = t2a2

n+1, n+1 − t2

< t2a2
n+1, n+1,

since t 6= 0. It follows that u ·An+1 + an+1, n+1t has the same sign as t, since an+1, n+1 > 0.
Consequently, if an+1, n+1 > 0, we see that A maps positive timelike (resp. lightlike) vectors
to positive timelike (resp. lightlike) vectors and similarly with negative timelight (resp.
lightlike) vectors.

Conversely, as en+1 = (0, . . . , 0, 1) is timelike and positive, if A preserves all positive
timelike vectors, then Aen+1 is timelike positive, which implies an+1, n+1 > 0.

Using Proposition 2.7, we can now show that SO0(n, 1) is a subgroup of SO(n, 1). Recall
that

SO0(n, 1) = {A ∈ SO(n, 1) | an+1 n+1 > 0}.

Proposition 2.8 The set SO0(n, 1) is a subgroup of SO(n, 1).

Proof . Let A ∈ SO0(n, 1) ⊆ SO(n, 1), so that an+1 n+1 > 0. The inverse of A in SO(n, 1) is
JA>J , where

J =

(
In 0
0 −1

)
,

which implies that a−1
n+1 n+1 = an+1 n+1 > 0 and so, A−1 ∈ SO0(n, 1). If A,B ∈ SO0(n, 1),

then, by Proposition 2.7, both A and B preserve all positive timelike vectors, so AB pre-
serve all positive timelike vectors. By Proposition 2.7, again, AB ∈ SO0(n, 1). Therefore,
SO0(n, 1) is a group.

Since any matrix, A ∈ SO0(n, 1), preserves the Lorentz inner product and all positive
timelike vectors and sinceH+

n (1) consists of timelike vectors, we see that every A ∈ SO0(n, 1)
maps H+

n (1) into itself. Similarly, every A ∈ SO0(n, 1) maps H−
n (1) into itself. Thus, we

can define an action ·:SO0(n, 1)×H+
n (1) −→ H+

n (1) by

A · u = Au

and similarly, we have an action ·:SO0(n, 1)×H−
n (1) −→ H−

n (1).
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Proposition 2.9 The group SO0(n, 1) is the subgroup of SO(n, 1) that preserves H+
n (1)

(and H−
n (1)) i.e.,

SO0(n, 1) = {A ∈ SO(n, 1) | A(H+
n (1)) = H+

n (1) and A(H−
n (1)) = H−

n (1)}.

Proof . We already observed that A(H+
n (1)) = H+

n (1) if A ∈ SO0(n, 1) (and similarly,
A(H−

n (1)) = H−
n (1)). Conversely, for any A ∈ SO(n, 1) such that A(H+

n (1)) = H+
n (1),

as en+1 = (0, . . . , 0, 1) ∈ H+
n (1), the vector Aen+1 must be positive timelike, but this says

that an+1, n+1 > 0, i.e., A ∈ SO0(n, 1).

Next, we wish to prove that the action SO0(n, 1) ×H+
n (1) −→ H+

n (1) is transitive. For
this, we need the next two propositions.

Proposition 2.10 Let u = (u, t) and v = (v, s) be nonzero vectors in Rn+1 with 〈u, v〉 = 0.
If u is timelike, then v is spacelike (i.e., 〈v, v〉 > 0).

Proof . We have ‖u‖2 < t2, so t 6= 0. Since u · v − ts = 0, we get

〈v, v〉 = ‖v‖2 − s2 = ‖v‖2 − (u · v)2

t2
.

But, Cauchy-Schwarz implies that (u · v)2 ≤ ‖u‖2 ‖v‖2, so we get

〈v, v〉 = ‖v‖2 − (u · v)2

t2
> ‖v‖2 − (u · v)2

‖u‖2 ≥ 0,

as ‖u‖2 < t2.

Lemma 2.10 also holds if u = (u, t) is a nonzero isotropic vector and v = (v, s) is a
nonzero vector that is not collinear with u: If 〈u, v〉 = 0, then v is spacelike (i.e., 〈v, v〉 > 0).
The proof is left as an exercise to the reader.

Proposition 2.11 The action SO0(n, 1)×H+
n (1) −→ H+

n (1) is transitive.

Proof . Let en+1 = (0, . . . , 0, 1) ∈ H+
n (1). It is enough to prove that for every u = (u, t) ∈

H+
n (1), there is some A ∈ SO0(n, 1) such that Aen+1 = u. By hypothesis,

〈u, u〉 = ‖u‖2 − t2 = −1.

We show that we can construct an orthonormal basis, e1, . . . , en, u, with respect to the
Lorentz inner product. Consider the hyperplane

H = {v ∈ Rn+1 | 〈u, v〉 = 0}.

Since u is timelike, by Proposition 2.10, every nonzero vector v ∈ H is spacelike, i.e.,
〈v, v〉 > 0. Let v1, . . . , vn be a basis of H. Since all (nonzero) vectors in H are spacelike, we
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can apply the Gramm-Schmidt orthonormalization procedure and we get a basis e1, . . . , en,
of H, such that

〈ei, ej〉 = δi, j, 1 ≤ i, j ≤ n.

Now, by construction, we also have

〈ei, u〉 = 0, 1 ≤ i ≤ n, and 〈u, u〉 = −1.

Therefore, e1, . . . , en, u are the column vectors of a Lorentz matrix, A, such that Aen+1 = u,
proving our assertion.

Let us find the stabilizer of en+1 = (0, . . . , 0, 1). We must have Aen+1 = en+1, and the
polar form implies that

A =

(
P 0
0 1

)
, with P ∈ SO(n).

Therefore, the stabilizer of en+1 is isomorphic to SO(n) and we conclude that H+
n (1), as a

homogeneous space, is
H+

n (1) ∼= SO0(n, 1)/SO(n).

We will show in Section 2.5 that SO0(n, 1) is connected.

2.4 More on O(p, q)

Recall from Section 2.3 that the group O(p, q) is the set of all n× n-matrices

O(p, q) = {A ∈ GL(n,R) | A>Ip,qA = Ip,q}.

We deduce immediately that | det(A)| = 1 and we also know that AIp,qA
> = Ip,q holds.

Unfortunately, when p 6= 0, 1 and q 6= 0, 1, it does not seem possible to obtain a formula as
nice as that given in Proposition 2.3. Nevertheless, we can obtain a formula for the polar
form of matrices in O(p, q). First, recall (for example, see Gallier [27], Chapter 12) that if
S is a symmetric positive definite matrix, then there is a unique symmetric positive definite
matrix, T , so that

S = T 2.

We denote T by S
1
2 or

√
S. By S−

1
2 , we mean the inverse of S

1
2 . In order to obtain the polar

form of a matrix in O(p, q), we begin with the following proposition:

Proposition 2.12 Every matrix X ∈ O(p, q) can be written as

X =

(
U 0
0 V

)(
α

1
2 α

1
2Z>

δ
1
2Z δ

1
2

)
,

where α = (I − Z>Z)−1 and δ = (I − ZZ>)−1, for some orthogonal matrices U ∈ O(p),
V ∈ O(q) and for some q × p matrix, Z, such that I − Z>Z and I − ZZ> are symmetric
positive definite matrices. Moreover, U, V, Z are uniquely determined by X.
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Proof . If we write

X =

(
A B
C D

)
,

with A a p× p matrix, D a q × q matrix, B a p× q matrix and C a q × p matrix, then the
equations A>Ip,qA = Ip,q and AIp,qA

> = Ip,q yield the (not independent) conditions

A>A = I + C>C

D>D = I +B>B

A>B = C>D

AA> = I +BB>

DD> = I + CC>

AC> = BD>.

Since C>C is symmetric and since it is easy to show that C>C has nonnegative eigenval-
ues, we deduce that A>A is symmetric positive definite and similarly for D>D. If we assume
that the above decomposition of X holds, we deduce that

A = U(I − Z>Z)−
1
2

B = U(I − Z>Z)−
1
2Z>

C = V (I − ZZ>)−
1
2Z

D = V (I − ZZ>)−
1
2 ,

which implies
Z = D−1C and Z> = A−1B.

Thus, we must check that
(D−1C)> = A−1B

i.e.,
C>(D>)−1 = A−1B,

namely,
AC> = BD>,

which is indeed the last of our identities. Thus, we must have Z = D−1C = (A−1B)>. The
above expressions for A and D also imply that

A>A = (I − Z>Z)−1 and D>D = (I − ZZ>)−1,

so we must check that the choice Z = D−1C = (A−1B)> yields the above equations.

Since Z> = A−1B, we have

Z>Z = A−1BB>(A>)−1

= A−1(AA> − I)(A>)−1

= I − A−1(A>)−1

= I − (A>A)−1.
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Therefore,
(A>A)−1 = I − Z>Z,

i.e.,
A>A = (I − Z>Z)−1,

as desired. We also have, this time, with Z = D−1C,

ZZ> = D−1CC>(D>)−1

= D−1(DD> − I)(D>)−1

= I −D−1(D>)−1

= I − (D>D)−1.

Therefore,
(D>D)−1 = I − ZZ>,

i.e.,
D>D = (I − ZZ>)−1,

as desired. Now, since A>A and D>D are positive definite, the polar form implies that

A = U(A>A)
1
2 = U(I − Z>Z)−

1
2

and
D = V (D>D)

1
2 = V (I − ZZ>)−

1
2 ,

for some unique matrices, U ∈ O(p) and V ∈ O(q). Since Z = D−1C and Z> = A−1B, we
get C = DZ and B = AZ>, but this is

B = U(I − Z>Z)−
1
2Z>

C = V (I − ZZ>)−
1
2Z,

as required. Therefore, the unique choice of Z = D−1C = (A−1B)>, U and V does yield the
formula of the proposition.

It remains to show that the matrix(
α

1
2 α

1
2Z>

δ
1
2Z δ

1
2

)
=

(
(I − Z>Z)−

1
2 (I − Z>Z)−

1
2Z>

(I − ZZ>)−
1
2Z (I − ZZ>)−

1
2

)
is symmetric. To prove this, we will use power series and a continuity argument.

Proposition 2.13 For any q×p matrix, Z, such that I−Z>Z and I−ZZ> are symmetric
positive definite, the matrix

S =

(
α

1
2 α

1
2Z>

δ
1
2Z δ

1
2

)
is symmetric, where α = (I − Z>Z)−1 and δ = (I − ZZ>)−1.
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Proof . The matrix S is symmetric iff

Zα
1
2 = δ

1
2Z,

i.e., iff

Z(I − Z>Z)−
1
2 = (I − ZZ>)−

1
2Z.

Consider the matrices

β(t) = (I − tZ>Z)−
1
2 and γ(t) = (I − tZZ>)−

1
2 ,

for any t with 0 ≤ t ≤ 1. We claim that these matrices make sense. Indeed, since Z>Z is
symmetric, we can write

Z>Z = PDP>

where P is orthogonal and D is a diagonal matrix with nonnegative entries. Moreover, as

I − Z>Z = P (I −D)P>

and I − Z>Z is positive definite, 0 ≤ λ < 1, for every eigenvalue in D. But then, as

I − tZ>Z = P (I − tD)P>,

we have 1 − tλ > 0 for every λ in D and for all t with 0 ≤ t ≤ 1, so that I − tZ>Z is
positive definite and thus, (I − tZ>Z)−

1
2 is also well defined. A similar argument applies to

(I − tZZ>)−
1
2 . Observe that

lim
t→1

β(t) = α
1
2

since

β(t) = (I − tZ>Z)−
1
2 = P (I − tD)−

1
2P>,

where (I−tD)−
1
2 is a diagonal matrix with entries of the form (1−tλ)−

1
2 and these eigenvalues

are continuous functions of t for t ∈ [0, 1]. A similar argument shows that

lim
t→1

γ(t) = δ
1
2 .

Therefore, it is enough to show that

Zβ(t) = γ(t)Z,

with 0 ≤ t < 1 and our result will follow by continuity. However, when 0 ≤ t < 1, the power
series for β(t) and γ(t) converge. Thus, we have

β(t) = 1 +
1

2
tZ>Z − 1

8
t2(Z>Z)2 + · · ·+

1
2

(
1
2
− 1
)
· · ·
(

1
2
− k + 1

)
k!

tk(Z>Z)k + · · ·
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and

γ(t) = 1 +
1

2
tZZ> − 1

8
t2(ZZ>)2 + · · ·+

1
2

(
1
2
− 1
)
· · ·
(

1
2
− k + 1

)
k!

tk(ZZ>)k + · · ·

and we get

Zβ(t) = Z +
1

2
tZZ>Z − 1

8
t2Z(Z>Z)2 + · · ·+

1
2

(
1
2
− 1
)
· · ·
(

1
2
− k + 1

)
k!

tkZ(Z>Z)k + · · ·

and

γ(t)Z = Z +
1

2
tZZ>Z − 1

8
t2(ZZ>)2Z + · · ·+

1
2

(
1
2
− 1
)
· · ·
(

1
2
− k + 1

)
k!

tk(ZZ>)kZ + · · · .

However
Z(Z>Z)k = Z Z>Z · · ·Z>Z︸ ︷︷ ︸

k

= ZZ> · · ·ZZ>︸ ︷︷ ︸
k

Z = (ZZ>)kZ,

which proves that Zβ(t) = γ(t)Z, as required.

Another proof of Proposition 2.13 can be given using the SVD of Z. Indeed, we can write

Z = PDQ>

where P is a q× q orthogonal matrix, Q is a p×p orthogonal matrix and D is a q×p matrix
whose diagonal entries are (strictly) positive and all other entries zero. Then,

I − Z>Z = I −QD>P>PDQ> = Q(I −D>D)Q>,

a symmetric positive definite matrix. We also have

I − ZZ> = I − PDQ>QD>P> = P (I −DD>)P>,

another symmetric positive definite matrix. Then,

Z(I − Z>Z)−
1
2 = PDQ>Q(I −D>D)−

1
2Q> = PD(I −D>D)−

1
2Q>

and
(I − ZZ>)−

1
2 = P (I −DD>)−

1
2P>PDQ> = P (I −DD>)−

1
2DQ>,

so it suffices to prove that

D(I −D>D)−
1
2 = (I −DD>)−

1
2D.

However, D is essentially a diagonal matrix and the above is easily verified, as the reader
should check.

Remark: The polar form can also be obtained via the exponential map and the Lie algebra,
o(p, q), of O(p, q), see Section 4.6.

We also have the following amusing property of the determinants of A and D:
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Proposition 2.14 For any matrix X ∈ O(p, q), if we write

X =

(
A B
C D

)
,

then
det(X) = det(A) det(D)−1 and | det(A)| = | det(D)| ≥ 1.

Proof . Using the identities A>B = C>D and D>D = I +B>B proved earlier, observe that(
A> 0
B> −D>

)(
A B
C D

)
=

(
A>A A>B

B>A−D>C B>B −D>D

)
=

(
A>A A>B

0 −Iq

)
.

If we compute determinants, we get

det(A)(−1)q det(D) det(X) = det(A)2(−1)q.

It follows that
det(X) = det(A) det(D)−1.

From A>A = I +C>C and D>D = I +B>B, we conclude that det(A) ≥ 1 and det(D) ≥ 1.
Since | det(X)| = 1, we have | det(A)| = | det(D)| ≥ 1.

Remark: It is easy to see that the equations relating A,B,C,D established in the proof of
Proposition 2.12 imply that

det(A) = ±1 iff C = 0 iff B = 0 iff det(D) = ±1.

2.5 Topological Groups

Since Lie groups are topological groups (and manifolds), it is useful to gather a few basic
facts about topological groups.

Definition 2.11 A set, G, is a topological group iff

(a) G is a Hausdorff topological space;

(b) G is a group (with identity 1);

(c) Multiplication, ·:G × G → G, and the inverse operation, G −→ G: g 7→ g−1, are
continuous, where G×G has the product topology.

It is easy to see that the two requirements of condition (c) are equivalent to

(c′) The map G×G −→ G: (g, h) 7→ gh−1 is continuous.
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Given a topological group G, for every a ∈ G we define left translation as the map,
La:G→ G, such that La(b) = ab, for all b ∈ G, and right translation as the map, Ra:G→ G,
such that Ra(b) = ba, for all b ∈ G. Observe that La−1 is the inverse of La and similarly,
Ra−1 is the inverse of Ra. As multiplication is continuous, we see that La and Ra are
continuous. Moreover, since they have a continuous inverse, they are homeomorphisms. As
a consequence, if U is an open subset of G, then so is gU = Lg(U) (resp. Ug = RgU), for
all g ∈ G. Therefore, the topology of a topological group (i.e., its family of open sets) is
determined by the knowledge of the open subsets containing the identity, 1.

Given any subset, S ⊆ G, let S−1 = {s−1 | s ∈ S}; let S0 = {1} and Sn+1 = SnS, for all
n ≥ 0. Property (c) of Definition 2.11 has the following useful consequences:

Proposition 2.15 If G is a topological group and U is any open subset containing 1, then
there is some open subset, V ⊆ U , with 1 ∈ V , so that V = V −1 and V 2 ⊆ U . Furthermore,
V ⊆ U .

Proof . Since multiplication G × G −→ G is continuous and G × G is given the product
topology, there are open subsets, U1 and U2, with 1 ∈ U1 and 1 ∈ U2, so that U1U2 ⊆ U .
Ley W = U1 ∩ U2 and V = W ∩W−1. Then, V is an open set containing 1 and, clearly,
V = V −1 and V 2 ⊆ U1U2 ⊆ U . If g ∈ V , then gV is an open set containing g (since 1 ∈ V )
and thus, gV ∩ V 6= ∅. This means that there are some h1, h2 ∈ V so that gh1 = h2, but
then, g = h2h

−1
1 ∈ V V −1 = V V ⊆ U .

A subset, U , containing 1 and such that U = U−1, is called symmetric. Using Proposition
2.15, we can give a very convenient characterization of the Hausdorff separation property in
a topological group.

Proposition 2.16 If G is a topological group, then the following properties are equivalent:

(1) G is Hausdorff;

(2) The set {1} is closed;

(3) The set {g} is closed, for every g ∈ G.

Proof . The implication (1) −→ (2) is true in any Hausdorff topological space. We just have
to prove that G − {1} is open, which goes as follows: For any g 6= 1, since G is Hausdorff,
there exists disjoint open subsets Ug and Vg, with g ∈ Ug and 1 ∈ Vg. Thus,

⋃
Ug = G−{1},

showing that G − {1} is open. Since Lg is a homeomorphism, (2) and (3) are equivalent.
Let us prove that (3) −→ (1). Let g1, g2 ∈ G with g1 6= g2. Then, g−1

1 g2 6= 1 and if U and
V are distinct open subsets such that 1 ∈ U and g−1

1 g2 ∈ V , then g1 ∈ g1U and g2 ∈ g1V ,
where g1U and g1V are still open and disjoint. Thus, it is enough to separate 1 and g 6= 1.
Pick any g 6= 1. If every open subset containing 1 also contained g, then 1 would be in the
closure of {g}, which is absurd, since {g} is closed and g 6= 1. Therefore, there is some open
subset, U , such that 1 ∈ U and g /∈ U . By Proposition 2.15, we can find an open subset,
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V , containing 1, so that V V ⊆ U and V = V −1. We claim that V and V g are disjoint open
sets with 1 ∈ V and g ∈ gV .

Since 1 ∈ V , it is clear that 1 ∈ V and g ∈ gV . If we had V ∩ gV 6= ∅, then we would
have g ∈ V V −1 = V V ⊆ U , a contradiction.

If H is a subgroup of G (not necessarily normal), we can form the set of left cosets, G/H
and we have the projection, p:G→ G/H, where p(g) = gH = g. If G is a topological group,
then G/H can be given the quotient topology , where a subset U ⊆ G/H is open iff p−1(U) is
open in G. With this topology, p is continuous. The trouble is that G/H is not necessarily
Hausdorff. However, we can neatly characterize when this happens.

Proposition 2.17 If G is a topological group and H is a subgroup of G then the following
properties hold:

(1) The map p:G→ G/H is an open map, which means that p(V ) is open in G/H when-
ever V is open in G.

(2) The space G/H is Hausdorff iff H is closed in G.

(3) If H is open, then H is closed and G/H has the discrete topology (every subset is open).

(4) The subgroup H is open iff 1 ∈
◦
H (i.e., there is some open subset, U , so that

1 ∈ U ⊆ H).

Proof . (1) Observe that if V is open in G, then V H =
⋃

h∈H V h is open, since each V h is
open (as right translation is a homeomorphism). However, it is clear that

p−1(p(V )) = V H,

i.e., p−1(p(V )) is open, which, by definition, means that p(V ) is open.

(2) If G/H is Hausdorff, then by Proposition 2.16, every point of G/H is closed, i.e.,
each coset gH is closed, so H is closed. Conversely, assume H is closed. Let x and y be two
distinct point in G/H and let x, y ∈ G be some elements with p(x) = x and p(y) = y. As
x 6= y, the elements x and y are not in the same coset, so x /∈ yH. As H is closed, so is
yH, and since x /∈ yH, there is some open containing x which is disjoint from yH, and we
may assume (by translation) that it is of the form Ux, where U is an open containing 1. By
Proposition 2.15, there is some open V containing 1 so that V V ⊆ U and V = V −1. Thus,
we have

V 2x ∩ yH = ∅
and in fact,

V 2xH ∩ yH = ∅,
since H is a group. Since V = V −1, we get

V xH ∩ V yH = ∅,
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and then, since V is open, both V xH and V yH are disjoint, open, so p(V xH) and p(V yH)
are open sets (by (1)) containing x and y respectively and p(V xH) and p(V yH) are disjoint
(because p−1(p(V xH)) = V xHH = V xH and p−1(p(V yH)) = V yHH = V yH and
V xH ∩ V yH = ∅).

(3) If H is open, then every coset gH is open, so every point of G/H is open and G/H
is discrete. Also,

⋃
g/∈H gH is open, i.e., H is closed.

(4) Say U is an open subset such that 1 ∈ U ⊆ H. Then, for every h ∈ H, the set hU is
an open subset of H with h ∈ hU , which shows that H is open. The converse is trivial.

Proposition 2.18 If G is a connected topological group, then G is generated by any sym-
metric neighborhood, V , of 1. In fact,

G =
⋃
n≥1

V n.

Proof . Since V = V −1, it is immediately checked that H =
⋃

n≥1 V
n is the group generated

by V . As V is a neighborhood of 1, there is some open subset, U ⊆ V , with 1 ∈ U , and so

1 ∈
◦
H. From Proposition 2.17, the subgroup H is open and closed and since G is connected,

H = G.

A subgroup, H, of a topological group G is discrete iff the induced topology on H is
discrete, i.e., for every h ∈ H, there is some open subset, U , of G so that U ∩H = {h}.

Proposition 2.19 If G is a topological group and H is discrete subgroup of G, then H is
closed.

Proof . As H is discrete, there is an open subset, U , of G so that U ∩ H = {1}, and by
Proposition 2.15, we may assume that U = U−1. If g ∈ H, as gU is an open set containing
g, we have gU ∩ H 6= ∅. Consequently, there is some y ∈ gU ∩ H = gU−1 ∩ H, so g ∈ yU
with y ∈ H. Thus, we have

g ∈ yU ∩H ⊆ yU ∩H = {y} = {y},

since U ∩H = {1}, y ∈ H and G is Hausdorff. Therefore, g = y ∈ H.

Proposition 2.20 If G is a topological group and H is any subgroup of G, then the closure,
H, of H is a subgroup of G.

Proof . This follows easily from the continuity of multiplication and of the inverse operation,
the details are left as an exercise to the reader.

Proposition 2.21 Let G be a topological group and H be any subgroup of G. If H and G/H
are connected, then G is connected.
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Proof . It is a standard fact of topology that a space G is connected iff every continuous
function, f , from G to the discrete space {0, 1} is constant. Pick any continuous function, f ,
from G to {0, 1}. As H is connected and left translations are homeomorphisms, all cosets,
gH, are connected. Thus, f is constant on every coset, gH. Thus, the function f :G→ {0, 1}
induces a continuous function, f :G/H → {0, 1}, such that f = f ◦p (where p:G→ G/H; the
continuity of f follows immediately from the definition of the quotient topology on G/H).
As G/H is connected, f is constant and so, f = f ◦ p is constant.

Proposition 2.22 Let G be a topological group and let V be any connected symmetric open
subset containing 1. Then, if G0 is the connected component of the identity, we have

G0 =
⋃
n≥1

V n

and G0 is a normal subgroup of G. Moreover, the group G/G0 is discrete.

Proof . First, as V is open, every V n is open, so the group
⋃

n≥1 V
n is open, and thus closed,

by Proposition 2.17 (3). For every n ≥ 1, we have the continuous map

V × · · · × V︸ ︷︷ ︸
n

−→ V n : (g1, . . . , gn) 7→ g1 · · · gn.

As V is connected, V × · · · × V is connected and so, V n is connected. Since 1 ∈ V n for all
n ≥ 1, and every V n is connected, we conclude that

⋃
n≥1 V

n is connected. Now,
⋃

n≥1 V
n is

connected, open and closed, so it is the connected component of 1. Finally, for every g ∈ G,
the group gG0g

−1 is connected and contains 1, so it is contained in G0, which proves that
G0 is normal. Since G0 is open, the group G/G0 is discrete.

A topological space, X, is locally compact iff for every point p ∈ X, there is a compact
neighborhood, C of p, i.e., there is a compact, C, and an open, U , with p ∈ U ⊆ C. For
example, manifolds are locally compact.

Proposition 2.23 Let G be a topological group and assume that G is connected and locally
compact. Then, G is countable at infinity, which means that G is the union of a countable
family of compact subsets. In fact, if V is any symmetric compact neighborhood of 1, then

G =
⋃
n≥1

V n.

Proof . Since G is locally compact, there is some compact neighborhood, K, of 1. Then,
V = K ∩K−1 is also compact and a symmetric neigborhood of 1. By Proposition 2.18, we
have

G =
⋃
n≥1

V n.

An argument similar to the one used in the proof of Proposition 2.22 to show that V n is
connected if V is connected proves that each V n compact if V is compact.
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If a topological group, G acts on a topological space, X, and the action ·:G × X → X
is continuous, we say that G acts continuously on X. Under some mild assumptions on G
and X, the quotient space, G/Gx, is homeomorphic to X. For example, this happens if X
is a Baire space.

Recall that a Baire space, X, is a topological space with the property that if {F}i≥1 is
any countable family of closed sets, Fi, such that each Fi has empty interior, then

⋃
i≥1 Fi

also has empty interior. By complementation, this is equivalent to the fact that for every
countable family of open sets, Ui, such that each Ui is dense in X (i.e., U i = X), then

⋂
i≥1 Ui

is also dense in X.

Remark: A subset, A ⊆ X, is rare if its closure, A, has empty interior. A subset, Y ⊆ X,
is meager if it is a countable union of rare sets. Then, it is immediately verified that a space,
X, is a Baire space iff every nonempty open subset of X is not meager.

The following theorem shows that there are plenty of Baire spaces:

Theorem 2.24 (Baire) (1) Every locally compact topological space is a Baire space.

(2) Every complete metric space is a Baire space.

A proof of Theorem 2.24 can be found in Bourbaki [10], Chapter IX, Section 5, Theorem
1.

We can now greatly improve Proposition 2.2 when G and X are topological spaces having
some “nice” properties.

Theorem 2.25 Let G be a topological group which is locally compact and countable at infin-
ity, X a Hausdorff topological space which is a Baire space and assume that G acts transitively
and continuously on X. Then, for any x ∈ X, the map ϕ:G/Gx → X is a homeomorphism.

By Theorem 2.24, we get the following important corollary:

Theorem 2.26 Let G be a topological group which is locally compact and countable at in-
finity, X a Hausdorff locally compact topological space and assume that G acts transitively
and continuously on X. Then, for any x ∈ X, the map ϕ:G/Gx → X is a homeomorphism.

Proof of Theorem 2.25. We follow the proof given in Bourbaki [10], Chapter IX, Section
5, Proposition 6 (Essentially the same proof can be found in Mneimné and Testard [44],
Chapter 2). First, observe that if a topological group acts continuously and transitively on
a Hausdorff topological space, then for every x ∈ X, the stabilizer, Gx, is a closed subgroup
of G. This is because, as the action is continuous, the projection π:G −→ X: g 7→ g · x
is continuous, and Gx = π−1({x}), with {x} closed. Therefore, by Proposition 2.17, the
quotient space, G/Gx, is Hausdorff. As the map π:G −→ X is continuous, the induced map
ϕ:G/Gx → X is continuous and by Proposition 2.2, it is a bijection. Therefore, to prove
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that ϕ is a homeomorphism, it is enough to prove that ϕ is an open map. For this, it suffices
to show that π is an open map. Given any open, U , in G, we will prove that for any g ∈ U ,
the element π(g) = g · x is contained in the interior of U · x. However, observe that this is
equivalent to proving that x belongs to the interior of (g−1 ·U) ·x. Therefore, we are reduced
to the case: If U is any open subset of G containing 1, then x belongs to the interior of U ·x.

Since G is locally compact, using Proposition 2.15, we can find a compact neighborhood
of the form W = V , such that 1 ∈ W , W = W−1 and W 2 ⊆ U , where V is open with
1 ∈ V ⊆ U . As G is countable at infinity, G =

⋃
i≥1Ki, where each Ki is compact. Since V

is open, all the cosets gV are open, and as each Ki is covered by the gV ’s, by compactness
of Ki, finitely many cosets gV cover each Ki and so,

G =
⋃
i≥1

giV =
⋃
i≥1

giW,

for countably many gi ∈ G, where each giW is compact. As our action is transitive, we
deduce that

X =
⋃
i≥1

giW · x,

where each giW · x is compact, since our action is continuous and the giW are compact. As
X is Hausdorff, each giW ·x is closed and as X is a Baire space expressed as a union of closed
sets, one of the giW · x must have nonempty interior, i.e., there is some w ∈ W , with giw · x
in the interior of giW · x, for some i. But then, as the map y 7→ g · y is a homeomorphism
for any given g ∈ G (where y ∈ X), we see that x is in the interior of

w−1g−1
i · (giW · x) = w−1W · x ⊆ W−1W · x = W 2 · x ⊆ U · x,

as desired.

As an application of Theorem 2.26 and Proposition 2.21, we show that the Lorentz group
SO0(n, 1) is connected. Firstly, it is easy to check that SO0(n, 1) and H+

n (1) satisfy the
assumptions of Theorem 2.26 because they are both manifolds, although this notion has not
been discussed yet (but will be in Chapter 3). Also, we saw at the end of Section 2.3 that
the action ·:SO0(n, 1) ×H+

n (1) −→ H+
n (1) of SO0(n, 1) on H+

n (1) is transitive, so that, as
topological spaces

SO0(n, 1)/SO(n) ∼= H+
n (1).

Now, we already showed that H+
n (1) is connected so, by Proposition 2.21, the connectivity

of SO0(n, 1) follows from the connectivity of SO(n) for n ≥ 1. The connectivity of SO(n)
is a consequence of the surjectivity of the exponential map (for instance, see Gallier [27],
Chapter 14) but we can also give a quick proof using Proposition 2.21. Indeed, SO(n + 1)
and Sn are both manifolds and we saw in Section 2.2 that

SO(n+ 1)/SO(n) ∼= Sn.

Now, Sn is connected for n ≥ 1 and SO(1) ∼= S1 is connected. We finish the proof by
induction on n.
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Corollary 2.27 The Lorentz group SO0(n, 1) is connected; it is the component of the iden-
tity in O(n, 1).

Readers who wish to learn more about topological groups may consult Sagle and Walde
[53] and Chevalley [16] for an introductory account, and Bourbaki [9], Weil [60] and Pon-
tryagin [50, 51], for a more comprehensive account (especially the last two references).
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Chapter 3

Manifolds, Tangent Spaces, Cotangent
Spaces, Vector Fields, Flow, Integral
Curves, Partitions of Unity, Manifolds
with Boundary, Orientation of
Manifolds

3.1 Manifolds

Elsewhere (in another set of notes and in Gallier [27], Chapter 14) we defined the notion
of a manifold embedded in some ambient space, RN . In order to maximize the range of
applications of the theory of manifolds it is necessary to generalize the concept of a manifold
to spaces that are not a priori embedded in some RN . The basic idea is still that, whatever a
manifold is, it is a topological space that can be covered by a collection of open subsets, Uα,
where each Uα is isomorphic to some “standard model”, e.g., some open subset of Euclidean
space, Rn. Of course, manifolds would be very dull without functions defined on them and
between them. This is a general fact learned from experience: Geometry arises not just from
spaces but from spaces and interesting classes of functions between them. In particular, we
still would like to “do calculus” on our manifold and have good notions of curves, tangent
vectors, differential forms, etc. The small drawback with the more general approach is that
the definition of a tangent vector is more abstract. We can still define the notion of a curve
on a manifold, but such a curve does not live in any given Rn, so it it not possible to define
tangent vectors in a simple-minded way using derivatives. Instead, we have to resort to the
notion of chart. This is not such a strange idea. For example, a geography atlas gives a set
of maps of various portions of the earh and this provides a very good description of what
the earth is, without actually imagining the earth embedded in 3-space.

The material of this chapter borrows from many sources, including Warner [59], Berger

53
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and Gostiaux [5], O’Neill [49], Do Carmo [22, 21], Gallot, Hulin and Lafontaine [28], Lang
[38], Schwartz [56], Hirsch [33], Sharpe [57], Guillemin and Pollack [31], Lafontaine [37],
Dubrovin, Fomenko and Novikov [24] and Boothby [6]. A nice (not very technical) exposition
is given in Morita [45] (Chapter 1) and it should be said that among the many texts on
manifolds and differential geometry, the book by Choquet-Bruhat, DeWitt-Morette and
Dillard-Bleick [17] stands apart because it is one of the clearest and most comprehensive
(many proofs are omitted, but this can be an advantage!) Being written for (theoretical)
physicists, it contains more examples and applications than most other sources.

Given Rn, recall that the projection functions, pri: Rn → R, are defined by

pri(x1, . . . , xn) = xi, 1 ≤ i ≤ n.

For technical reasons (in particular, to insure the existence of partitions of unity, see
Section 3.6) and to avoid “esoteric” manifolds that do not arise in practice, from now on, all
topological spaces under consideration will be assumed to be Hausdorff and second-countable
(which means that the topology has a countable basis).

Definition 3.1 Given a topological space, M , a chart (or local coordinate map) is a pair,
(U,ϕ), where U is an open subset of M and ϕ:U → Ω is a homeomorphism onto an open
subset, Ω = ϕ(U), of Rnϕ (for some nϕ ≥ 1). For any p ∈M , a chart, (U,ϕ), is a chart at p iff
p ∈ U . If (U,ϕ) is a chart, then the functions xi = pri ◦ϕ are called local coordinates and for
every p ∈ U , the tuple (x1(p), . . . , xn(p)) is the set of coordinates of p w.r.t. the chart. The
inverse, (Ω, ϕ−1), of a chart is called a local parametrization. Given any two charts, (U1, ϕ1)
and (U2, ϕ2), if U1 ∩U2 6= ∅, we have the transition maps , ϕj

i :ϕi(Ui ∩Uj) → ϕj(Ui ∩Uj) and
ϕi

j:ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj), defined by

ϕj
i = ϕj ◦ ϕ−1

i and ϕi
j = ϕi ◦ ϕ−1

j .

Clearly, ϕi
j = (ϕj

i )
−1. Observe that the transition maps ϕj

i (resp. ϕi
j) are maps between

open subsets of Rn. This is good news! Indeed, the whole arsenal of calculus is available
for functions on Rn, and we will be able to promote many of these results to manifolds by
imposing suitable conditions on transition functions.

Definition 3.2 Given a topological space, M , and any two integers, n ≥ 1 and k ≥ 1, a Ck

n-atlas (or n-atlas of class Ck), A, is a family of charts, {(Ui, ϕi)}, such that

(1) ϕi(Ui) ⊆ Rn for all i;

(2) The Ui cover M , i.e.,

M =
⋃
i

Ui;

(3) Whenever Ui ∩ Uj 6= ∅, the transition map ϕj
i (and ϕi

j) is a Ck-diffeomorphism.
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We must insure that we have enough charts in order to carry out our program of gener-
alizing calculus on Rn to manifolds. For this, we must be able to add new charts whenever
necessary, provided that they are consistent with the previous charts in an existing atlas.
Technically, given a Ck n-atlas, A, on M , for any other chart, (U,ϕ), we say that (U,ϕ) is
compatible with the altas A iff every map ϕi ◦ϕ−1 and ϕ ◦ϕ−1

i is Ck (whenever U ∩Ui 6= ∅).
Two atlases A and A′ on M are compatible iff every chart of one is compatible with the
other atlas. This is equivalent to saying that the union of the two atlases is still an atlas.
It is immediately verified that compatibility induces an equivalence relation on Ck n-atlases
on M . In fact, given an atlas, A, for M , the collection, Ã, of all charts compatible with A is
a maximal atlas in the equivalence class of charts compatible with A. Finally, we have our
generalized notion of a manifold.

Definition 3.3 Given any two integers, n ≥ 1 and k ≥ 1, a Ck-manifold of dimension n
consists of a topological space, M , together with an equivalence class, A, of Ck n-atlases, on
M . Any atlas, A, in the equivalence class A is called a differentiable structure of class Ck

(and dimension n) on M . We say that M is modeled on Rn. When k = ∞, we say that M
is a smooth manifold .

Remark: It might have been better to use the terminology abstract manifold rather than
manifold, to emphasize the fact that the space M is not a priori a subspace of RN , for some
suitable N .

We can allow k = 0 in the above definitions. In this case, condition (3) in Definition 3.2
is void, since a C0-diffeomorphism is just a homeomorphism, but ϕj

i is always a homeomor-
phism. In this case, M is called a topological manifold of dimension n. We do not require a
manifold to be connected but we require all the components to have the same dimension, n.
Actually, on every connected component of M , it can be shown that the dimension, nϕ, of
the range of every chart is the same. This is quite easy to show if k ≥ 1 but for k = 0, this
requires a deep theorem of Brouwer. What happens if n = 0? In this case, every one-point
subset of M is open, so every subset of M is open, i.e., M is any (countable if we assume M
to be second-countable) set with the discrete topology!

Observe that since Rn is locally compact and locally connected, so is every manifold
(check this!)

Remark: In some cases, M does not come with a topology in an obvious (or natural) way
and a slight variation of Definition 3.2 is more convenient in such a situation:

Definition 3.4 Given a set, M , and any two integers, n ≥ 1 and k ≥ 1, a Ck n-atlas (or
n-atlas of class Ck), A, is a family of charts, {(Ui, ϕi)}, such that

(1) Each Ui is a subset of M and ϕi:Ui → ϕi(Ui) is a bijection onto an open subset,
ϕi(Ui) ⊆ Rn, for all i;
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(2) The Ui cover M , i.e.,

M =
⋃
i

Ui;

(3) Whenever Ui ∩ Uj 6= ∅, the set ϕi(Ui ∩ Uj) is open in Rn and the transition map ϕj
i

(and ϕi
j) is a Ck-diffeomorphism.

Then, the notion of a chart being compatible with an atlas and of two atlases being
compatible is just as before and we get a new definition of a manifold, analogous to Definition
3.3. But, this time, we give M the topology in which the open sets are arbitrary unions of
domains of charts, Ui, more precisely, the Ui’s of the maximal atlas defining the differentiable
structure on M . It is not difficult to verify that the axioms of a topology are verified and
M is indeed a topological space with this topology. It can also be shown that when M is
equipped with the above topology, then the maps ϕi:Ui → ϕi(Ui) are homeomorphisms, so
M is a manifold according to Definition 3.3. Thus, we are back to the original notion of a
manifold where it is assumed that M is already a topological space.

One can also define the topology on M in terms of any the atlases, A, defining M (not
only the maximal one) by requiring U ⊆ M to be open iff ϕi(U ∩ Ui) is open in Rn, for
every chart, (Ui, ϕi), in the altas A. Then, one can prove that we obtain the same topology
as the topology induced by the maximal atlas. For details, see Berger and Gostiaux [5],
Chapter 2. We also require that under this topology, M is Hausdorff and second-countable.
A sufficient condition (in fact, also necessary!) for being second-countable is that some atlas
be countable.

If the underlying topological space of a manifold is compact, then M has some finite
atlas. Also, if A is some atlas for M and (U,ϕ) is a chart in A, for any (nonempty) open
subset, V ⊆ U , we get a chart, (V, ϕ � V ), and it is obvious that this chart is compatible
with A. Thus, (V, ϕ � V ) is also a chart for M . This observation shows that if U is any open
subset of a Ck-manifold, M , then U is also a Ck-manifold whose charts are the restrictions
of charts on M to U .

Example 1. The sphere Sn.

Using the stereographic projections (from the north pole and the south pole), we can
define two charts on Sn and show that Sn is a smooth manifold. Let σN :Sn−{N} → Rn and
σS:Sn−{S} → Rn, where N = (0, · · · , 0, 1) ∈ Rn+1 (the north pole) and S = (0, · · · , 0,−1) ∈
Rn+1 (the south pole) be the maps called respectively stereographic projection from the north
pole and stereographic projection from the south pole given by

σN(x1, . . . , xn+1) =
1

1− xn+1

(x1, . . . , xn) and σS(x1, . . . , xn+1) =
1

1 + xn+1

(x1, . . . , xn).

The inverse stereographic projections are given by

σ−1
N (x1, . . . , xn) =

1

(
∑n

i=1 x
2
i ) + 1

(
2x1, . . . , 2xn,

( n∑
i=1

x2
i

)
− 1
)
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and

σ−1
S (x1, . . . , xn) =

1

(
∑n

i=1 x
2
i ) + 1

(
2x1, . . . , 2xn,−

( n∑
i=1

x2
i

)
+ 1
)
.

Thus, if we let UN = Sn − {N} and US = Sn − {S}, we see that UN and US are two open
subsets covering Sn, both homeomorphic to Rn. Furthermore, it is easily checked that on
the overlap, UN ∩ US = Sn − {N,S}, the transition maps

σS ◦ σ−1
N = σN ◦ σ−1

S

are given by

(x1, . . . , xn) 7→ 1∑n
i=1 x

2
i

(x1, . . . , xn),

that is, the inversion of center O = (0, . . . , 0) and power 1. Clearly, this map is smooth on
Rn − {O}, so we conclude that (UN , σN) and (US, σS) form a smooth atlas for Sn.

Example 2. The projective space RPn.

To define an atlas on RPn it is convenient to view RPn as the set of equivalence classes
of vectors in Rn+1 − {0} modulo the equivalence relation,

u ∼ v iff v = λu, for some λ 6= 0 ∈ R.

Given any p = [x1, . . . , xn+1] ∈ RPn, we call (x1, . . . , xn+1) the homogeneous coordinates of p.
It is customary to write (x1: · · · :xn+1) instead of [x1, . . . , xn+1]. (Actually, in most books, the
indexing starts with 0, i.e., homogeneous coordinates for RPn are written as (x0: · · · :xn).)
For any i, with 1 ≤ i ≤ n+ 1, let

Ui = {(x1: · · · :xn+1) ∈ RPn | xi 6= 0}.

Observe that Ui is well defined, because if (y1: · · · : yn+1) = (x1: · · · :xn+1), then there is some
λ 6= 0 so that yi = λxi, for i = 1, . . . , n+ 1. We can define a homeomorphism, ϕi, of Ui onto
Rn, as follows:

ϕi(x1: · · · :xn+1) =

(
x1

xi

, . . . ,
xi−1

xi

,
xi+1

xi

, . . . ,
xn+1

xi

)
,

where the ith component is omitted. Again, it is clear that this map is well defined since it
only involves ratios. We can also define the maps, ψi, from Rn to Ui ⊆ RPn, given by

ψi(x1, . . . , xn) = (x1: · · · :xi−1: 1: xi: · · · :xn),

where the 1 goes in the ith slot, for i = 1, . . . , n + 1. One easily checks that ϕi and ψi are
mutual inverses, so the ϕi are homeomorphisms. On the overlap, Ui ∩ Uj, (where i 6= j), as
xj 6= 0, we have

(ϕj ◦ ϕ−1
i )(x1, . . . , xn) =

(
x1

xj

, . . . ,
xi−1

xj

,
1

xj

,
xi

xj

, . . . ,
xj−1

xj

,
xj+1

xj

, . . . ,
xn

xj

)
.
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(We assumed that i < j; the case j < i is similar.) This is clearly a smooth function from
ϕi(Ui ∩ Uj) to ϕj(Ui ∩ Uj). As the Ui cover RPn, see conclude that the (Ui, ϕi) are n + 1
charts making a smooth atlas for RPn. Intuitively, the space RPn is obtained by glueing the
open subsets Ui on their overlaps. Even for n = 3, this is not easy to visualize!

Example 3. The Grassmannian G(k, n).

Recall that G(k, n) is the set of all k-dimensional linear subspaces of Rn, also called k-
planes. Every k-plane, W , is the linear span of k linearly independent vectors, u1, . . . , uk, in
Rn; furthermore, u1, . . . , uk and v1, . . . , vk both span W iff there is an invertible k×k-matrix,
Λ = (λij), such that

vi =
k∑

j=1

λijuj, 1 ≤ i ≤ k.

Obviously, there is a bijection between the collection of k linearly independent vectors,
u1, . . . , uk, in Rn and the collection of n × k matrices of rank k. Furthermore, two n × k
matrices A and B of rank k represent the same k-plane iff

B = AΛ, for some invertible k × k matrix, Λ.

(Note the analogy with projective spaces where two vectors u, v represent the same point
iff v = λu for some invertible λ ∈ R.) We can define the domain of charts (according to
Definition 3.4) on G(k, n) as follows: For every subset, S = {i1, . . . , ik} of {1, . . . , n}, let
US be the subset of n × k matrices, A, of rank k whose rows of index in S = {i1, . . . , ik}
forms an invertible k × k matrix denoted AS. Observe that the k × k matrix consisting of
the rows of the matrix AA−1

S whose index belong to S is the identity matrix, Ik. Therefore,
we can define a map, ϕS:US → R(n−k)×k, where ϕS(A) = the (n − k) × k matrix obtained
by deleting the rows of index in S from AA−1

S .

We need to check that this map is well defined, i.e., that it does not depend on the matrix,
A, representing W . Let us do this in the case where S = {1, . . . , k}, which is notationally
simpler. The general case can be reduced to this one using a suitable permutation.

If B = AΛ, with Λ invertible, if we write

A =

(
A1

A2

)
and B =

(
B1

B2

)
,

as B = AΛ, we get B1 = A1Λ and B2 = A2Λ, from which we deduce that(
B1

B2

)
B−1

1 =

(
Ik

B2B
−1
1

)
=

(
Ik

A2ΛΛ−1A−1
1

)
=

(
Ik

A2A
−1
1

)
=

(
A1

A2

)
A−1

1 .

Therefore, our map is indeed well-defined. It is clearly injective and we can define its
inverse, ψS, as follows: Let πS be the permutation of {1, . . . , n} swaping {1, . . . , k} and S
and leaving every other element fixed (i.e., if S = {i1, . . . , ik}, then πS(j) = ij and πS(ij) = j,
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for j = 1, . . . , k). If PS is the permutation matrix associated with πS, for any (n − k) × k
matrix, M , let

ψS(M) = PS

(
Ik
M

)
.

The effect of ψS is to “insert into M” the rows of the identity matrix Ik as the rows of index
from S. At this stage, we have charts that are bijections from subsets, US, of G(k, n) to
open subsets, namely, R(n−k)×k. Then, the reader can check that the transition map ϕT ◦ϕ−1

S

from ϕS(US ∩ UU) to ϕT (US ∩ UU) is given by

M 7→ (C +DM)(A+BM)−1,

where (
A B
C D

)
= PTPS,

is the matrix of the permutation πT ◦ πS (this permutation “shuffles” S and T ). This map
is smooth, as it is given by determinants, and so, the charts (US, ϕS) form a smooth atlas
for G(k, n). Finally, one can check that the conditions of Definition 3.4 are satisfied, so the
atlas just defined makes G(k, n) into a topological space and a smooth manifold.

Remark: The reader should have no difficulty proving that the collection of k-planes repre-
sented by matrices in US is precisely set of k-planes, W , supplementary to the (n− k)-plane
spanned by the n−k canonical basis vectors ejk+1

, . . . , ejn (i.e., span(W ∪{ejk+1
, . . . , ejn}) =

Rn, where S = {i1, . . . , ik} and {jk+1, . . . , jn} = {1, . . . , n} − S).

Example 4. Product Manifolds.

LetM1 andM2 be two Ck-manifolds of dimension n1 and n2, respectively. The topological
space, M1 ×M2, with the product topology (the opens of M1 ×M2 are arbitrary unions of
sets of the form U × V , where U is open in M1 and V is open in M2) can be given the
structure of a Ck-manifold of dimension n1 + n2 by defining charts as follows: For any two
charts, (Ui, ϕi) on M1 and (Vj, ψj) on M2, we declare that (Ui × Vj, ϕi × ψj) is a chart on
M1 ×M2, where ϕi × ψj:Ui × Vj → Rn1+n2 is defined so that

ϕi × ψj(p, q) = (ϕi(p), ψj(q)), for all (p, q) ∈ Ui × Vj.

We define Ck-maps between manifolds as follows:

Definition 3.5 Given any two Ck-manifolds, M and N , of dimension m and n respectively,
a Ck-map if a continuous functions, h:M → N , so that for every p ∈M , there is some chart,
(U,ϕ), at p and some chart, (V, ψ), at q = h(p), with f(U) ⊆ V and

ψ ◦ h ◦ ϕ−1:ϕ(U) −→ ψ(V )

a Ck-function.
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It is easily shown that Definition 3.5 does not depend on the choice of charts. In par-
ticular, if N = R, we obtain a Ck-function on M . One checks immediately that a function,
f :M → R, is a Ck-map iff for every p ∈M , there is some chart, (U,ϕ), at p so that

f ◦ ϕ−1:ϕ(U) −→ R

is a Ck-function. If U is an open subset of M , set of Ck-functions on U is denoted by Ck(U).
In particular, Ck(M) denotes the set of Ck-functions on the manifold, M . Observe that
Ck(U) is a ring.

On the other hand, if M is an open interval of R, say M =]a, b[ , then γ: ]a, b[ → N is
called a Ck-curve in N . One checks immediately that a function, γ: ]a, b[→ N , is a Ck-map
iff for every q ∈ N , there is some chart, (V, ψ), at q so that

ψ ◦ γ: ]a, b[−→ ψ(V )

is a Ck-function.

It is clear that the composition of Ck-maps is a Ck-map. A Ck-map, h:M → N , between
two manifolds is a Ck-diffeomorphism iff h has an inverse, h−1:N → M (i.e., h−1 ◦ h =
idM and h ◦ h−1 = idN), and both h and h−1 are Ck-maps (in particular, h and h−1 are
homeomorphisms). Next, we define tangent vectors.

3.2 Tangent Vectors, Tangent Spaces,

Cotangent Spaces

Let M be a Ck manifold of dimension n, with k ≥ 1. The most intuitive method to define
tangent vectors is to use curves. Let p ∈M be any point on M and let γ: ]− ε, ε[→M be a
C1-curve passing through p, that is, with γ(0) = p. Unfortunately, if M is not embedded in
any RN , the derivative γ′(0) does not make sense. However, for any chart, (U,ϕ), at p, the
map ϕ ◦ γ is a C1-curve in Rn and the tangent vector v = (ϕ ◦ γ)′(0) is well defined. The
trouble is that different curves may yield the same v!

To remedy this problem, we define an equivalence relation on curves through p as follows:

Definition 3.6 Given a Ck manifold, M , of dimension n, for any p ∈ M , two C1-curves,
γ1: ]− ε1, ε1[→ M and γ2: ]− ε2, ε2[→ M , through p (i.e., γ1(0) = γ2(0) = p) are equivalent
iff there is some chart, (U,ϕ), at p so that

(ϕ ◦ γ1)
′(0) = (ϕ ◦ γ2)

′(0).

Now, the problem is that this definition seems to depend on the choice of the chart.
Fortunately, this is not the case. For, if (V, ψ) is another chart at p, as p belongs both to U
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and V , we have U ∩ V 6= 0, so the transition function η = ψ ◦ ϕ−1 is Ck and, by the chain
rule, we have

(ψ ◦ γ1)
′(0) = (η ◦ ϕ ◦ γ1)

′(0)

= η′(ϕ(p))((ϕ ◦ γ1)
′(0))

= η′(ϕ(p))((ϕ ◦ γ2)
′(0))

= (η ◦ ϕ ◦ γ2)
′(0)

= (ψ ◦ γ2)
′(0).

This leads us to the first definition of a tangent vector.

Definition 3.7 (Tangent Vectors, Version 1) Given any Ck-manifold, M , of dimension n,
with k ≥ 1, for any p ∈M , a tangent vector to M at p is any equivalence class of C1-curves
through p on M , modulo the equivalence relation defined in Definition 3.6. The set of all
tangent vectors at p is denoted by Tp(M) (or TpM).

It is obvious that Tp(M) is a vector space. If u, v ∈ Tp(M) are defined by the curves γ1

and γ2, then u+ v is defined by the curve γ1 +γ2 (we may assume by reparametrization that
γ1 and γ2 have the same domain.) Similarly, if u ∈ Tp(M) is defined by a curve γ and λ ∈ R,
then λu is defined by the curve λγ. The reader should check that these definitions do not
depend on the choice of the curve in its equivalence class. We will show that Tp(M) is a vector
space of dimension n = dimension of M . One should observe that unless M = Rn, in which
case, for any p, q ∈ Rn, the tangent space Tq(M) is naturally isomorphic to the tangent space
Tp(M) by the translation q − p, for an arbitrary manifold, there is no relationship between
Tp(M) and Tq(M) when p 6= q.

One of the defects of the above definition of a tangent vector is that it has no clear
relation to the Ck-differential structure of M . In particular, the definition does not seem to
have anything to do with the functions defined locally at p. There is another way to define
tangent vectors that reveals this connection more clearly. Moreover, such a definition is more
intrinsic, i.e., does not refer explicitly to charts. Our presentation of this second approach
is heavily inspired by Schwartz [56] (Chapter 3, Section 9) but also by Warner [59].

As a first step, consider the following: Let (U,ϕ) be a chart at p ∈ M (where M is
a Ck-manifold of dimension n, with k ≥ 1) and let xi = pri ◦ ϕ, the ith local coordinate
(1 ≤ i ≤ n). For any function, f , defined on U 3 p, set(

∂

∂xi

)
p

f =
∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

, 1 ≤ i ≤ n.

(Here, (∂g/∂Xi)|y denotes the partial derivative of a function g: Rn → R with respect to the
ith coordinate, evaluated at y.)
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We would expect that the function that maps f to the above value is a linear map on
the set of functions defined locally at p, but there is technical difficulty: The set of functions
defined locally at p is not a vector space! To see this, observe that if f is defined on an open
U 3 p and g is defined on a different open V 3 p, then we do know how to define f + g.
The problem is that we need to identify functions that agree on a smaller open. This leads
to the notion of germs .

Definition 3.8 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M , a
locally defined function at p is a pair, (U, f), where U is an open subset of M containing p
and f is a function defined on U . Two locally defined functions, (U, f) and (V, g), at p are
equivalent iff there is some open subset, W ⊆ U ∩ V , containing p so that

f � W = g � W.

The equivalence class of a locally defined function at p, denoted [f ] or f , is called a germ at
p.

One should check that the relation of Definition 3.8 is indeed an equivalence relation. Of
course, the value at p of all the functions, f , in any germ, f , is f(p). Thus, we set f(p) = f(p).
One should also check that we can define addition of germs, multiplication of a germ by a
scalar and multiplication of germs, in the obvious way: If f and g are two germs at p, and
λ ∈ R, then

[f ] + [g] = [f + g]

λ[f ] = [λf ]

[f ][g] = [fg].

(Of course, f+g is the function locally defined so that (f+g)(x) = f(x)+g(x) and similarly,
(λf)(x) = λf(x) and (fg)(x) = f(x)g(x).) Therefore, the germs at p form a ring. The ring

of germs of Ck-functions at p is denoted O(k)
M,p. When k = ∞, we usually drop the superscript

∞.

Remark: Most readers will most likely be puzzled by the notation O(k)
M,p. In fact, it is

standard in algebraic geometry, but it is not as commonly used in differential geometry. For
any open subset, U , of a manifold, M , the ring, Ck(U), of Ck-functions on U is also denoted

O(k)
M (U) (certainly by people with an algebraic geometry bent!). Then, it turns out that the

map U 7→ O(k)
M (U) is a sheaf , denoted O(k)

M , and the ring O(k)
M,p is the stalk of the sheaf O(k)

M

at p. Such rings are called local rings . Roughly speaking, all the “local” information about
M at p is contained in the local ring O(k)

M,p. (This is to be taken with a grain of salt. In the

Ck-case where k <∞, we also need the “stationary germs”, as we will see shortly.)

Now that we have a rigorous way of dealing with functions locally defined at p, observe
that the map

vi: f 7→
(
∂

∂xi

)
p

f
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yields the same value for all functions f in a germ f at p. Furthermore, the above map is
linear on O(k)

M,p. More is true. Firstly for any two functions f, g locally defined at p, we have(
∂

∂xi

)
p

(fg) = f(p)

(
∂

∂xi

)
p

g + g(p)

(
∂

∂xi

)
p

f.

Secondly, if (f ◦ ϕ−1)′(ϕ(p)) = 0, then(
∂

∂xi

)
p

f = 0.

The first property says that vi is a derivation. As to the second property, when
(f ◦ ϕ−1)′(ϕ(p)) = 0, we say that f is stationary at p. It is easy to check (using the chain
rule) that being stationary at p does not depend on the chart, (U,ϕ), at p or on the function
chosen in a germ, f . Therefore, the notion of a stationary germ makes sense: We say that f
is a stationary germ iff (f ◦ϕ−1)′(ϕ(p)) = 0 for some chart, (U,ϕ), at p and some function, f ,

in the germ, f . The Ck-stationary germs form a subring of O(k)
M,p (but not an ideal!) denoted

S(k)
M,p.

Remarkably, it turns out that the dual of the vector space, O(k)
M,p/S

(k)
M,p, is isomorphic to

the tangent space, Tp(M). First, we prove that the subspace of linear forms on O(k)
M,p that

vanish on S(k)
M,p has

(
∂

∂x1

)
p
, . . . ,

(
∂

∂xn

)
p

as a basis.

Proposition 3.1 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M

and any chart (U,ϕ) at p, the n functions,
(

∂
∂x1

)
p
, . . . ,

(
∂

∂xn

)
p
, defined on O(k)

M,p by

(
∂

∂xi

)
p

f =
∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

, 1 ≤ i ≤ n

are linear forms that vanish on S(k)
M,p. Every linear form, L, on O(k)

M,p that vanishes on S(k)
M,p

can be expressed in a unique way as

L =
n∑

i=1

λi

(
∂

∂xi

)
p

,

where λi ∈ R. Therefore, the (
∂

∂xi

)
p

, i = 1, . . . , n

form a basis of the vector space of linear forms on O(k)
M,p that vanish on S(k)

M,p.
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Proof . The first part of the proposition is trivial, by definition of (f ◦ ϕ−1)′(ϕ(p)) and of(
∂

∂xi

)
p
f .

Next, assume that L is a linear form on O(k)
M,p that vanishes on S(k)

M,p. Consider the locally
defined function at p given by

g(x) = f(x)− f(p)−
n∑

i=1

(pri ◦ ϕ)(x)

(
∂

∂xi

)
p

f.

Observe that the germ of g is stationary at p, since

(g ◦ ϕ−1)(ϕ(x)) = (f ◦ ϕ−1)(ϕ(x))− f(p)−
n∑

i=1

Xi

(
∂

∂xi

)
p

f,

with Xi = (pri ◦ ϕ)(x). It follows that

∂(g ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

=
∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

−
(
∂

∂xi

)
p

f = 0.

But then, as constant functions have stationary germs and as L vanishes on stationary germs,
we get

L(f) =
n∑

i=1

L(pri ◦ ϕ)

(
∂

∂xi

)
p

f,

as desired. We still have to prove linear independence. If

n∑
i=1

λi

(
∂

∂xi

)
p

= 0,

then, if we apply this relation to the functions xi = pri ◦ ϕ, as(
∂

∂xi

)
p

xj = δij,

we get λi = 0, for i = 1, . . . , n.

As the subspace of linear forms on O(k)
M,p that vanish on S(k)

M,p is isomorphic to the dual,

(O(k)
M,p/S

(k)
M,p)

∗, of the space O(k)
M,p/S

(k)
M,p, we see that the(
∂

∂xi

)
p

, i = 1, . . . , n

also form a basis of (O(k)
M,p/S

(k)
M,p)

∗.

To define our second version of tangent vectors, we need to define linear derivations.
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Definition 3.9 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M , a
linear derivation at p is a linear form, v, on O(k)

M,p, such that

v(fg) = f(p)v(g) + g(p)v(f),

for all germs f ,g ∈ O(k)
M,p. The above is called the Leibnitz property .

Recall that we observed earlier that the
(

∂
∂xi

)
p

are linear derivations at p. Therefore, we

have

Proposition 3.2 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M ,
the linear forms on O(k)

M,p that vanish on S(k)
M,p are exactly the linear derivations on O(k)

M,p that

vanish on S(k)
M,p.

Proof . By Proposition 3.1, the (
∂

∂xi

)
p

, i = 1, . . . , n

form a basis of the linear forms on O(k)
M,p that vanish on S(k)

M,p. Since each
(

∂
∂xi

)
p

is a also a

linear derivation at p, the result follows.

Here is now our second definition of a tangent vector.

Definition 3.10 (Tangent Vectors, Version 2) Given any Ck-manifold, M , of dimension n,

with k ≥ 1, for any p ∈M , a tangent vector to M at p is any linear derivation on O(k)
M,p that

vanishes on S(k)
M,p, the subspace of stationary germs.

Let us consider the simple case where M = R. In this case, for every x ∈ R, the tangent
space, Tx(R), is a one-dimensional vector space isomorphic to R and

(
∂
∂t

)
x

= d
dt

∣∣
x

is a basis

vector of Tx(R). For every Ck-function, f , locally defined at x, we have(
∂

∂t

)
x

f =
df

dt

∣∣∣∣
x

= f ′(x).

Thus,
(

∂
∂t

)
x

is: compute the derivative of a function at x.

We now prove the equivalence of the two definitions of a tangent vector.

Proposition 3.3 Let M be any Ck-manifold of dimension n, with k ≥ 1. For any p ∈
M , let u be any tangent vector (version 1) given by some equivalence class of C1-curves,

γ: ]− ε,+ε[→M , through p (i.e., p = γ(0)). Then, the map Lu defined on O(k)
M,p by

Lu(f) = (f ◦ γ)′(0)

is a linear derivation that vanishes on S(k)
M,p. Furthermore, the map u 7→ Lu defined above is

an isomorphism between Tp(M) and (O(k)
M,p/S

(k)
M,p)

∗, the space of linear forms on O(k)
M,p that

vanish on S(k)
M,p.
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Proof . Clearly, Lu(f) does not depend on the representative, f , chosen in the germ, f . If γ
and σ are equivalent curves defining u, then (ϕ ◦ σ)′(0) = (ϕ ◦ γ)′(0), so we get

(f ◦ σ)′(0) = (f ◦ ϕ−1)′(ϕ(p))((ϕ ◦ σ)′(0)) = (f ◦ ϕ−1)′(ϕ(p))((ϕ ◦ γ)′(0)) = (f ◦ γ)′(0),

which shows that Lu(f) does not depend on the curve, γ, defining u. If f is a stationary
germ, then pick any chart, (U,ϕ), at p and let ψ = ϕ ◦ γ. We have

Lu(f) = (f ◦ γ)′(0) = ((f ◦ ϕ−1) ◦ (ϕ ◦ γ))′(0) = (f ◦ ϕ−1)′(ϕ(p))(ψ′(0)) = 0,

since (f ◦ ϕ−1)′(ϕ(p)) = 0, as f is a stationary germ. The definition of Lu makes it clear
that Lu is a linear derivation at p. If u 6= v are two distinct tangent vectors, then there exist
some curves γ and σ through p so that

(ϕ ◦ γ)′(0) 6= (ϕ ◦ σ)′(0).

Thus, there is some i, with 1 ≤ i ≤ n, so that if we let f = pri ◦ ϕ, then

(f ◦ γ)′(0) 6= (f ◦ σ)′(0),

and so, Lu 6= Lv. This proves that the map u 7→ Lu is injective.

For surjectivity, recall that every linear map, L, on O(k)
M,p that vanishes on S(k)

M,p can be
uniquely expressed as

L =
n∑

i=1

λi

(
∂

∂xi

)
p

.

Define the curve, γ, on M through p by

γ(t) = ϕ−1(ϕ(p) + t(λ1, . . . , λn)),

for t in a small open interval containing 0. Then, we have

f(γ(t)) = (f ◦ ϕ−1)(ϕ(p) + t(λ1, . . . , λn)),

and we get

(f ◦ γ)′(0) = (f ◦ ϕ−1)′(ϕ(p))(λ1, . . . , λn) =
n∑

i=1

λi
∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

= L(f).

This proves that Tp(M) and (O(k)
M,p/S

(k)
M,p)

∗ are isomorphic.

In view of Proposition 3.3, we can identify Tp(M) with (O(k)
M,p/S

(k)
M,p)

∗. As the space

O(k)
M,p/S

(k)
M,p is finite dimensional, (O(k)

M,p/S
(k)
M,p)

∗∗ is canonically isomorphic to O(k)
M,p/S

(k)
M,p, so

we can identify T ∗p (M) with O(k)
M,p/S

(k)
M,p. (Recall that if E is a finite dimensional space, the

map iE:E → E∗∗ defined so that, for any v ∈ E,

v 7→ ṽ, where ṽ(f) = f(v), for all f ∈ E∗

is a linear isomorphism.) This also suggests the following definition:
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Definition 3.11 Given any Ck-manifold, M , of dimension n, with k ≥ 1, for any p ∈ M ,
the tangent space at p, denoted Tp(M) (or TpM) is the space of linear derivations on O(k)

M,p

that vanish on S(k)
M,p. Thus, Tp(M) can be identified with (O(k)

M,p/S
(k)
M,p)

∗. The space O(k)
M,p/S

(k)
M,p

is called the cotangent space at p; it is isomorphic to the dual, T ∗p (M), of Tp(M). (We also
denote T ∗p (M) by T ∗pM .)

Observe that if xi = pri ◦ ϕ, as (
∂

∂xi

)
p

xj = δi,j,

the images of x1, . . . , xn in O(k)
M,p/S

(k)
M,p are the dual of the basis

(
∂

∂x1

)
p
, . . . ,

(
∂

∂xn

)
p

of Tp(M).

Given any Ck-function, f , on M , we denote the image of f in T ∗p (M) = O(k)
M,p/S

(k)
M,p by

dfp. This is the differential of f at p. Using the isomorphism between O(k)
M,p/S

(k)
M,p and

(O(k)
M,p/S

(k)
M,p)

∗∗ described above, dfp corresponds to the linear map in T ∗p (M) defined by
dfp(v) = v(f), for all v ∈ Tp(M). With this notation, we see that (dx1)p, . . . , (dxn)p is a basis

of T ∗p (M), and this basis is dual to the basis
(

∂
∂x1

)
p
, . . . ,

(
∂

∂xn

)
p

of Tp(M). For simplicity of

notation, we often omit the subscript p unless confusion arises.

Remark: Strictly speaking, a tangent vector, v ∈ Tp(M), is defined on the space of germs,

O(k)
M,p at p. However, it is often convenient to define v on Ck-functions f ∈ Ck(U), where U

is some open subset containing p. This is easy: Set

v(f) = v(f).

Given any chart, (U,ϕ), at p, since v can be written in a unique way as

v =
n∑

i=1

λi

(
∂

∂xi

)
p

,

we get

v(f) =
n∑

i=1

λi

(
∂

∂xi

)
p

f.

This shows that v(f) is the directional derivative of f in the direction v.

When M is a smooth manifold, things get a little simpler. Indeed, it turns out that in
this case, every linear derivation vanishes on stationary germs. To prove this, we recall the
following result from calculus (see Warner [59]):
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Proposition 3.4 If g: Rn → R is a Ck-function (k ≥ 2) on a convex open, U , about p ∈ Rn,
then for every q ∈ U , we have

g(q) = g(p) +
n∑

i=1

∂g

∂Xi

∣∣∣∣
p

(qi − pi) +
n∑

i,j=1

(qi − pi)(qj − pj)

∫ 1

0

(1− t)
∂2g

∂Xi∂Xj

∣∣∣∣
(1−t)p+tq

dt.

In particular, if g ∈ C∞(U), then the integral as a function of q is C∞.

Proposition 3.5 Let M be any C∞-manifold of dimension n. For any p ∈ M , any linear
derivation on O(∞)

M,p vanishes on stationary germs.

Proof . Pick some chart, (U,ϕ), at p, where U is convex (for instance, an open ball) and let
f be any stationary germ. If we apply Proposition 3.4 to f ◦ ϕ−1 and then compose with ϕ,
we get

f = f(p) +
n∑

i=1

∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

(xi − xi(p)) +
n∑

i,j=1

(xi − xi(p))(xj − xj(p))h,

near p, where h is C∞. Since f is a stationary germ, this yields

f = f(p) +
n∑

i,j=1

(xi − xi(p))(xj − xj(p))h.

If v is any linear derivation, we get

v(f) = v(f(p)) +
n∑

i,j=1

[
(xi − xi(p))(p)(xj − xj(p))(p)v(h)

+ (xi − xi(p))(p)v(xj − xj(p))h(p) + v(xi − xi(p))(xj − xj(p))(p)h(p)
]

= 0.

Thus, v vanishes on stationary germs.

Proposition 3.5 shows that in the case of a smooth manifold, in Definition 3.10, we
can omit the requirement that linear derivations vanish on stationary germs, since this is
automatic. It is also possible to define Tp(M) just in terms of O(∞)

M,p. Let mM,p ⊆ O(∞)
M,p be the

ideal of germs that vanish at p. Then, we also have the ideal m2
M,p, which consists of all finite

sums of products of two elements in mM,p, and it can be shown that T ∗p (M) is isomorphic to
mM,p/m

2
M,p (see Warner [59], Lemma 1.16).

Actually, if we let m
(k)
M,p denote the Ck germs that vanish at p and s

(k)
M,p denote the

stationary Ck-germs that vanish at p, it is easy to show that

O(k)
M,p/S

(k)
M,p

∼= m
(k)
M,p/s

(k)
M,p.
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(Given any f ∈ O(k)
M,p, send it to f − f(p) ∈ m

(k)
M,p.) Clearly, (m

(k)
M,p)

2 consists of stationary
germs (by the derivation property) and when k = ∞, Proposition 3.4 shows that every
stationary germ that vanishes at p belongs to m2

M,p. Therefore, when k = ∞, we have

s
(∞)
M,p = m2

M,p and so,

T ∗p (M) = O(∞)
M,p/S

(∞)
M,p

∼= mM,p/m
2
M,p.

Remark: The ideal m
(k)
M,p is in fact the unique maximal ideal of O(k)

M,p. This is because

if f ∈ O(k)
M,p does not vanish at p, then it is an invertible element of O(k)

M,p and any ideal

containing m
(k)
M,p and f would be equal to O(k)

M,p, which it absurd. Thus, O(k)
M,p is a local ring

(in the sense of commutative algebra) called the local ring of germs of Ck-functions at p.
These rings play a crucial role in algebraic geometry.

Yet one more way of defining tangent vectors will make it a little easier to define tangent
bundles.

Definition 3.12 (Tangent Vectors, Version 3) Given any Ck-manifold, M , of dimension n,
with k ≥ 1, for any p ∈M , consider the triples, (U,ϕ, u), where (U,ϕ) is any chart at p and
u is any vector in Rn. Say that two such triples (U,ϕ, u) and (V, ψ, v) are equivalent iff

(ψ ◦ ϕ−1)′ϕ(p)(u) = v.

A tangent vector to M at p is an equivalence class of triples, [(U,ϕ, u)], for the above
equivalence relation.

The intuition behind Definition 3.12 is quite clear: The vector u is considered as a tangent
vector to Rn at ϕ(p). If (U,ϕ) is a chart on M at p, we can define a natural isomorphism,
θU,ϕ,p: Rn → Tp(M), between Rn and Tp(M), as follows: For any u ∈ Rn,

θU,ϕ,p:u 7→ [(U,ϕ, u)].

One immediately check that the above map is indeed linear and a bijection.

The equivalence of this definition with the definition in terms of curves (Definition 3.7)
is easy to prove.

Proposition 3.6 Let M be any Ck-manifold of dimension n, with k ≥ 1. For any p ∈
M , let x be any tangent vector (version 1) given by some equivalence class of C1-curves,
γ: ]− ε,+ε[→M , through p (i.e., p = γ(0)). The map

x 7→ [(U,ϕ, (ϕ ◦ γ)′(0))]

is an isomorphism between Tp(M)-version 1 and Tp(M)-version 3.
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Proof . If σ is another curve equivalent to γ, then (ϕ ◦ γ)′(0) = (ϕ ◦ σ)′(0), so the map is
well-defined. It is clearly injective. As for surjectivity, define the curve, γ, on M through p
by

γ(t) = ϕ−1(ϕ(p) + tu).

Then, (ϕ ◦ γ)(t) = ϕ(p) + tu and
(ϕ ◦ γ)′(0) = u.

For simplicity of notation, we also use the notation TpM for Tp(M) (resp. T ∗pM for
T ∗p (M)).

After having explored thorougly the notion of tangent vector, we show how a Ck-map,
h:M → N , between Ck manifolds, induces a linear map, dhp:Tp(M) → Th(p)(N), for every
p ∈ M . We find it convenient to use Version 2 of the definition of a tangent vector. So, let
u ∈ Tp(M) be a linear derivation on O(k)

M,p that vanishes on S(k)
M,p. We would like dhp(u) to be

a linear derivation on O(k)
N,h(p) that vanishes on S(k)

N,h(p). So, for every germ, g ∈ O(k)
N,h(p), set

dhp(u)(g) = u(g ◦ h).

For any locally defined function, g, at h(p) in the germ, g (at h(p)), it is clear that g ◦ h is
locally defined at p and is Ck, so g ◦ h is indeed a Ck-germ at p. Moreover, if g is a stationary
germ at h(p), then for some chart, (V, ψ) on N at q = h(p), we have (g ◦ ψ−1)′(ψ(q)) = 0
and, for some chart (U,ϕ) at p on M , we get

(g ◦ h ◦ ϕ−1)′(ϕ(p)) = (g ◦ ψ−1)(ψ(q))((ψ ◦ h ◦ ϕ−1)′(ϕ(p))) = 0,

which means that g ◦ h is stationary at p. Therefore, dhp(u) ∈ Th(p)(M). It is also clear that
dhp is a linear map. We summarize all this in the following definition:

Definition 3.13 Given any two Ck-manifolds, M and N , of dimension m and n, respec-
tively, for any Ck-map, h:M → N , and for every p ∈M , the differential of h at p or tangent
map, dhp:Tp(M) → Th(p)(N), is the linear map defined so that

dhp(u)(g) = u(g ◦ h),

for every u ∈ Tp(M) and every germ, g ∈ O(k)
N,h(p). The linear map dhp is also denoted Tph

(and sometimes, h′p or Dph).

The chain rule is easily generalized to manifolds.

Proposition 3.7 Given any two Ck-maps f :M → N and g:N → P between smooth Ck-
manifolds, for any p ∈M , we have

d(g ◦ f)p = dgf(p) ◦ dfp.
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In the special case where N = R, a Ck-map between the manifolds M and R is just a
Ck-function on M . It is interesting to see what dfp is explicitly. Since N = R, germs (of
functions on R) at t0 = f(p) are just germs of Ck-functions, g: R → R, locally defined at t0.
Then, for any u ∈ Tp(M) and every germ g at t0,

dfp(u)(g) = u(g ◦ f).

If we pick a chart, (U,ϕ), on M at p, we know that the
(

∂
∂xi

)
p

form a basis of Tp(M), with

1 ≤ i ≤ n. Therefore, it is enough to figure out what dfp(u)(g) is when u =
(

∂
∂xi

)
p
. In this

case,

dfp

((
∂

∂xi

)
p

)
(g) =

∂(g ◦ f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

.

Using the chain rule, we find that

dfp

((
∂

∂xi

)
p

)
(g) =

(
∂

∂xi

)
p

f
dg

dt

∣∣∣∣
t0

.

Therefore, we have

dfp(u) = u(f)
d

dt

∣∣∣∣
t0

.

This shows that we can identify dfp with the linear form in T ∗p (M) defined by

dfp(v) = v(f).

This is consistent with our previous definition of dfp as the image of f in

T ∗p (M) = O(k)
M,p/S

(k)
M,p (as Tp(M) is isomorphic to (O(k)

M,p/S
(k)
M,p)

∗).

In preparation for the definition of the flow of a vector field (which will be needed to
define the exponential map in Lie group theory), we need to define the tangent vector to a
curve on a manifold. Given a Ck-curve, γ: ]a, b[→M , on a Ck-manifold, M , for any t0 ∈]a, b[,
we would like to define the tangent vector to the curve γ at t0 as a tangent vector to M at
p = γ(t0). We do this as follows: Recall that d

dt

∣∣
t0

is a basis vector of Tt0(R) = R. So, define

the tangent vector to the curve γ at t, denoted γ̇(t0) (or γ′(t), or dγ
dt

(t0)) by

γ̇(t) = dγt

(
d

dt

∣∣∣∣
t0

)
.

Sometime, it is necessary to define curves (in a manifold) whose domain is not an open
interval. A map, γ: [a, b] → M , is a Ck-curve in M if it is the restriction of some Ck-curve,
γ̃: ]a−ε, b+ε[→M , for some (small) ε > 0. Note that for such a curve (if k ≥ 1) the tangent
vector, γ̇(t), is defined for all t ∈ [a, b], A curve, γ: [a, b] → M , is piecewise Ck iff there a
sequence, a0 = a, a1, . . . , am = b, so that the restriction of γ to each [ai, ai+1] is a Ck-curve,
for i = 0, . . . ,m− 1.
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3.3 Tangent and Cotangent Bundles, Vector Fields

Let M be a Ck-manifold (with k ≥ 2). Roughly speaking, a vector field on M is the
assignment, p 7→ ξ(p), of a tangent vector, ξ(p) ∈ Tp(M), to a point p ∈ M . Generally,
we would like such assignments to have some smoothness properties when p varies in M ,
for example, to be C l, for some l related to k. Now, if the collection, T (M), of all tangent
spaces, Tp(M), was a C l-manifold, then it would be very easy to define what we mean by a
C l-vector field: We would simply require the maps, ξ:M → T (M), to be C l.

If M is a Ck-manifold of dimension n, then we can indeed define make T (M) into a
Ck−1-manifold of dimension 2n and we now sketch this construction.

We find it most convenient to use Version 3 of the definition of tangent vectors, i.e., as
equivalence classes of triple (U,ϕ, u). First, we let T (M) be the disjoint union of the tangent
spaces Tp(M), for all p ∈M . There is a natural projection,

π:T (M) →M, where π(v) = p if v ∈ Tp(M).

We still have to give T (M) a topology and to define a Ck−1-atlas. For every chart, (U,ϕ),
of M (with U open in M) we define the function ϕ̃: π−1(U) → R2n by

ϕ̃(v) = (ϕ ◦ π(v), θ−1
U,ϕ,π(v)(v)),

where v ∈ π−1(U) and θU,ϕ,p is the isomorphism between Rn and Tp(M) described just after
Definition 3.12. It is obvious that ϕ̃ is a bijection between π−1(U) and ϕ(U)× Rn, an open
subset of R2n. We give T (M) the weakest topology that makes all the ϕ̃ continuous, i.e., we
take the collection of subsets of the form ϕ̃−1(W ), where W is any open subset of ϕ(U)×Rn,
as a basis of the topology of T (M). One easily checks that T (M) is Hausdorff and second-
countable in this topology. If (U,ϕ) and (V, ψ) are overlapping charts, then the transition
function

ψ̃ ◦ ϕ̃−1:ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn

is given by

ψ̃ ◦ ϕ̃−1(p, u) = (ψ ◦ ϕ−1(p), (ψ ◦ ϕ−1)′(u)).

It is clear that ψ̃ ◦ ϕ̃−1 is a Ck−1-map. Therefore, T (M) is indeed a Ck−1-manifold of
dimension 2n, called the tangent bundle.

Remark: Even if the manifoldM is naturally embedded in RN (for someN ≥ n = dim(M)),
it is not at all obvious how to view the tangent bundle, T (M), as embedded in RN ′

, for sone
suitable N ′. Hence, we see that the definition of an abtract manifold is unavoidable.

A similar construction can be carried out for the cotangent bundle. In this case, we
let T ∗(M) be the disjoint union of the cotangent spaces T ∗p (M). We also have a natural
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projection, π:T ∗(M) → M , and we can define charts as follows: For any chart, (U,ϕ), on
M , we define the function ϕ̃: π−1(U) → R2n by

ϕ̃(τ) =

(
ϕ ◦ π(τ), τ

((
∂

∂x1

)
π(τ)

)
, . . . , τ

((
∂

∂xn

)
π(τ)

))
,

where τ ∈ π−1(U) and the
(

∂
∂xi

)
p

are the basis of Tp(M) associated with the chart (U,ϕ).

Again, one can make T ∗(M) into a Ck−1-manifold of dimension 2n, called the cotangent
bundle. We leave the details as an exercise to the reader (Or, look at Berger and Gostiaux
[5]). For simplicity of notation, we also use the notation TM for T (M) (resp. T ∗M for
T ∗(M)).

Observe that for every chart, (U,ϕ), on M , there is a bijection

τU : π−1(U) → U × Rn,

given by
τU(v) = (π(v), θ−1

U,ϕ,π(v)(v)).

Clearly, pr1 ◦ τU = π, on π−1(U). Thus, locally, that is, over U , the bundle T (M) looks like
the product U×Rn. We say that T (M) is locally trivial (over U) and we call τU a trivializing
map. For any p ∈ M , the vector space π−1(p) = Tp(M) is called the fibre above p. Observe
that the restriction of τU to π−1(p) is an isomorphism between Tp(M) and {p} × Rn ∼= Rn,
for any p ∈ M . All these ingredients are part of being a vector bundle (but a little more is
required of the maps τU). For more on bundles, see Lang [38], Gallot, Hulin and Lafontaine
[28], Lafontaine [37] or Bott and Tu [7].

When M = Rn, observe that T (M) = M × Rn = Rn × Rn, i.e., the bundle T (M) is
(globally) trivial.

Given a Ck-map, h:M → N , between two Ck-manifolds, we can define the function,
dh:T (M) → T (N), (also denoted Th, or h∗, or Dh) by setting

dh(u) = dhp(u), iff u ∈ Tp(M).

We leave the next proposition as an exercise to the reader (A proof can be found in
Berger and Gostiaux [5]).

Proposition 3.8 Given a Ck-map, h:M → N , between two Ck-manifolds M and N (with
k ≥ 1), the map dh:T (M) → T (N) is a Ck−1-map.

We are now ready to define vector fields.

Definition 3.14 Let M be a Ck+1 manifold, with k ≥ 1. For any open subset, U of M , a
vector field on U is any section, ξ, of T (M) over U , i.e., any function, ξ:U → T (M), such
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that π◦ξ = idU (i.e., ξ(p) ∈ Tp(M), for every p ∈ U). We also say that ξ is a lifting of U into
T (M). We say that ξ is a Ch-vector field on U iff ξ is a section over U and a Ch-map, where
0 ≤ h ≤ k. The set of Ck-vector fields over U is denoted Γ(k)(U, T (M)). Given a curve,
γ: [a, b] → M , a vector field, ξ, along γ is any section of T (M) over γ, i.e., a Ck-function,
ξ: [a, b] → T (M), such that π ◦ ξ = γ. We also say that ξ lifts γ into T (M).

The above definition gives a precise meaning to the idea that a Ck-vector field on M is
an assignment, p 7→ ξ(p), of a tangent vector, ξ(p) ∈ Tp(M), to a point, p ∈M , so that ξ(p)
varies in a Ck-fashion in terms of p.

Clearly, Γ(k)(U, T (M)) is a real vector space. For short, the space Γ(k)(M,T (M)) is also
denoted by Γ(k)(T (M)) (or X(k)(M) or even Γ(T (M)) or X(M)). If M = Rn and U is an
open subset of M , then T (M) = Rn×Rn and a section of T (M) over U is simply a function,
ξ, such that

ξ(p) = (p, u), with u ∈ Rn,

for all p ∈ U . In other words, ξ is defined by a function, f :U → Rn (namely, f(p) = u).
This corresponds to the “old” definition of a vector field in the more basic case where the
manifold, M , is just Rn.

Given any Ck-function, f ∈ Ck(U), and a vector field, ξ ∈ Γ(k)(U, T (M)), we define the
vector field, fξ, by

(fξ)(p) = f(p)ξ(p), p ∈ U.

Obviously, fξ ∈ Γ(k)(U, T (M)), which shows that Γ(k)(U, T (M)) is also a Ck(U)-module. We
also denote ξ(p) by ξp. For any chart, (U,ϕ), on M it is easy to check that the map

p 7→
(
∂

∂xi

)
p

, p ∈ U,

is a Ck-vector field on U (with 1 ≤ i ≤ n). This vector field is denoted
(

∂
∂xi

)
or ∂

∂xi
.

If U is any open subset of M and f is any function in Ck(U), then ξ(f) is the function
on U given by

ξ(f)(p) = ξp(f) = ξp(f).

As a special case, when (U,ϕ) is a chart on M , the vector field, ∂
∂xi

, just defined above
induces the function

p 7→
(
∂

∂xi

)
p

f, p ∈ U,

denoted ∂
∂xi

(f) or
(

∂
∂xi

)
f . It is easy to check that ξ(f) ∈ Ck−1(U). As a consequence, every

vector field ξ ∈ Γ(k)(U, T (M)) induces a linear map,

Lξ: Ck(U) −→ Ck−1(U),
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given by f 7→ ξ(f). It is immediate to check that Lξ has the Leibnitz property, i.e.,

Lξ(fg) = Lξ(f)g + fLξ(g).

Linear maps with this property are called derivations . Thus, we see that every vector field
induces some kind of differential operator, namely, a linear derivation. Unfortunately, not
every linear derivation of the above type arises from a vector field, although this turns out to
be true in the smooth case i.e., when k = ∞ (for a proof, see Gallot, Hulin and Lafontaine
[28] or Lafontaine [37]).

In the rest of this section, unless stated otherwise, we assume that k ≥ 1. The following
easy proposition holds (c.f. Warner [59]):

Proposition 3.9 Let ξ be a vector field on the Ck+1-manifold, M , of dimension n. Then,
the following are equivalent:

(a) ξ is Ck.

(b) If (U,ϕ) is a chart on M and if f1, . . . , fn are the functions on U uniquely defined by

ξ � U =
n∑

i=1

fi
∂

∂xi

,

then each fi is a Ck-map.

(c) Whenever U is open in M and f ∈ Ck(U), then ξ(f) ∈ Ck−1(U).

Given any two Ck-vector field, ξ, η, on M , for any function, f ∈ Ck(M), we defined
above the function ξ(f) and η(f). Thus, we can form ξ(η(f)) (resp. η(ξ(f))), which are in
Ck−2(M). Unfortunately, even in the smooth case, there is generally no vector field, ζ, such
that

ζ(f) = ξ(η(f)), for all f ∈ Ck(M).

This is because ξ(η(f)) (and η(ξ(f))) involve second-order derivatives. However, if we con-
sider ξ(η(f))−η(ξ(f)), then second-order derivatives cancel out and there is a unique vector
field inducing the above differential operator. Intuitively, ξη − ηξ measures the “failure of ξ
and η to commute”.

Proposition 3.10 Given any Ck+1-manifold, M , of dimension n, for any two Ck-vector
fields, ξ, η, on M , there is a unique Ck−1-vector field, [ξ, η], such that

[ξ, η](f) = ξ(η(f))− η(ξ(f)), for all f ∈ Ck−1(M).

Proof . First we prove uniqueness. For this it is enough to prove that [ξ, η] is uniquely defined
on Ck(U), for any chart, (U,ϕ). Over U , we know that

ξ =
n∑

i=1

ξi
∂

∂xi

and η =
n∑

i=1

ηi
∂

∂xi

,
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where ξi, ηi ∈ Ck(U). Then, for any f ∈ Ck(M), we have

ξ(η(f)) = ξ

(
n∑

j=1

ηj
∂

∂xj

(f)

)
=

n∑
i,j=1

ξi
∂

∂xi

(ηj)
∂

∂xj

(f) +
n∑

i,j=1

ξiηj
∂2

∂xj∂xi

(f)

η(ξ(f)) = η

(
n∑

i=1

ξi
∂

∂xi

(f)

)
=

n∑
i,j=1

ηj
∂

∂xj

(ξi)
∂

∂xi

(f) +
n∑

i,j=1

ξiηj
∂2

∂xi∂xj

(f).

However, as f ∈ Ck(M), with k ≥ 2, we have

n∑
i,j=1

ξiηj
∂2

∂xj∂xi

(f) =
n∑

i,j=1

ξiηj
∂2

∂xi∂xj

(f),

and we deduce that

ξ(η(f))− η(ξ(f)) =
n∑

i,j=1

(
ξi
∂

∂xi

(ηj)− ηi
∂

∂xi

(ξj)

)
∂

∂xj

(f).

This proves that [ξ, η] = ξη− ηξ is uniquely defined on U and that it is Ck−1. Thus, if [ξ, η]
exists, it is unique.

To prove existence, we use the above expression to define [ξ, η]U , locally on U , for every
chart, (U,ϕ). On any overlap, U ∩V , by the uniqueness property that we just proved, [ξ, η]U
and [ξ, η]V must agree. But then, the [ξ, η]U patch and yield a Ck−1-vector field defined on
the whole of M .

Definition 3.15 Given any Ck+1-manifold, M , of dimension n, for any two Ck-vector fields,
ξ, η, on M , the Lie bracket , [ξ, η], of ξ and η, is the Ck−1 vector field defined so that

[ξ, η](f) = ξ(η(f))− η(ξ(f)), for all f ∈ Ck−1(M).

We also have the following simple proposition whose proof is left as an exercise (or, see
Do Carmo [22]):

Proposition 3.11 Given any Ck+1-manifold, M , of dimension n, for any Ck-vector fields,
ξ, η, ζ, on M , for all f, g ∈ Ck(M), we have:

(a) [[ξ, η], ζ] + [[η, ζ], ξ] + [[ζ, ξ], η] = 0 (Jacobi identity).

(b) [ξ, ξ] = 0.

(c) [fξ, gη] = fg[ξ, η] + fξ(g)η − gη(f)ξ.

(d) [−,−] is bilinear.
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As a consequence, for smooth manifolds (k = ∞), the space of vector fields, Γ(∞)(T (M)),
is a vector space equipped with a bilinear operation, [−,−], that satisfies the Jacobi identity.
This makes Γ(∞)(T (M)) a Lie algebra.

One more notion will be needed when we deal with Lie algebras.

Definition 3.16 Let ϕ:M → N be a Ck+1-map of manifolds. If ξ is a Ck vector field on
M and η is a Ck vector field on N , we say that ξ and η are ϕ-related iff

dϕ ◦ ξ = η ◦ ϕ.

The basic result about ϕ-related vector fields is:

Proposition 3.12 Let ϕ:M → N be a Ck+1-map of manifolds, let ξ and ξ1 be Ck vector
fields on M and let η, η1 be Ck vector fields on N . If ξ is ϕ-related to ξ1 and η is ϕ-related
to η1, then [ξ, η] is ϕ-related to [ξ1, η1].

Proof . Basically, one needs to unwind the definitions, see Warner [59], Chapter 1.

3.4 Submanifolds, Immersions, Embeddings

Although the notion of submanifold is intuitively rather clear, technically, it is a bit tricky.
In fact, the reader may have noticed that many different definitions appear in books and
that it is not obvious at first glance that these definitions are equivalent. What is important
is that a submanifold, N of a given manifold, M , not only have the topology induced M
but also that the charts of N be somewhow induced by those of M . (Recall that if X is a
topological space and Y is a subset of X, then the subspace topology on Y or topology induced
by X on Y has for its open sets all subsets of the form Y ∩U , where U is an arbitary subset
of X.).

Given m,n, with 0 ≤ m ≤ n, we can view Rm as a subspace of Rn using the inclusion

Rm ∼= Rm × {(0, . . . , 0)︸ ︷︷ ︸
n−m

} ↪→ Rm × Rn−m = Rn, (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
n−m

).

Definition 3.17 Given a Ck-manifold, M , of dimension n, a subset, N , of M is an m-
dimensional submanifold of M (where 0 ≤ m ≤ n) iff for every point, p ∈ N , there is a
chart, (U,ϕ), of M , with p ∈ U , so that

ϕ(U ∩N) = ϕ(U) ∩ (Rm × {0n−m}).

(We write 0n−m = (0, . . . , 0)︸ ︷︷ ︸
n−m

.)

The subset, U ∩ N , of Definition 3.17 is sometimes called a slice of (U,ϕ) and we say
that (U,ϕ) is adapted to N (See O’Neill [49] or Warner [59]).
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� Other authors, including Warner [59], use the term submanifold in a broader sense than
us and they use the word embedded submanifold for what is defined in Definition 3.17.

The following proposition has an almost trivial proof but it justifies the use of the word
submanifold:

Proposition 3.13 Given a Ck-manifold, M , of dimension n, for any submanifold, N , of
M of dimension m ≤ n, the family of pairs (U ∩ N,ϕ � U ∩ N), where (U,ϕ) ranges over
the charts over any atlas for M , is an atlas for N , where N is given the subspace topology.
Therefore, N inherits the structure of a Ck-manifold.

In fact, every chart on N arises from a chart on M in the following precise sense:

Proposition 3.14 Given a Ck-manifold, M , of dimension n and a submanifold, N , of M
of dimension m ≤ n, for any p ∈ N and any chart, (W, η), of N at p, there is some chart,
(U,ϕ), of M at p so that

ϕ(U ∩N) = ϕ(U) ∩ (Rm × {0n−m}) and ϕ � U ∩N = η � U ∩N,

where p ∈ U ∩N ⊆ W .

Proof . See Berger and Gostiaux [5] (Chapter 2).

It is also useful to define more general kinds of “submanifolds”.

Definition 3.18 Let ϕ:N →M be a Ck-map of manifolds.

(a) The map ϕ is an immersion of N into M iff dϕp is injective for all p ∈ N .

(b) The set ϕ(N) is an immersed submanifold of M iff ϕ is an injective immersion.

(c) The map ϕ is an embedding of N into M iff ϕ is an injective immersion such that the
induced map, N −→ ϕ(N), is a homeomorphism, where ϕ(N) is given the subspace
topology (equivalently, ϕ is an open map from N into ϕ(N) with the subspace topol-
ogy). We say that ϕ(N) (with the subspace topology) is an embedded submanifold of
M .

(d) The map ϕ is a submersion of N into M iff dϕp is surjective for all p ∈ N .

� Again, we warn our readers that certain authors (such as Warner [59]) call ϕ(N), in (b),
a submanifold of M ! We prefer the terminology immersed submanifold .
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The notion of immersed submanifold arises naturally in the framewok of Lie groups.
Indeed, the fundamental correspondence between Lie groups and Lie algebras involves Lie
subgroups that are not necessarily closed. But, as we will see later, subgroups of Lie groups
that are also submanifolds are always closed. It is thus necessary to have a more inclusive
notion of submanifold for Lie groups and the concept of immersed submanifold is just what’s
needed.

Immersions of R into R3 are parametric curves and immersions of R2 into R3 are para-
metric surfaces. These have been extensively studied, for example, see DoCarmo [21], Berger
and Gostiaux [5] or Gallier [27].

Immersions (i.e., subsets of the form ϕ(N), whereN is an immersion) are generally neither
injective immersions (i.e., subsets of the form ϕ(N), where N is an injective immersion) nor
embeddings (or submanifolds). For example, immersions can have self-intersections, as the
plane curve (nodal cubic): x = t2 − 1; y = t(t2 − 1).

Injective immersions are generally not embeddings (or submanifolds) because ϕ(N) may
not be homeomorphic to N . An example is given by the Lemniscate of Bernoulli, an injective
immersion of R into R2:

x =
t(1 + t2)

1 + t4
,

y =
t(1− t2)

1 + t4
.

Another interesting example is the immersion of R into the 2-torus, T 2 = S1 × S1 ⊆ R4,
given by

t 7→ (cos t, sin t, cos ct, sin ct),

where c ∈ R. One can show that the image of R under this immersion is closed in T 2 iff
c is rational. Moreover, the image of this immersion is dense in T 2 but not closed iff c is
irrational. The above example can be adapted to the torus in R3: One can show that the
immersion given by

t 7→ ((2 + cos t) cos(
√

2 t), (2 + cos t) sin(
√

2 t), sin t),

is dense but not closed in the torus (in R3) given by

(s, t) 7→ ((2 + cos s) cos t, (2 + cos s) sin t, sin s),

where s, t ∈ R.

There is, however, a close relationship between submanifolds and embeddings.

Proposition 3.15 If N is a submanifold of M , then the inclusion map, j:N → M , is an
embedding. Conversely, if ϕ:N →M is an embedding, then ϕ(N) with the subspace topology
is a submanifold of M and ϕ is a diffeomorphism between N and ϕ(N).
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Proof . See O’Neill [49] (Chapter 1) or Berger and Gostiaux [5] (Chapter 2).

In summary, embedded submanifolds and (our) submanifolds coincide. Some authors re-
fer to spaces of the form ϕ(N), where ϕ is an injective immersion, as immersed submanifolds .
However, in general, an immersed submanifold is not a submanifold. One case where this
holds is when N is compact, since then, a bijective continuous map is a homeomorphism.
For yet a notion of submanifold intermediate between immersed submanifolds and (our)
submanifolds, see Sharpe [57] (Chapter 1).

Our next goal is to review and promote to manifolds some standard results about ordinary
differential equations.

3.5 Integral Curves, Flow of a Vector Field,

One-Parameter Groups of Diffeomorphisms

We begin with integral curves and (local) flows of vector fields on a manifold.

Definition 3.19 Let ξ be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2) and let p0 be a
point on M . An integral curve (or trajectory) for ξ with initial condition p0 is a Cp−1-curve,
γ: I →M , so that

γ̇(t) = ξ(γ(t)), for all t ∈ I and γ(0) = p0,

where I = ]a, b[ ⊆ R is an open interval containing 0.

What definition 3.19 says is that an integral curve, γ, with initial condition p0 is a curve
on the manifold M passing through p0 and such that, for every point p = γ(t) on this curve,
the tangent vector to this curve at p, i.e., γ̇(t), coincides with the value, ξ(p), of the vector
field ξ at p.

Given a vector field, ξ, as above, and a point p0 ∈M , is there an integral curve through
p0? Is such a curve unique? If so, how large is the open interval I? We provide some answers
to the above questions below.

Definition 3.20 Let ξ be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2) and let p0 be a
point on M . A local flow for ξ at p0 is a map,

ϕ: J × U →M,

where J ⊆ R is an open interval containing 0 and U is an open subset of M containing p0,
so that for every p ∈ U , the curve t 7→ ϕ(t, p) is an integral curve of ξ with initial condition
p.
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Thus, a local flow for ξ is a family of integral curves for all points in some small open set
around p0 such that these curves all have the same domain, J , independently of the initial
condition, p ∈ U .

The following theorem is the main existence theorem of local flows. This is a promoted
version of a similar theorem in the classical theory of ODE’s in the case where M is an open
subset of Rn. For a full account of this theory, see Lang [38] or Berger and Gostiaux [5].

Theorem 3.16 (Existence of a local flow) Let ξ be a Ck−1 vector field on a Ck-manifold,
M , (k ≥ 2) and let p0 be a point on M . There is an open interval, J ⊆ R, containing 0 and
an open subset, U ⊆M , containing p0, so that there is a unique local flow, ϕ: J ×U →M ,
for ξ at p0. Furthermore, ϕ is Ck−1.

Theorem 3.16 holds under more general hypotheses, namely, when the vector field satisfies
some Lipschitz condition, see Lang [38] or Berger and Gostiaux [5].

Now, we know that for any initial condition, p0, there is some integral curve through p0.
However, there could be two (or more) integral curves γ1: I1 → M and γ2: I2 → M with
initial condition p0. This leads to the natural question: How do γ1 and γ2 differ on I1 ∩ I2?
The next proposition shows they don’t!

Proposition 3.17 Let ξ be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2) and let p0 be
a point on M . If γ1: I1 → M and γ2: I2 → M are any two integral curves both with initial
condition p0, then γ1 = γ2 on I1 ∩ I2.

Proof . Let Q = {t ∈ I1∩I2 | γ1(t) = γ2(t)}. Since γ1(0) = γ2(0) = p0, the set Q is nonempty.
If we show that Q is both closed and open in I1 ∩ I2, as I1 ∩ I2 is connected since it is an
open interval of R, we will be able to conclude that Q = I1 ∩ I2.

Since by definition, a manifold is Hausdorff, it is a standard fact in topology that the
diagonal, ∆ = {(p, p) | p ∈M} ⊆M ×M , is closed, and since

Q = I1 ∩ I2 ∩ (γ1, γ2)
−1(∆)

and γ1 and γ2 are continuous, we see that Q is closed in I1 ∩ I2.
Pick any u ∈ Q and consider the curves β1 and β2 given by

β1(t) = γ1(t+ u) and β2(t) = γ2(t+ u),

where t ∈ I1 − u in the first case and t ∈ I2 − u in the second. (Here, if I = ]a, b[ , we have
I − u = ]a− u, b− u[ .) Observe that

β̇1(t) = γ̇1(t+ u) = ξ(γ1(t+ u)) = ξ(β1(t))

and similarly, β̇2(t) = ξ(β2(t)). We also have

β1(0) = γ1(u) = γ2(u) = β2(0) = q,
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since u ∈ Q (where γ1(u) = γ2(u)). Thus, β1: (I1 − u) → M and β2: (I2 − u) → M are
two integral curves with the same initial condition, q. By Theorem 3.16, the uniqueness of
local flow implies that there is some open interval, Ĩ ⊆ I1 ∩ I2 − u, such that β1 = β2 on Ĩ.
Consequently, γ1 and γ2 agree on Ĩ + u, an open subset of Q, proving that Q is indeed open
in I1 ∩ I2.

Proposition 3.17 implies the important fact that there is a unique maximal integral curve
with initial condition p. Indeed, if {γk: Ik →M}k∈K is the family of all integral curves with
initial condition p (for some big index set, K), if we let I(p) =

⋃
k∈K Ik, we can define a

curve, γp: I(p) →M , so that

γp(t) = γk(t), if t ∈ Ik.

Since γk and γl agree on Ik ∩ Il for all k, l ∈ K, the curve γp is indeed well defined and it is
clearly an integral curve with initial condition p with the largest possible domain (the open
interval, I(p)). The curve γp is called the maximal integral curve with initial condition p and
it is also denoted γ(t, p). Note that Proposition 3.17 implies that any two distinct integral
curves are disjoint, i.e., do not intersect each other.

The following interesting question now arises: Given any p0 ∈M , if γp0 : I(p0) →M is the
maximal integral curve with initial condition p0, for any t1 ∈ I(p0), and if p1 = γp0(t1) ∈M ,
then there is a maximal integral curve, γp1 : I(p1) → M , with initial condition p1. What is
the relationship between γp0 and γp1 , if any? The answer is given by

Proposition 3.18 Let ξ be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2) and let p0 be
a point on M . If γp0 : I(p0) →M is the maximal integral curve with initial condition p0, for
any t1 ∈ I(p0), if p1 = γp0(t1) ∈ M and γp1 : I(p1) → M is the maximal integral curve with
initial condition p1, then

I(p1) = I(p0)− t1 and γp1(t) = γγp0 (t1)(t) = γp0(t+ t1), for all t ∈ I(p0)− t1.

Proof . Let γ(t) be the curve given by

γ(t) = γp0(t+ t1), for all t ∈ I(p0)− t1.

Clearly, γ is defined on I(p0)− t1 and

γ̇(t) = γ̇p0(t+ t1) = ξ(γp0(t+ t1)) = ξ(γ(t))

and γ(0) = γp0(t1) = p1. Thus, γ is an integal curve defined on I(p0) − t1 with initial

condition p1. If γ was defined on an interval, Ĩ ⊇ I(p0) − t1 with Ĩ 6= I(p0) − t1, then γp0

would be defined on Ĩ + t1 ⊃ I(p0), an interval strictly bigger than I(p0), contradicting the
maximality of I(p0). Therefore, I(p0)− t1 = I(p1).

It is useful to restate Proposition 3.18 by changing point of view. So far, we have been
focusing on integral curves, i.e., given any p0 ∈M , we let t vary in I(p0) and get an integral
curve, γp0 , with domain I(p0).
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Instead of holding p0 ∈M fixed, we can hold t ∈ R fixed and consider the set

Dt(ξ) = {p ∈M | t ∈ I(p)},

i.e., the set of points such that it is possible to “travel for t units of time from p” along
the maximal integral curve, γp, with initial condition p (It is possible that Dt(ξ) = ∅). By
definition, if Dt(ξ) 6= ∅, the point γp(t) is well defined, and so, we obtain a map,

Φξ
t :Dt(ξ) →M , with domain Dt(ξ), given by

Φξ
t (p) = γp(t).

The above suggests the following definition:

Definition 3.21 Let ξ be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2). For any t ∈ R,
let

Dt(ξ) = {p ∈M | t ∈ I(p)} and D(ξ) = {(t, p) ∈ R×M | t ∈ I(p)}
and let Φξ:D(ξ) →M be the map given by

Φξ(t, p) = γp(t).

The map Φξ is called the (global) flow of ξ and D(ξ) is called its domain of definition. For
any t ∈ R such that Dt(ξ) 6= ∅, the map, p ∈ Dt(ξ) 7→ Φξ(t, p) = γp(t), is denoted by Φξ

t

(i.e., Φξ
t (p) = Φξ(t, p) = γp(t)).

Observe that
D(ξ) =

⋃
p∈M

(I(p)× {p}).

Also, using the Φξ
t notation, the property of Proposition 3.18 reads

Φξ
s ◦ Φξ

t = Φξ
s+t, (∗)

whenever both sides of the equation make sense. Indeed, the above says

Φξ
s(Φ

ξ
t (p)) = Φξ

s(γp(t)) = γγp(t)(s) = γp(s+ t) = Φξ
s+t(p).

Using the above property, we can easily show that the Φξ
t are invertible. In fact, the

inverse of Φξ
t is Φξ

−t. First, note that

D0(ξ) = M and Φξ
0 = id,

because, by definition, Φξ
0(p) = γp(0) = p, for every p ∈M . Then, (∗) implies that

Φξ
t ◦ Φξ

−t = Φξ
t+−t = Φξ

0 = id,

which shows that Φξ
t :Dt(ξ) → D−t(ξ) and Φξ

−t:D−t(ξ) → Dt(ξ) are inverse of each other.

Moreover, each Φξ
t is a Ck−1-diffeomorphism. We summarize in the following proposition

some additional properties of the domains D(ξ), Dt(ξ) and the maps Φξ
t (for a proof, see

Lang [38] or Warner [59]):
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Theorem 3.19 Let ξ be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2). The following
properties hold:

(a) For every t ∈ R, if Dt(ξ) 6= ∅, then Dt(ξ) is open (this is trivially true if Dt(ξ) = ∅).

(b) The domain, D(ξ), of the flow, Φξ, is open and the flow is a Ck−1 map, Φξ:D(ξ) →M .

(c) Each Φξ
t :Dt(ξ) → D−t(ξ) is a Ck−1-diffeomorphism with inverse Φξ

−t.

(d) For all s, t ∈ R, the domain of definition of Φξ
s ◦Φξ

t is contained but generally not equal
to Ds+t(ξ). However, dom(Φξ

s ◦Φξ
t ) = Ds+t(ξ) if s and t have the same sign. Moreover,

on dom(Φξ
s ◦ Φξ

t ), we have
Φξ

s ◦ Φξ
t = Φξ

s+t.

The reason for using the terminology flow in referring to the map Φξ can be clarified
as follows: For any t such that Dt(ξ) 6= ∅, every integral curve, γp, with initial condition
p ∈ Dt(ξ), is defined on some open interval containing [0, t], and we can picture these curves
as “flow lines” along which the points p flow (travel) for a time interval t. Then, Φξ(t, p) is
the point reached by “flowing” for the amount of time t on the integral curve γp (through p)
starting from p. Intuitively, we can imagine the flow of a fluid through M , and the vector
field ξ is the field of velocities of the flowing particles.

Given a vector field, ξ, as above, it may happen that Dt(ξ) = M , for all t ∈ R. In this
case, namely, when D(ξ) = R×M , we say that the vector field ξ is complete. Then, the Φξ

t

are diffeomorphisms of M and they form a group. The family {Φξ
t}t∈R a called a 1-parameter

group of ξ. In this case, Φξ induces a group homomorphism, (R,+) −→ Diff(M), from the
additive group R to the group of Ck−1-diffeomorphisms of M .

By abuse of language, even when it is not the case that Dt(ξ) = M for all t, the family
{Φξ

t}t∈R is called a local 1-parameter group of ξ, even though it is not a group, because the
composition Φξ

s ◦ Φξ
t may not be defined.

When M is compact, it turns out that every vector field is complete, a nice and useful
fact.

Proposition 3.20 Let ξ be a Ck−1 vector field on a Ck-manifold, M , (k ≥ 2). If M
is compact, then ξ is complete, i.e., D(ξ) = R × M . Moreover, the map t 7→ Φξ

t is a
homomorphism from the additive group R to the group, Diff(M), of (Ck−1) diffeomorphisms
of M .

Proof . Pick any p ∈M . By Theorem 3.16, there is a local flow, ϕp: J(p)×U(p) →M , where
J(p) ⊆ R is an open interval containing 0 and U(p) is an open subset of M containing p, so
that for all q ∈ U(p), the map t 7→ ϕ(t, q) is an integral curve with initial condition q (where
t ∈ J(p)). Thus, we have J(p) × U(p) ⊆ D(ξ). Now, the U(p)’s form an open cover of M
and since M is compact, we can extract a finite subcover,

⋃
q∈F U(q) = M , for some finite



3.5. INTEGRAL CURVES, FLOW, ONE-PARAMETER GROUPS 85

subset, F ⊆ M . But then, we can find ε > 0 so that ]− ε,+ε[⊆ J(q), for all q ∈ F and for
all t ∈ ]− ε,+ε[ and, for all p ∈M , if γp is the maximal integral curve with initial condition
p, then ]− ε,+ε[⊆ I(p).

For any t ∈ ]− ε,+ε[ , consider the integral curve, γγp(t), with initial condition γp(t). This
curve is well defined for all t ∈ ]− ε,+ε[ , and we have

γγp(t)(t) = γp(t+ t) = γp(2t),

which shows that γp is in fact defined for all t ∈ ]− 2ε,+2ε[ . By induction, we see that

]− 2nε,+2nε[⊆ I(p),

for all n ≥ 0, which proves that I(p) = R. As this holds for all p ∈ M , we conclude that
D(ξ) = R×M .

Remark: The proof of Proposition 3.20 also applies when ξ is a vector field with compact
support (this means that the closure of the set {p ∈M | ξ(p) 6= 0} is compact).

A point p ∈M where a vector field vanishes, i.e., ξ(p) = 0, is called a critical point of ξ.
Critical points play a major role in the study of vector fields, in differential topology (e.g.,
the celebrated Poincaré–Hopf index theorem) and especially in Morse theory, but we won’t
go into this here (curious readers should consult Milnor [42], Guillemin and Pollack [31]
or DoCarmo [21], which contains an informal but very clear presentation of the Poincaré–
Hopf index theorem). Another famous theorem about vector fields says that every smooth
vector field on a sphere of even dimension (S2n) must vanish in at least one point (the so-
called “hairy-ball theorem”. On S2, it says that you can’t comb your hair without having a
singularity somewhere. Try it, it’s true!).

Let us just observe that if an integral curve, γ, passes through a critical point, p, then γ
is reduced to the point p, i.e., γ(t) = p, for all t. Indeed, such a curve is an integral curve
with initial condition p. By the uniqueness property, it is the only one. Then, we see that
if a maximal integral curve is defined on the whole of R, either it is injective (it has no
self-intersection), or it is simply periodic (i.e., there is some T > 0 so that γ(t + T ) = γ(t),
for all t ∈ R and γ is injective on [0, T [ ), or it is reduced to a single point.

We conclude this section with the definition of the Lie derivative of a vector field with
respect to another vector field.

Say we have two vector fields ξ and η on M . For any p ∈ M , we can flow along the
integral curve of ξ with initial condition p to Φξ

t (p) (for t small enough) and then evaluate
η there, getting η(Φξ

t (p)). Now, this vector belongs to the tangent space TΦξ
t (p)(M), but

η(p) ∈ Tp(M). So to “compare” η(Φξ
t (p)) and η(p), we bring back η(Φξ

t (p)) to Tp(M) by

applying the tangent map, dΦξ
−t, at Φξ

t (p), to η(Φξ
t (p)) (Note that to alleviate the notation,

we use the slight abuse of notation dΦξ
−t instead of d(Φξ

−t)Φξ
t (p).) Then, we can form the
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difference dΦξ
−t(η(Φ

ξ
t (p))) − η(p), divide by t and consider the limit as t goes to 0. This is

the Lie derivative of η with respect to ξ at p, denoted (Lξ η)p, and given by

(Lξ η)p = lim
t−→0

dΦξ
−t(η(Φ

ξ
t (p)))− η(p)

t
=

d

dt
(dΦξ

−t(η(Φ
ξ
t (p))))

∣∣∣∣
t=0

.

It can be shown that (Lξ η)p is our old friend, the Lie bracket, i.e.,

(Lξ η)p = [ξ, η]p.

(For a proof, see Warner [59] or O’Neill [49]).

3.6 Partitions of Unity

To study manifolds, it is often necessary to construct various objects such as functions, vector
fields, Riemannian metrics, volume forms, etc., by glueing together items constructed on the
domains of charts. Partitions of unity are a crucial technical tool in this glueing process.

The first step is to define “bump functions” (also called plateau functions). For any
r > 0, we denote by B(r) the open ball

B(r) = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n < r},

and by B(r) = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n ≤ r}, its closure.

Proposition 3.21 There is a smooth function, b: Rn → R, so that

b(x) =

{
1 if x ∈ B(1)
0 if x ∈ Rn −B(2).

Proof . There are many ways to construct such a function. We can proceed as follows:
Consider the function, h: R → R, given by

h(x) =

{
e−1/x if x > 0
0 if x ≤ 0.

It is easy to show that h is C∞ (but not analytic!). Then, define b: Rn → R, by

b(x1, . . . , xn) =
h(4− x2

1 − · · · − x2
n)

h(4− x2
1 − · · · − x2

n) + h(x2
1 + · · ·+ x2

n − 1)
.

It is immediately verified that b satisfies the required conditions.

Proposition 3.21 yields the following useful technical result:
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Proposition 3.22 Let M be a smooth manifold. For any open subset, U ⊆ M , any p ∈ U
and any smooth function, f :U → R, there exist an open subset, V , with p ∈ V and V ⊆ U
and a smooth function, f̃ :M → R, defined on the whole of M , so that

f̃(q) =

{
f(q) if q ∈ V
0 if q ∈M − U .

Proof . Using a scaling function, it is easy to find a chart, (W,ϕ) at p, so that W ⊆ U ,

B(3) ⊆ ϕ(W ) and ϕ(p) = 0. Let b̃ = b ◦ ϕ, where b is the function given by Proposition

3.21. Then, b̃ is a smooth function on W and it is 0 outside of ϕ−1(B(2)) ⊆ W . We can

extend b̃ outside W , by setting it to be 0 and we get a smooth function on the whole M . If
we let V = ϕ−1(B(1)), then V is an open subset around p and clearly, V ⊆ U and b̃ = 1 on
V . Therefore, if we set

f̃(q) =

{
b̃(q)f(q) if q ∈ W
0 if q ∈M −W ,

we see that f̃ satisfies the required properties.

If X is a (Hausdorff) topological space, a family, {Uα}α∈I , of subsets Uα of X is a cover
(or covering) of X iff X =

⋃
α∈I Uα. A cover, {Uα}α∈I , such that each Uα is open is an

open cover . If {Uα}α∈I is a cover of X, for any subset, J ⊆ I, the subfamily {Uα}α∈J is a
subcover of {Uα}α∈I if X =

⋃
α∈J Uα, i.e., {Uα}α∈J is still a cover of X. Given two covers,

{Uα}α∈I and {Vβ}β∈J , we say that {Uα}α∈I is a refinement of {Vβ}β∈J iff there is a function,
h: I → J , so that Uα ⊆ Vh(α), for all α ∈ I.

A cover, {Uα}α∈I , is locally finite iff for every point, p ∈ X, there is some open subset,
U , with p ∈ U , so that U ∩Uα 6= ∅ for only finitely many α ∈ I. A space, X, is paracompact
iff every open cover as a locally finite refinement.

Remark: Recall that a space, X, is compact iff it is Hausdorff and if every open cover
has a finite subcover. Thus, the notion of paracompactess (due to Jean Dieudonné) is a
generalization of the notion of compactness.

Recall that a topological space, X, is second-countable if it has a countable basis, i.e., if
there is a countable family of open subsets, {Ui}i≥1, so that every open subset of X is the
union of some of the Ui’s. A topological space, X, if locally compact iff it is Hausdorff and
for every a ∈ X, there is some compact subset, K, and some open subset, U , with a ∈ U
and U ⊆ K. As we will see shortly, every locally compact and second-countable topological
space is paracompact.

It is important to observe that every manifold (even not second-countable) is locally
compact. Indeed, for every p ∈ M , if we pick a chart, (U,ϕ), around p, then ϕ(U) = Ω for
some open Ω ⊆ Rn (n = dimM). So, we can pick a small closed ball, B(q, ε) ⊆ Ω, of center
q = ϕ(p) and radius ε, and as ϕ is a homeomorphism, we see that

p ∈ ϕ−1(B(q, ε/2)) ⊆ ϕ−1(B(q, ε)),



88 CHAPTER 3. MANIFOLDS, TANGENT SPACES, COTANGENT SPACES

where ϕ−1(B(q, ε)) is compact and ϕ−1(B(q, ε/2)) is open.

Finally, we define partitions of unity. Given a topological space, X, for any function,
f :X → R, the support of f , denoted supp f , is the closed set

supp f = {x ∈ X | f(x) 6= 0}.

Definition 3.22 Let M be a (smooth) manifold. A partition of unity on M is a family,
{fi}i∈I , of smooth functions on M (the index set I may be uncountable) such that

(a) The family of supports, {supp fi}i∈I , is locally finite.

(b) For all i ∈ I and all p ∈M , we have 0 ≤ fi(p) ≤ 1, and∑
i∈I

fi(p) = 1, for every p ∈M.

If {Uα}α∈J is a cover of M , we say that the partition of unity {fi}i∈I is subordinate to the
cover {Uα}α∈J if {supp fi}i∈I is a refinement of {Uα}α∈J . When I = J and supp fi ⊆ Ui, we
say that {fi}i∈I is subordinate to {Uα}α∈I with the same index set as the partition of unity .

In Definition 3.22, by (a), for every p ∈M , there is some open set, U , with p ∈ U and U
meets only finitely many of the supports, supp fi. So, fi(p) 6= 0 for only finitely many i ∈ I
and the infinite sum

∑
i∈I fi(p) is well defined.

Proposition 3.23 Let X be a topological space which is second-countable and locally com-
pact (thus, also Hausdorff). Then, X is paracompact. Moreover, every open cover has a
countable, locally finite refinement consisting of open sets with compact closures.

Proof . The proof is quite technical, but since this is an important result, we reproduce
Warner’s proof for the reader’s convenience (Warner [59], Lemma 1.9).

The first step is to construct a sequence of open sets, Gi, such that

1. Gi is compact,

2. Gi ⊆ Gi+1,

3. X =
⋃∞

i=1Gi.

As M is second-countable, there is a countable basis of open sets, {Ui}i≥1, for M . Since M
is locally compact, we can find a subfamily of {Ui}i≥1 consisting of open sets with compact
closures such that this subfamily is also a basis of M . Therefore, we may assume that we
start with a countable basis, {Ui}i≥1, of open sets with compact closures. Set G1 = U1 and
assume inductively that

Gk = U1 ∪ · · · ∪ Ujk
.
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Since Gk is compact, it is covered by finitely many of the Uj’s. So, let jk+1 be the smallest
integer greater than jk so that

Gk = U1 ∪ · · · ∪ Ujk+1

and set

Gk+1 = U1 ∪ · · · ∪ Ujk+1
.

Obviously, the family {Gi}i≥1 satisfies (1)–(3).

Now, let {Uα}α∈I be an arbitrary open cover of M . For any i ≥ 3, the set Gi − Gi−1 is
compact and contained in the open Gi+1 − Gi−2. For each i ≥ 3, choose a finite subcover
of the open cover {Uα ∩ (Gi+1 −Gi−2)}α∈I of Gi −Gi−1, and choose a finite subcover of the
open cover {Uα ∩G3}α∈I of the compact set G2. We leave it to the reader to check that this
family of open sets is indeed a countable, locally finite refinement of the original open cover
{Uα}α∈I and consists of open sets with compact closures.

Remarks:

1. Proposition 3.23 implies that a second-countable, locally compact (Hausdorff) topo-
logical space is the union of countably many compact subsets. Thus, X is countable at
infinity , a notion that we already encountered in Proposition 2.23 and Theorem 2.26.
The reason for this odd terminology is that in the Alexandroff one-point compactifica-
tion ofX, the family of open subsets containing the point at infinity (ω) has a countable
basis of open sets. (The open subsets containing ω are of the form (M − K) ∪ {ω},
where K is compact.)

2. A manifold that is countable at infinity has a countable open cover by domains of
charts. This is because, if M =

⋃
i≥1Ki, where the Ki ⊆M are compact, then for any

open cover of M by domains of charts, for every Ki, we can extract a finite subcover,
and the union of these finite subcovers is a countable open cover of M by domains
of charts. But then, since for every chart, (Ui, ϕi), the map ϕi is a homeomorphism
onto some open subset of Rn, which is second-countable, so we deduce easily that M
is second-countable. Thus, for manifolds, second-countable is equivalent to countable
at infinity.

We can now prove the main theorem stating the existence of partitions of unity. Recall
that we are assuming that our manifolds are Hausdorff and second-countable.

Theorem 3.24 Let M be a smooth manifold and let {Uα}α∈I be an open cover for M .
Then, there is a countable partition of unity, {fi}i≥1, subordinate to the cover {Uα}α∈I and
the support, supp fi, of each fi is compact. If one does not require compact supports, then
there is a partition of unity, {fα}α∈I , subordinate to the cover {Uα}α∈I with at most countably
many of the fα not identically zero. (In the second case, supp fα ⊆ Uα.)
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Proof . Again, we reproduce Warner’s proof (Warner [59], Theorem 1.11). As our manifolds
are second-countable, Hausdorff and locally compact, from the proof of Proposition 3.23, we
have the sequence of open subsets, {Gi}i≥1 and we set G0 = ∅. For any p ∈M , let ip be the
largest integer such that p ∈M −Gip . Choose an αp such that p ∈ Uαp ; we can find a chart,

(U,ϕ), centered at p such that U ⊆ Uαp ∩ (Gip+2 −Gip) and such that B(2) ⊆ ϕ(U). Define

ψp =

{
b ◦ ϕ on U
0 on M − U ,

where b is the bump function defined just before Proposition 3.21. Then, ψp is a smooth
function on M which has value 1 on some open subset Wp containing p and has compact
support lying in U ⊆ Uαp ∩ (Gip+2−Gip). For each i ≥ 1, choose a finite set of points p ∈M
whose corresponding opens Wp cover Gi −Gi−1. Order the corresponding ψp functions in a
sequence ψj, j = 1, 2, . . . . The supports of the ψj form a locally finite family of subsets of
M . Thus, the function

ψ =
∞∑

j=1

ψj

is well-defined on M and smooth. Moreover, ψ(p) > 0 for each p ∈M . For each i ≥ 1, set

fi =
ψi

ψ
.

Then, the family, {fi}i≥1, is a partition of unity subordinate to the cover {Uα}α∈I and supp fi

is compact for all i ≥ 1.

Now, when we don’t require compact support, if we let fα be identically zero if no fi

has support in Uα and otherwise let fα be the sum of the fi with support in Uα, then we
obtain a partition of unity subordinate to {Uα}α∈I with at most countably many of the fα

not identically zero. We must have supp fα ⊆ Uα because for any locally finite family of
closed sets, {Fβ}β∈J , we have

⋃
β∈J Fβ =

⋃
β∈J Fβ.

We close this section by stating a famous theorem of Whitney whose proof uses partitions
of unity.

Theorem 3.25 (Whitney, 1935) Any smooth manifold (Hausdorff and second-countable),
M , of dimension n is diffeomorphic to a closed submanifold of R2n+1.

For a proof, see Hirsch [33], Chapter 2, Section 2, Theorem 2.14.

3.7 Manifolds With Boundary

Up to now, we have defined manifolds locally diffeomorphic to an open subset of Rm. This
excludes many natural spaces such as a closed disk, whose boundary is a circle, a closed ball,
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B(1), whose boundary is the sphere, Sm−1, a compact cylinder, S1 × [0, 1], whose boundary
consist of two circles, a Möbius strip, etc. These spaces fail to be manifolds because they
have a boundary, that is, neighborhoods of points on their boundaries are not diffeomorphic
to open sets in Rm. Perhaps the simplest example is the (closed) upper half space,

Hm = {(x1, . . . , xm) ∈ Rm | xm ≥ 0}.

Under the natural emdedding Rm−1 ∼= Rm−1×{0} ↪→ Rm, the subset ∂Hm of Hm defined by

∂Hm = {x ∈ Hm | xm = 0}

is isomorphic to Rm−1 and is called the boundary of Hm. We also define the interior of Hm

as

Int(Hm) = Hm − ∂Hm.

Now, if U and V are open subsets of Hm, where Hm ⊆ Rm has the subset topology, and
if f :U → V is a continuous function, we need to explain what we mean by f being smooth.
We say that f :U → V , as above, is smooth if it has an extension, f̃ : Ũ → Ṽ , where Ũ and
Ṽ are open subsets of Rm with U ⊆ Ũ and V ⊆ Ṽ and with f̃ a smooth function. We say
that f is a (smooth) diffeomorphism iff f−1 exists and if both f and f−1 are smooth, as just
defined.

To define a manifold with boundary , we replace everywhere R by H in Definition 3.1 and
Definition 3.2. So, for instance, given a topological space, M , a chart is now pair, (U,ϕ),
where U is an open subset of M and ϕ:U → Ω is a homeomorphism onto an open subset,
Ω = ϕ(U), of Hnϕ (for some nϕ ≥ 1), etc. Thus, we obtain

Definition 3.23 Given any two integers, n ≥ 1 and k ≥ 1, a Ck-manifold of dimension
n with boundary consists of a topological space, M , together with an equivalence class, A,
of Ck n-atlases, on M (where the charts are now defined in terms of open subsets of Hn).
Any atlas, A, in the equivalence class A is called a differentiable structure of class Ck (and
dimension n) on M . We say that M is modeled on Hn. When k = ∞, we say that M is a
smooth manifold with boundary .

It remains to define what is the boundary of a manifold with boundary! By definition, the
boundary , ∂M , of a manifold (with boundary), M , is the set of all points, p ∈M , such that
there is some chart, (Uα, ϕα), with p ∈ Uα and ϕα(p) ∈ ∂Hn. We also let Int(M) = M −∂M
and call it the interior of M .

� Do not confuse the boundary ∂M and the interior Int(M) of a manifold with bound-
ary embedded in RN with the topological notions of boundary and interior of M as a

topological space. In general, they are different.
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Note that manifolds as defined earlier (In Definition 3.3) are also manifolds with bound-
ary: their boundary is just empty. We shall still reserve the word “manifold” for these, but
for emphasis, we will sometimes call them “boundaryless”.

The definition of tangent spaces, tangent maps, etc., are easily extended to manifolds
with boundary. The reader should note that if M is a manifold with boundary of dimension
n, the tangent space, TpM , is defined for all p ∈M and has dimension n, even for boundary
points, p ∈ ∂M . The only notion that requires more care is that of a submanifold. For more
on this, see Hirsch [33], Chapter 1, Section 4. One should also beware that the product of two
manifolds with boundary is generally not a manifold with boundary (consider the product
[0, 1]× [0, 1] of two line segments). There is a generalization of the notion of a manifold with
boundary called manifold with corners and such manifolds are closed under products (see
Hirsch [33], Chapter 1, Section 4, Exercise 12).

If M is a manifold with boundary, we see that Int(M) is a manifold without boundary.
What about ∂M? Interestingly, the boundary, ∂M , of a manifold with boundary, M , of
dimension n, is a manifold of dimension n− 1. For this, we need the following Proposition:

Proposition 3.26 If M is a manifold with boundary of dimension n, for any p ∈ ∂M on
the boundary on M , for any chart, (U,ϕ), with p ∈M , we have ϕ(p) ∈ ∂Hn.

Proof . Since p ∈ ∂M , by definition, there is some chart, (V, ψ), with p ∈ V and ψ(p) ∈ ∂Hn.
Let (U,ϕ) be any other chart, with p ∈ M and assume that q = ϕ(p) ∈ Int(Hn). The
transition map, ψ ◦ϕ−1:ϕ(U ∩V ) → ψ(U ∩V ), is a diffeomorphism and q = ϕ(p) ∈ Int(Hn).
By the inverse function theorem, there is some open, W ⊆ ϕ(U ∩ V ) ∩ Int(Hn) ⊆ Rn, with
q ∈ W , so that ψ ◦ ϕ−1 maps W homeomorphically onto some subset, Ω, open in Int(Hn),
with ψ(p) ∈ Ω, contradicting the hypothesis, ψ(p) ∈ ∂Hn.

Using Proposition 3.26, we immediately derive the fact that ∂M is a manifold of dimen-
sion n− 1. We obtain charts on ∂M by considering the charts (U ∩ ∂M,L ◦ϕ), where (U,ϕ)
is a chart on M such that U ∩ ∂M = ϕ−1(∂Hn) 6= ∅ and L: ∂Hn → Rn−1 is the natural
isomorphism.

3.8 Orientation of Manifolds

Although the notion of orientation of a manifold is quite intuitive it is technically rather
subtle. We restrict our discussion to smooth manifolds (although the notion of orientation
can also be defined for topological manifolds but more work is involved).

Intuitively, a manifold, M , is orientable if it is possible to give a consistent orientation to
its tangent space, TpM , at every point, p ∈ M . So, if we go around a closed curve starting
at p ∈M , when we come back to p, the orientation of TpM should be the same as when we
started. For exampe, if we travel on a Möbius strip (a manifold with boundary) dragging a
coin with us, we will come back to our point of departure with the coin flipped. Try it!



3.8. ORIENTATION OF MANIFOLDS 93

To be rigorous, we have to say what it means to orient TpM (a vector space) and what
consistency of orientation means. We begin by quickly reviewing the notion of orientation of
a vector space. Let E be a vector space of dimension n. If u1, . . . , un and v1, . . . , vn are two
bases of E, a basic and crucial fact of linear algebra says that there is a unique linear map,
g, mapping each ui to the corresponding vi (i.e., g(ui) = vi, i = 1, . . . , n). Then, look at the
determinant, det(g), of this map. We know that det(g) = det(P ), where P is the matrix
whose j-th columns consist of the coordinates of vj over the basis u1, . . . , un. Either det(g)
is negative or it is positive. Thus, we define an equivalence relation on bases by saying that
two bases have the same orientation iff the determinant of the linear map sending the first
basis to the second has positive determinant. An orientation of E is the choice of one of the
two equivalence classes, which amounts to picking some basis as an orientation frame.

The above definition is perfectly fine but it turns out that it is more convenient, in the long
term, to use a definition of orientation in terms of alternate multi-linear maps (in particular,
to define the notion of integration on a manifold). Recall that a function, h:Ek → R, is
alternate multi-linear (or alternate k-linear) iff it is linear in each of its arguments (holding
the others fixed) and if

h(. . . , x, . . . , x, . . .) = 0,

that is, h vanishes whenever two of its arguments are identical. Using multi-linearity, we
immediately deduce that h vanishes for all k-tuples of arguments, u1, . . . , uk, that are linearly
dependent and that h is skew-symmetric, i.e.,

h(. . . , y, . . . , x, . . .) = −h(. . . , x, . . . , y, . . .).

In particular, for k = n, it is easy to see that if u1, . . . , un and v1, . . . , vn are two bases, then

h(v1, . . . , vn) = det(g)h(u1, . . . , un),

where g is the unique linear map sending each ui to vi. This shows that any alternating
n-linear function is a multiple of the determinant function and that the space of alternating
n-linear maps is a one-dimensional vector space that we will denote

∧nE∗.1 We also call
an alternating n-linear map an n-form. But then, observe that two bases u1, . . . , un and
v1, . . . , vn have the same orientation iff

ω(u1, . . . , un) and ω(v1, . . . , vn) have the same sign for all ω ∈
∧nE∗ − {0}

(where 0 denote the zero n-form) . As
∧nE∗ is one-dimensional, picking an orientation of

E is equivalent to picking a generator (a one-element basis), ω, of
∧nE∗, and to say that

u1, . . . , un has positive orientation iff ω(u1, . . . , un) > 0.

Given an orientation (say, given by ω ∈
∧nE∗) of E, a linear map, f :E → E, is

orientation preserving iff ω(f(u1), . . . , f(un)) > 0 (or equivalently, iff det(f) > 0).

1We are using the wedge product notation of exterior calculus even though we have not defined alternating
tensors and the wedge product. This is standard notation and we hope that the reader will not be confused.
In fact, in finite dimension, the space of alternating n-linear maps and

∧n
E∗ are isomorphic.
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Now, to define the orientation of an n-dimensional manifold, M , we use charts. Given
any p ∈ M , for any chart, (U,ϕ), at p, the tangent map, dϕ−1

ϕ(p): R
n → TpM makes sense.

If (e1, . . . , en) is the standard basis of Rn, as it gives an orientation to Rn, we can orient
TpM by giving it the orientation induced by the basis dϕ−1

ϕ(p)(e1), . . . , dϕ
−1
ϕ(p)(en). Then, the

consistency of orientations of the TpM ’s is given by the overlapping of charts. We require that
the Jacobian determinants of all ϕi ◦ϕ−1

j have the same sign, whenever (Ui, ϕi) and (Uj, ϕj)
are any two overlapping charts. Thus, we are led to the definition below. All definitions and
results stated in the rest of this section apply to manifolds with or without boundary.

Definition 3.24 Given a smooth manifold, M , of dimension n, an orientation atlas of M
is any atlas so that the transition maps, ϕj

i = ϕj ◦ϕ−1
i , (from ϕi(Ui ∩Uj) to ϕj(Ui ∩Uj)) all

have a positive Jacobian determinant for every point in ϕi(Ui∩Uj). A manifold is orientable
iff its has some orientation atlas.

Definition 3.24 can be hard to check in practice and there is an equivalent criterion is
terms of n-forms which is often more convenient. The idea is that a manifold of dimension
n is orientable iff there is a map, p 7→ ωp, assigning to every point, p ∈ M , a nonzero
n-form, ωp ∈

∧n T ∗pM , so that this map is smooth. In order to explain rigorously what it
means for such a map to be smooth, we can define the exterior n-bundle,

∧n T ∗M (also
denoted

∧∗
nM) in much the same way that we defined the bundles TM and T ∗M . There

is an obvious smooth projection map π:
∧n T ∗M → M . Then, leaving the details of the

fact that
∧n T ∗M can be made into a smooth manifold (of dimension n) as an exercise, a

smooth map, p 7→ ωp, is simply a smooth section of the bundle
∧n T ∗M , i.e., a smooth map,

ω:M →
∧n T ∗M , so that π ◦ ω = id.

Definition 3.25 If M is an n-dimensional manifold, a smooth section, ω ∈ Γ(M,
∧n T ∗M),

is called a (smooth) n-form. The set of n-forms, Γ(M,
∧n T ∗M), is also denoted An(M).

An n-form, ω, is a nowhere-vanishing n-form on M or volume form on M iff ωp is a nonzero
form for every p ∈ M . This is equivalent to saying that ωp(u1, . . . , un) 6= 0, for all p ∈ M
and all bases, u1, . . . , un, of TpM .

The determinant function, (u1, . . . , un) 7→ det(u1, . . . , un), where the ui are expressed
over the canonical basis (e1, . . . , en) of Rn, is a volume form on Rn. We will denote this
volume form by ω0. Another standard notation is dx1 ∧ · · · ∧ dxn, but this notation may
be very puzzling for readers not familiar with exterior algebra. Observe the justification
for the term volume form: the quantity det(u1, . . . , un) is indeed the (signed) volume of the
parallelepiped

{λ1u1 + · · ·+ λnun | 0 ≤ λi ≤ 1, 1 ≤ i ≤ n}.

A volume form on the sphere Sn ⊆ Rn+1 is obtained as follows:

ωp(u1, . . . un) = det(p, u1, . . . un),
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where p ∈ Sn and u1, . . . un ∈ TpM . As the ui are orthogonal to p, this is indeed a volume
form.

Observe that if f is a smooth function on M and ω is any n-form, then fω is also an
n-form.

Definition 3.26 Let ϕ:M → N be a smooth map of manifolds of the same dimension, n,
and let ω ∈ An(N) be an n-form on N . The pullback, ϕ∗ω, of ω to M is the n-form on M
given by

ϕ∗ωp(u1, . . . , un) = ωϕ(p)(dϕp(u1), . . . , dϕp(un)),

for all p ∈M and all u1, . . . , un ∈ TpM .

One checks immediately that ϕ∗ω is indeed an n-form on M . More interesting is the
following Proposition:

Proposition 3.27 (a) If ϕ:M → N is a local diffeomorphism of manifolds, where dimM =
dimN = n, and ω ∈ An(N) is a volume form on N , then ϕ∗ω is a volune form on M . (b)
Assume M has a volume form, ω. Then, for every n-form, η ∈ An(M), there is a unique
smooth function, f , never zero on M so that η = fω.

Proof . (a) By definition,

ϕ∗ωp(u1, . . . , un) = ωϕ(p)(dϕp(u1), . . . , dϕp(un)),

for all p ∈M and all u1, . . . , un ∈ TpM . As ϕ is a local diffeomorphism, dpϕ is a bijection for
every p. Thus, if u1, . . . , un is a basis, then so is dϕp(u1), . . . , dϕp(un), and as ω is nonzero
at every point for every basis, ϕ∗ωp(u1, . . . , un) 6= 0.

(b) Pick any p ∈ M and let (U,ϕ) be any chart at p. As ϕ is a diffeomorphism, by (a),
we see that ϕ−1∗ω and ϕ−1∗η are volume forms on ϕ(U). But then, it is easy to see that
ϕ−1∗η = gϕ−1∗ω, for some unique smooth never zero function, g, on ϕ(U) and so, η = fUω,
for some unique smooth never zero function, fU , on U . For any two overlapping charts,
(Ui, ϕi) and (Uj, ϕj), for every p ∈ Ui ∩ Uj, for every basis u1, . . . , un of TpM , we have

ηp(u1, . . . , un) = fi(p)ωp(u1, . . . , un) = fj(p)ωp(u1, . . . , un),

and as ηp(u1, . . . , un) 6= 0, we deduce that fi and fj agree on Ui ∩ Uj. But, then the fi’s
patch on the overlaps of the cover, {Ui}, of M , and so, there is a smooth function, f , defined
on the whole of M and such that f � Ui = fi. As the fi’s are unique, so is f .

Remark: if ϕ and ψ are smooth maps of manifolds, it is easy to prove that

(ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗
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and that

ϕ∗(fω) = (f ◦ ϕ)ϕ∗ω,

where f is any smooth function on M and ω is any n-form.

The connection between Definition 3.24 and volume forms is given by the following im-
portant theorem whose proof contains a wonderful use of partitions of unity.

Theorem 3.28 A smooth manifold (Hausdorff and second-countable) is orientable iff it pos-
sesses a volume form.

Proof . First, assume that a volume form, ω, exists on M , and say n = dimM . For any atlas,
(Ui, ϕi)i, of M , by Proposition 3.27, each n-form, ϕ−1

i

∗
ω, is a volume form on ϕi(Ui) ⊆ Rn

and

ϕ−1
i

∗
ω = fiω0,

for some smooth function, fi, never zero on ϕi(Ui), where ω0 is a volume form on Rn. By
composing ϕi with an orientation-reversing linear map if necessary, we may assume that for
this new altlas, fi > 0 on ϕi(Ui). We claim that the family (Ui, ϕi)i is an orientation atlas.
This is because, on any (nonempty) overlap, Ui ∩ Uj, we have

(ϕj ◦ ϕ−1
i )∗(fjω0) = fiω0,

and by the definition of pullbacks, we see that for every x ∈ ϕi(Ui ∩ Uj), if we let
y = ϕj ◦ ϕ−1

i (x), then

(ϕj ◦ ϕ−1
i )∗x(fjω0)(e1, . . . , en) = fj(y)ω0(d(ϕj ◦ ϕ−1

i )x(e1), . . . , d(ϕj ◦ ϕ−1
i )x(en))

= fj(y)J((ϕj ◦ ϕ−1
i )x)ω0,

where e1, . . . , en is the standard basis of Rn and J((ϕj ◦ ϕ−1
i )x) is the Jacobian determinant

of ϕj ◦ ϕ−1
i at x. As both fj(y) > 0 and fi(x) > 0, we have J((ϕj ◦ ϕ−1

i )x) > 0, as desired.

Conversely, assume that J((ϕj ◦ϕ−1
i )x) > 0, for all x ∈ ϕi(Ui∩Uj), whenever Ui∩Uj 6= ∅.

We need to make a volume form on M . For each Ui, let

ωi = ϕ∗iω0.

As ϕi is a diffeomorphism, by Proposition 3.27, we see that ωi is a volume form on Ui. Then,
if we apply Theorem 3.24, we can find a partition of unity, {fi}, subordinate to the cover
{Ui}, with the same index set. Let,

ω =
∑

i

fiωi.

We claim that ω is a volume form on M .
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It is clear that ω is an n-form on M . Now, since every p ∈M belongs to some Ui, check
that on ϕi(Ui), we have

ϕ−1
i

∗
ω =

∑
j∈finite set

ϕ−1
i

∗
(fjωj) =

(∑
j

(fj ◦ ϕ−1
i )J(ϕj ◦ ϕ−1

i )

)
ω0

and this sum is strictly positive because the Jacobian determinants are positive and as∑
j fj = 1 and fj ≥ 0, some term must be strictly positive. Therefore, ϕ−1

i

∗
ω is a volume

form on ϕi(Ui) and so, ϕ∗iϕ
−1
i

∗
ω = ω is a volume form on Ui. As this holds for all Ui, we

conclude that ω is a volume form on M .

Since we showed that there is a volume form on the sphere, Sn, by Theorem 3.28, the
sphere Sn is orientable. It can be shown that the projective spaces, RPn, are non-orientable
iff n is even an thus, orientable iff n is odd. In particular, RP2 is not orientable. Also, even
though M may not be orientable, its tangent bundle, T (M), is always orientable! (Prove
it). It is also easy to show that if f : Rn+1 → R is a smooth submersion, then M = f−1(0) is
a smooth orientable manifold. Another nice fact is that every Lie group is orientable.
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Chapter 4

Lie Groups, Lie Algebras and the
Exponential Map

4.1 Lie Groups and Lie Algebras

In Gallier [27], Chapter 14, we defined the notion of a Lie group as a certain type of manifold
embedded in RN , for some N ≥ 1. Now that we have the general concept of a manifold,
we can define Lie groups in more generality. Besides classic references on Lie groups and
Lie Algebras, such as Chevalley [16], Knapp [36], Warner [59], Duistermaat and Kolk [25],
Bröcker and tom Dieck [11], Sagle and Walde [53], Fulton and Harris [26] and Bourbaki [8],
one should be aware of more introductory sources and surveys such as Hall [32], Sattinger and
Weaver [55], Carter, Segal and Macdonald [14], Curtis [18], Baker [3], Bryant [12], Mneimné
and Testard [44] and Arvanitoyeogos [1].

Definition 4.1 A Lie group is a nonempty subset, G, satisfying the following conditions:

(a) G is a group (with identity element denoted e or 1).

(b) G is a smooth manifold.

(c) G is a topological group. In particular, the group operation, · :G × G → G, and the
inverse map, −1:G→ G, are smooth.

We have already met a number of Lie groups: GL(n,R), GL(n,C), SL(n,R), SL(n,C),
O(n), SO(n), U(n), SU(n), E(n,R). Also, every linear Lie group (i.e., a closed subgroup
of GL(n,R)) is a Lie group.

We saw in the case of linear Lie groups that the tangent space to G at the identity,
g = T1G, plays a very important role. In particular, this vector space is equipped with a
(non-associative) multiplication operation, the Lie bracket, that makes g into a Lie algebra.
This is again true in this more general setting.

Recall that Lie algebras are defined as follows:

99
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Definition 4.2 A (real) Lie algebra, A, is a real vector space together with a bilinear map,
[·, ·]:A×A → A, called the Lie bracket on A such that the following two identities hold for
all a, b, c ∈ A:

[a, a] = 0,

and the so-called Jacobi identity

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0.

It is immediately verified that [b, a] = −[a, b].

Let us also recall the definition of homomorphisms of Lie groups and Lie algebras.

Definition 4.3 Given two Lie groups G1 and G2, a homomorphism (or map) of Lie groups
is a function, f :G1 → G2, that is a homomorphism of groups and a smooth map (between
the manifolds G1 and G2). Given two Lie algebras A1 and A2, a homomorphism (or map)
of Lie algebras is a function, f :A1 → A2, that is a linear map between the vector spaces A1

and A2 and that preserves Lie brackets, i.e.,

f([A,B]) = [f(A), f(B)]

for all A,B ∈ A1.

An isomorphism of Lie groups is a bijective function f such that both f and f−1 are
maps of Lie groups, and an isomorphism of Lie algebras is a bijective function f such that
both f and f−1 are maps of Lie algebras.

The Lie bracket operation on g can be defined in terms of the so-called adjoint represen-
tation.

Given a Lie group G, for every a ∈ G we define left translation as the map, La:G→ G,
such that La(b) = ab, for all b ∈ G, and right translation as the map, Ra:G → G, such
that Ra(b) = ba, for all b ∈ G. Because multiplication and the inverse maps are smooth,
the maps La and Ra are diffeomorphisms, and their derivatives play an important role. The
inner automorphisms Ra−1 ◦ La (also written Ra−1La or Ada) also play an important role.
Note that

Ra−1La(b) = aba−1.

The derivative
d(Ra−1La)1: g → g

of Ra−1La at 1 is an isomorphism of Lie algebras, denoted by Ada: g → g. The map a 7→ Ada

is a map of Lie groups
Ad:G→ GL(g),

called the adjoint representation of G (where GL(g) denotes the Lie group of all bijective
linear maps on g).
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In the case of a linear group, one can verify that

Ad(a)(X) = Ada(X) = aXa−1

for all a ∈ G and all X ∈ g. The derivative

dAd1: g → gl(g)

of Ad at 1 is map of Lie algebras, denoted by

ad: g → gl(g),

called the adjoint representation of g (where gl(g) denotes the Lie algebra, End(g, g), of all
linear maps on g).

In the case of a linear group, it can be verified that

ad(A)(B) = [A, B]

for all A,B ∈ g.

One can also check (in general) that the Jacobi identity on g is equivalent to the fact
that ad preserves Lie brackets, i.e., ad is a map of Lie algebras:

ad([u, v]) = [ad(u), ad(v)],

for all u, v ∈ g (where on the right, the Lie bracket is the commutator of linear maps on g).

This is the key to the definition of the Lie bracket in the case of a general Lie group (not
just a linear Lie group).

Definition 4.4 Given a Lie group, G, the tangent space, g = T1G, at the identity with the
Lie bracket defined by

[u, v] = ad(u)(v), for all u, v ∈ g,

is the Lie algebra of the Lie group G.

Actually, we have to justify why g really is a Lie algebra. For this, we have

Proposition 4.1 Given a Lie group, G, the Lie bracket, [u, v] = ad(u)(v), of Definition 4.4
satisfies the axioms of a Lie algebra (given in Definition 4.2). Therefore, g with this bracket
is a Lie algebra.

Proof . The proof requires Proposition 4.8, but we prefer to defer the proof of this Proposition
until section 4.3. Since

Ad:G→ GL(g)
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is a Lie group homomorphism, by Proposition 4.8, the map ad = dAd1 is a homomorphism
of Lie algebras, ad: g → gl(g), which means that

ad([u, v]) = ad(u) ◦ ad(v)− ad(v) ◦ ad(u), for all u, v ∈ g,

since the bracket in gl(g) = End(g, g), is just the commutator. Applying the above to
w ∈ g, we get the Jacobi identity. We still have to prove that [u, u] = 0, or equivalently,
that [v, u] = −[u, v]. For this, following Duistermaat and Kolk [25] (Chapter 1, Section 1),
consider the map

G×G −→ G: (a, b) 7→ aba−1b−1.

It is easy to see that its differential at (1, 1) is the zero map. We can then compute the
differential w.r.t. b at b = 1 and evaluate at v ∈ g, getting (Ada − id)(v). Then, the second
derivative w.r.t. a at a = 1 evaluated at u ∈ g is [u, v]. On the other hand if we differentiate
first w.r.t. a and then w.r.t. b, we first get (id − Adb)(u) and then −[v, u]. As our original
map is smooth, the second derivative is bilinear symmetric, so [u, v] = −[v, u].

Remark: After proving that g is isomorphic to the vector space of left-invariant vector fields
on G, we get another proof of Proposition 4.1.

4.2 Left and Right Invariant Vector Fields, the Expo-

nential Map

A fairly convenient way to define the exponential map is to use left-invariant vector fields.

Definition 4.5 If G is a Lie group, a vector field, ξ, on G is left-invariant (resp. right-
invariant) iff

d(La)b(ξ(b)) = ξ(La(b)) = ξ(ab), for all a, b ∈ G.

(resp.
d(Ra)b(ξ(b)) = ξ(Ra(b)) = ξ(ba), for all a, b ∈ G.)

Equivalently, a vector field, ξ, is left-invariant iff the following diagram commutes (and
similarly for a right-invariant vector field):

TbG
d(La)b// TabG

G
La

//

ξ

OO

G

ξ

OO

If ξ is a left-invariant vector field, setting b = 1, we see that

ξ(a) = d(La)1(ξ(1)),
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which shows that ξ is determined by its value, ξ(1) ∈ g, at the identity (and similarly for
right-invariant vector fields).

Conversely, given any v ∈ g, we can define the vector field, vL, by

vL(a) = d(La)1(v), for all a ∈ G.

We claim that vL is left-invariant. This follows by an easy application of the chain rule:

vL(ab) = d(Lab)1(v)

= d(La ◦ Lb)1(v)

= d(La)b(d(Lb)1(v))

= d(La)b(v
L(b)).

Furthermore, vL(1) = v. Therefore, we showed that the map, ξ 7→ ξ(1), establishes an
isomorphism between the space of left-invariant vector fields on G and g. In fact, the map
G × g −→ TG given by (a, v) 7→ vL(a) is an isomorphism between G × g and the tangent
bundle, TG.

Remark: Given any v ∈ g, we can also define the vector field, vR, by

vR(a) = d(Ra)1(v), for all a ∈ G.

It is easily shown that vR is right-invariant and we also have an isomorphism G× g −→ TG
given by (a, v) 7→ vR(a).

Another reason left-invariant (resp. right-invariant) vector fields on a Lie group are
important is that they are complete, i.e., they define a flow whose domain is R × G. To
prove this, we begin with the following easy proposition:

Proposition 4.2 Given a Lie group, G, if ξ is a left-invariant (resp. right-invariant) vector
field and Φ is its flow, then

Φ(t, g) = gΦ(t, 1) (resp. Φ(t, g) = Φ(t, 1)g), for all (t, g) ∈ D(ξ).

Proof . Write
γ(t) = gΦ(t, 1) = Lg(Φ(t, 1)).

Then, γ(0) = g and, by the chain rule

γ̇(t) = d(Lg)Φ(t,1)(Φ̇(t, 1)) = d(Lg)Φ(t,1)(ξ(Φ(t, 1))) = ξ(Lg(Φ(t, 1))) = ξ(γ(t)).

By the uniqueness of maximal integral curves, γ(t) = Φ(t, g) for all t, and so,

Φ(t, g) = gΦ(t, 1).

A similar argument applies to right-invariant vector fields.
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Proposition 4.3 Given a Lie group, G, for every v ∈ g, there is a unique smooth homo-
morphism, hv: (R,+) → G, such that ḣv(0) = v. Furthermore, hv(t) is the maximal integral
curve of both vL and vR with initial condition 1 and the flows of vL and vR are defined for
all t ∈ R.

Proof . Let Φv
t (g) denote the flow of vL. As far as defined, we know that

Φv
s+t(1) = Φv

s(Φ
v
t (1)) = Φv

t (1)Φ
v
s(1),

by Proposition 4.2. Now, if Φv
t (1) is defined on ] − ε, ε[ , setting s = t, we see that Φv

t (1) is
actually defined on ] − 2ε, 2ε[ . By induction, we see that Φv

t (1) is defined on ] − 2nε, 2nε[ ,
for all n ≥ 0, and so, Φv

t (1) is defined on R and the map t 7→ Φv
t (1) is a homomorphism

hv: (R,+) → G with ḣv(0) = v. Since Φv
t (g) = gΦv

t (1), the flow, Φv
t (g), is defined for all

(t, g) ∈ R×G. A similar proof applies to vR. To show that hv is smooth, consider the map

R×G× g −→ G× g, where (t, g, v) 7→ (gΦv
t (1), v).

It is immediately seen that the above is the flow of the vector field

(g, v) 7→ (v(g), 0),

and thus, it is smooth. Consequently, the restriction of this smooth map to R× {1} × {v},
which is just t 7→ Φv

t (1) = hv(t), is also smooth.

Assume hv: (R,+) → G is a smooth homomorphism with ḣ(0) = v. From

h(t+ s) = h(t)h(s) = h(s)h(t),

if we differentiate with respect to s at s = 0, we get

dh

dt
(t) = d(Lh(t))1(v) = vL(h(t))

and
dh

dt
(t) = d(Rh(t))1(v) = vR(h(t)).

Therefore, h(t) is an integral curve for vL and vR with initial condition h(0) = 1 and
h = Φv

t (1).

Proposition 4.3 yields the definition of the exponential map.

Definition 4.6 Given a Lie group, G, the exponential map, exp: g → G, is given by

exp(v) = hv(1) = Φv
1(1), for all v ∈ g.
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We can see that exp is smooth as follows. As in the proof of Proposition 4.3, we have
the smooth map

R×G× g −→ G× g, where (t, g, v) 7→ (gΦv
t (1), v),

which is the flow of the vector field

(g, v) 7→ (v(g), 0).

Consequently, the restriction of this smooth map to {1} × {1} × g, which is just
v 7→ Φv

1(1) = exp(v), is also smooth.

Observe that for any fixed t ∈ R, the map

s 7→ hv(st)

is a smooth homomorphism, h, such that ḣ(0) = tv. By uniqueness, we have

hv(st) = htv(s).

Setting s = 1, we find that

hv(t) = exp(tv), for all v ∈ g and all t ∈ R.

Then, differentiating with respect to t at t = 0, we get

v = d exp0(v),

i.e., d exp0 = idg. By the inverse function theorem, exp is a local diffeomorphism at 0. This
means that there is some open subset, U ⊆ g, containing 0, such that the restriction of exp
to U is a diffeomorphism onto exp(U) ⊆ G, with 1 ∈ exp(U). In fact, by left-translation, the
map v 7→ g exp(v) is a local diffeomorphism between some open subset, U ⊆ g, containing
0 and the open subset, exp(U), containing g. The exponential map is also natural in the
following sense:

Proposition 4.4 Given any two Lie groups, G and H, for every Lie group homomorphism,
f :G→ H, the following diagram commutes:

G
f // H

g
df1

//

exp

OO

h

exp

OO

Proof . Observe that the map h: t 7→ f(exp(tv)) is a homomorphism from (R,+) to G such
that ḣ(0) = df1(v). Proposition 4.3 shows that f(exp(v)) = exp(df1(v)).

As useful corollary of Proposition 4.4 is:
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Proposition 4.5 Let G be a connected Lie group and H be any Lie group. For any two
homomorphisms, ϕ1:G→ H and ϕ2:G→ H, if d(ϕ1)1 = d(ϕ2)1, then ϕ1 = ϕ2.

Proof . We know that the exponential map is a diffeomorphism on some small open subset,
U , containing 0. Now, by Proposition 4.4, for all a ∈ expG(U), we have

ϕi(a) = expH(d(ϕi)1(exp−1
G (a))), i = 1, 2.

Since d(ϕ1)1 = d(ϕ2)1, we conclude that ϕ1 = ϕ2 on expG(U). However, as G is connected,
Proposition 2.18 implies that G is generated by expG(U) (we can easily find a symmetric
neighborhood of 1 in expG(U)). Therefore, ϕ1 = ϕ2 on G.

The above proposition shows that if G is connected, then a homomorphism of Lie groups,
ϕ:G→ H, is uniquely determined by the Lie algebra homomorphism, dϕ1: g → h.

Since the Lie algebra g = T1G is isomorphic to the vector space of left-invariant vector
fields on G and since the Lie bracket of vector fields makes sense (see Definition 3.15), it
is natural to ask if there is any relationship between, [u, v], where [u, v] = ad(u)(v), and
the Lie bracket, [uL, vL], of the left-invariant vector fields associated with u, v ∈ g. The
answer is: Yes, they coincide (via the correspondence u 7→ uL). This fact is recorded in the
proposition below whose proof involves some rather acrobatic uses of the chain rule found
in Warner [59] (Chapter 3), Bröcker and tom Dieck [11] (Chapter 1, Section 2), or Marsden
and Ratiu [40] (Chapter 9).

Proposition 4.6 Given a Lie group, G, we have

[uL, vL](1) = ad(u)(v), for all u, v ∈ g.

We can apply Proposition 2.22 and use the exponential map to prove a useful result
about Lie groups. If G is a Lie group, let G0 be the connected component of the identity.
We know G0 is a topological normal subgroup of G and it is a submanifold in an obvious
way, so it is a Lie group.

Proposition 4.7 If G is a Lie group and G0 is the connected component of 1, then G0 is
generated by exp(g). Moreover, G0 is countable at infinity.

Proof . We can find a symmetric open, U , in g in containing 0, on which exp is a diffeo-
morphism. Then, apply Proposition 2.22 to V = exp(U). That G0 is countable at infinity
follows from Proposition 2.23.

4.3 Homomorphisms of Lie Groups and Lie Algebras,

Lie Subgroups

If G and H are two Lie groups and ϕ:G → H is a homomorphism of Lie groups, then
dϕ1: g → h is a linear map between the Lie algebras g and h of G and H. In fact, it is a Lie
algebra homomorphism, as shown below.
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Proposition 4.8 If G and H are two Lie groups and ϕ:G→ H is a homomorphism of Lie
groups, then

dϕ1 ◦ Adg = Adϕ(g) ◦ dϕ1, for all g ∈ G

and dϕ1: g → h is a Lie algebra homomorphism.

Proof . Recall that

Ra−1La(b) = aba−1, for all a, b ∈ G

and that the derivative

d(Ra−1La)1: g → g

of Ra−1La at 1 is an isomorphism of Lie algebras, denoted by Ada: g → g. The map a 7→ Ada

is a map of Lie groups

Ad:G→ GL(g),

(where GL(g) denotes the Lie group of all bijective linear maps on g) and the derivative

dAd1: g → gl(g)

of Ad at 1 is map of Lie algebras, denoted by

ad: g → gl(g),

called the adjoint representation of g (where gl(g) denotes the Lie algebra of all linear maps
on g). Then, the Lie bracket is defined by

[u, v] = ad(u)(v), for all u, v ∈ g.

Now, as ϕ is a homomorphism, we have

ϕ(Ra−1La(b)) = ϕ(aba−1) = ϕ(a)ϕ(b)ϕ(a)−1 = Rϕ(a)−1Lϕ(a)(ϕ(b)),

and by differentiating w.r.t. b at b = 1 and evaluating at v ∈ g, we get

dϕ1(Ada(v)) = Adϕ(a)(dϕ1(v)),

proving the first part of the proposition. Differentiating again with respect to a at a = 1
and evaluating at u ∈ g (and using the chain rule), we get

dϕ1(ad(u)(v)) = ad(dϕ1(u))(dϕ1(v)),

i.e.,

dϕ1[u, v] = [dϕ1(u), dϕ1(v)],

which proves that dϕ1 is indeed a Lie algebra homomorphism.
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Remark: If we identify the Lie algebra, g, of G with the space of left-invariant vector fields
on G, the map dϕ1: g → h is viewed as the map such that, for every left-invariant vector
field, ξ, on G, the vector field dϕ1(ξ) is the unique left-invariant vector field on H such that

dϕ1(ξ)(1) = dϕ1(ξ(1)),

i.e., dϕ1(ξ) = dϕ1(ξ(1))L. Then, we can give another proof of the fact that dϕ1 is a Lie
algebra homomorphism using the notion of ϕ-related vector fields.

Proposition 4.9 If G and H are two Lie groups and ϕ:G→ H is a homomorphism of Lie
groups, if we identify g (resp. h) with the space of left-invariant vector fields on G (resp.
left-invariant vector fields on H), then,

(a) ξ and dϕ1(ξ) are ϕ-related, for every left-invariant vector field, ξ, on G;

(b) dϕ1: g → h is a Lie algebra homomorphism.

Proof . The proof uses Proposition 3.12. For details, see Warner [59].

We now consider Lie subgroups. As a preliminary result, note that if ϕ:G → H is an
injective Lie group homomorphism, then dϕg:TgG → Tϕ(g)H is injective for all g ∈ G. As
g = T1G and TgG are isomorphic for all g ∈ G (and similarly for h = T1H and ThH for all
h ∈ H), it is sufficient to check that dϕ1: g → h is injective. However, by Proposition 4.4,
the diagram

G
ϕ // H

g
dϕ1

//

exp

OO

h

exp

OO

commutes, and since the exponential map is a local diffeomorphism at 0, as ϕ is injective, then
dϕ1 is injective, too. Therefore, if ϕ:G→ H is injective, it is automatically an immersion.

Definition 4.7 Let G be a Lie group. A set, H, is an immersed (Lie) subgroup of G iff

(a) H is a Lie group;

(b) There is an injective Lie group homomorphism, ϕ:H → G (and thus, ϕ is an immersion,
as noted above).

We say that H is a Lie subgroup (or closed Lie subgroup) of G iff H is a Lie group that is a
subgroup of G and also a submanifold of G.

Observe that an immersed Lie subgroup, H, is an immersed submanifold, since ϕ is an
injective immersion. However, ϕ(H) may not have the subspace topology inherited from G
and ϕ(H) may not be closed.
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An example of this situation is provided by the 2-torus, T 2 ∼= SO(2)×SO(2), which can
be identified with the group of 2× 2 complex diagonal matrices of the form(

eiθ1 0
0 eiθ2

)
where θ1, θ2 ∈ R. For any c ∈ R, let Sc be the subgroup of T 2 consisting of all matrices of
the form (

eit 0
0 eict

)
, t ∈ R.

It is easily checked that Sc is an immersed Lie subgroup of T 2 iff c is irrational. However,
when c is irrational, one can show that Sc is dense in T 2 but not closed.

As we will see below, a Lie subgroup, is always closed. We borrowed the terminology
“immersed subgroup” from Fulton and Harris [26] (Chapter 7), but we warn the reader that
most books call such subgroups “Lie subgroups” and refer to the second kind of subgroups
(that are submanifolds) as “closed subgroups”.

Theorem 4.10 Let G be a Lie group and let (H,ϕ) be an immersed Lie subgroup of G.
Then, ϕ is an embedding iff ϕ(H) is closed in G. As as consequence, any Lie subgroup of G
is closed.

Proof . The proof can be found in Warner [59] (Chapter 1, Theorem 3.21) and uses a little
more machinery than we have introduced. However, we prove that a Lie subgroup, H, of G
is closed. The key to the argument is this: Since H is a submanifold of G, there is chart,
(U,ϕ), of G, with 1 ∈ U , so that

ϕ(U ∩H) = ϕ(U) ∩ (Rm × {0n−m}).

By Proposition 2.15, we can find some open subset, V ⊆ U , with 1 ∈ V , so that V = V −1

and V ⊆ U . Observe that

ϕ(V ∩H) = ϕ(V ) ∩ (Rm × {0n−m})

and since V is closed and ϕ is a homeomorphism, it follows that V ∩ H is closed. Thus,

V ∩H = V ∩H (as V ∩H = V ∩H). Now, pick any y ∈ H. As 1 ∈ V −1, the open set yV −1

contains y and since y ∈ H, we must have yV −1 ∩H 6= ∅. Let x ∈ yV −1 ∩H, then x ∈ H
and y ∈ xV . Then, y ∈ xV ∩H, wich implies x−1y ∈ V ∩H ⊆ V ∩H = V ∩H. Therefore,
x−1y ∈ H and since x ∈ H, we get y ∈ H and H is closed.

We also have the following important and useful theorem: If G is a Lie group, say that
a subset, H ⊆ G, is an abstract subgroup iff it is just a subgroup of the underlying group of
G (i.e., we forget the topology and the manifold structure).

Theorem 4.11 Let G be a Lie group. An abstract subgroup, H, of G is a submanifold (i.e.,
a Lie subgroup) of G iff H is closed (i.e, H with the induced topology is closed in G).
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Proof . We proved the easy direction of this theorem above. Conversely, we need to prove
that if the subgroup, H, with the induced topology is closed in G, then it is a manifold.
This can be done using the exponential map, but it is harder. For details, see Bröcker and
tom Dieck [11] (Chapter 1, Section 3) or Warner [59], Chapter 3.

4.4 The Correspondence Lie Groups–Lie Algebras

Historically, Lie was the first to understand that a lot of the structure of a Lie group is
captured by its Lie algebra, a simpler object (since it is a vector space). In this short
section, we state without proof some of the “Lie theorems”, although not in their original
form.

Definition 4.8 If g is a Lie algebra, a subalgebra, h, of g is a (linear) subspace of g such
that [u, v] ∈ h, for all u, v ∈ h. If h is a (linear) subspace of g such that [u, v] ∈ h for all
u ∈ h and all v ∈ g, we say that h is an ideal in g.

For a proof of the theorem below, see Warner [59] (Chapter 3) or Duistermaat and Kolk
[25] (Chapter 1, Section 10).

Theorem 4.12 Let G be a Lie group with Lie algebra, g, and let (H,ϕ) be an immersed
Lie subgroup of G with Lie algebra h, then dϕ1h is a Lie subalgebra of g. Conversely, for
each subalgebra, h̃, of g, there is a unique connected immersed subgroup, (H,ϕ), of G so that

dϕ1h = h̃. In fact, as a group, ϕ(H) is the subgroup of G generated by exp(h̃). Furthermore,
normal subgroups correspond to ideals.

Theorem 4.12 shows that there is a one-to-one correspondence between connected im-
mersed subgroups of a Lie group and subalgebras of its Lie algebra.

Theorem 4.13 Let G and H be Lie groups with G connected and simply connected and let
g and h be their Lie algebras. For every homomorphism, ψ: g → h, there is a unique Lie
group homomorphism, ϕ:G→ H, so that dϕ1 = ψ.

Again a proof of the theorem above is given in Warner [59] (Chapter 3) or Duistermaat
and Kolk [25] (Chapter 1, Section 10).

Corollary 4.14 If G and H are connected and simply connected Lie groups, then G and H
are isomorphic iff g and h are isomorphic.

It can also be shown that for every finite-dimensional Lie algebra, g, there is a connected
and simply connected Lie group, G, such that g is the Lie algebra of G. This is a consequence
of deep theorem (whose proof is quite hard) known as Ado’s theorem. For more on this, see
Knapp [36], Fulton and Harris [26], or Bourbaki [8].
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In summary, following Fulton and Harris, we have the following two principles of the Lie
group/Lie algebra correspondence:

First Principle: If G and H are Lie groups, with G connected, then a homomorphism of Lie
groups, ϕ:G→ H, is uniquely determined by the Lie algebra homomorphism, dϕ1: g → h.

Second Principle: Let G and H be Lie groups with G connected and simply connected and
let g and h be their Lie algebras. A linear map, ψ: g → h, is a Lie algebra map iff there is a
unique Lie group homomorphism, ϕ:G→ H, so that dϕ1 = ψ.

4.5 More on the Lorentz Group SO0(n, 1)

In this section, we take a closer look at the Lorentz group SO0(n, 1) and, in particular, at the
relationship between SO0(n, 1) and its Lie algebra, so(n, 1). The Lie algebra of SO0(n, 1)
is easily determined by computing the tangent vectors to curves, t 7→ A(t), on SO0(n, 1)
through the identity, I. Since A(t) satisfies

A>JA = J,

differentiating and using the fact that A(0) = I, we get

A′
>
J + JA′ = 0.

Therefore,

so(n, 1) = {A ∈ Matn+1,n+1(R) | A>J + JA = 0}.

This means that JA is skew-symmetric and so,

so(n, 1) =

{(
B u
u> 0

)
∈ Matn+1,n+1(R) | u ∈ Rn, B> = −B

}
.

Observe that every matrix A ∈ so(n, 1) can be written uniquely as(
B u
u> 0

)
=

(
B 0
0 0

)
+

(
0 u
u> 0

)
,

where the first matrix is skew-symmetric, the second one is symmetric and both belong to
so(n, 1). Thus, it is natural to define

k =

{(
B 0
0> 0

)
| B> = −B

}
and

p =

{(
0 u
u> 0

)
| u ∈ Rn

}
.
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It is immediately verified that both k and p are subspaces of so(n, 1) (as vector spaces) and
that k is a Lie subalgebra isomorphic to so(n), but p is not a Lie subalgebra of so(n, 1)
because it is not closed under the Lie bracket. Still, we have

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

Clearly, we have the direct sum decomposition

so(n, 1) = k⊕ p,

known as Cartan decomposition. There is also an automorphism of so(n, 1) known as the
Cartan involution, namely,

θ(A) = −A>,
and we see that

k = {A ∈ so(n, 1) | θ(A) = A} and p = {A ∈ so(n, 1) | θ(A) = −A}.

Unfortunately, there does not appear to be any simple way of obtaining a formula for
exp(A), where A ∈ so(n, 1) (except for small n—there is such a formula for n = 3 due to
Chris Geyer). However, it is possible to obtain an explicit formula for the matrices in p.

This is because for such matrices, A, if we let ω = ‖u‖ =
√
u>u, we have

A3 = ω2A.

Thus, we get

Proposition 4.15 For every matrix, A ∈ p, of the form

A =

(
0 u
u> 0

)
,

we have

eA =

 I +
(coshω − 1)

ω2 uu>
sinhω

ω
u

sinhω

ω
u> coshω

 =


√
I +

sinh2 ω

ω2 uu>
sinhω

ω
u

sinhω

ω
u> coshω

 .

Proof . Using the fact that A3 = ω2A, we easily prove that

eA = I +
sinhω

ω
A+

coshω − 1

ω2
A2,

which is the first equation of the proposition, since

A2 =

(
uu> 0
0 u>u

)
=

(
uu> 0
0 ω2

)
.
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We leave as an exercise the fact that(
I +

(coshω − 1)

ω2 uu>

)2

= I +
sinh2 ω

ω2 uu>.

Now, it clear from the above formula that each eB, with B ∈ p is a Lorentz boost.
Conversely, every Lorentz boost is the exponential of some B ∈ p, as shown below.

Proposition 4.16 Every Lorentz boost,

A =

(√
I + vv> v
v> c

)
,

with c =
√
‖v‖2 + 1, is of the form A = eB, for B ∈ p, i.e., for some B ∈ so(n, 1) of the

form

B =

(
0 u
u> 0

)
.

Proof . We need to find some

B =

(
0 u
u> 0

)
solving the equation

√
I +

sinh2 ω

ω2 uu>
sinhω

ω
u

sinhω

ω
u> coshω

 =

(√
I + vv> v
v> c

)
,

with ω = ‖u‖ and c =
√
‖v‖2 + 1. When v = 0, we have A = I, and the matrix B = 0

corresponding to u = 0 works. So, assume v 6= 0. In this case, c > 1. We have to solve the
equation coshω = c, that is,

e2ω − 2ceω + 1 = 0.

The roots of the corresponding algebraic equation X2 − 2cX + 1 = 0 are

X = c±
√
c2 − 1.

As c > 1, both roots are strictly positive, so we can solve for ω, say ω = log(c+
√
c2 − 1) 6= 0.

Then, sinhω 6= 0, so we can solve the equation

sinhω

ω
u = v,

which yields a B ∈ so(n, 1) of the right form with A = eB.

Remarks:
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(1) It is easy to show that the eigenvalues of matrices

B =

(
0 u
u> 0

)
are 0, with multiplicity n− 1, ‖u‖ and −‖u‖. Eigenvectors are also easily determined.

(2) The matrices B ∈ so(n, 1) of the form

B =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 α
0 · · · α 0


are easily seen to form an abelian Lie subalgebra, a, of so(n, 1) (which means that for
all B,C ∈ a, [B,C] = 0, i.e., BC = CB). One will easily check that for any B ∈ a, as
above, we get

eB =


1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα


The matrices of the form eB, with B ∈ a, form an abelian subgroup, A, of SO0(n, 1)
isomorphic to SO0(1, 1). As we already know, the matrices B ∈ so(n, 1) of the form(

B 0
0 0

)
,

where B is skew-symmetric, form a Lie subalgebra, k, of so(n, 1). Clearly, k is isomor-
phic to so(n) and using the exponential, we get a subgroup, K, of SO0(n, 1) isomorphic
to SO(n). It is also clear that k ∩ a = (0), but k⊕ a is not equal to so(n, 1). What is
the missing piece? Consider the matrices N ∈ so(n, 1) of the form

N =

 0 −u u
u> 0 0
u> 0 0

 ,

where u ∈ Rn−1. The reader should check that these matrices form an abelian Lie
subalgebra, n, of so(n, 1) and that

so(n, 1) = k⊕ a⊕ n.

This is the Iwasawa decomposition of the Lie algebra so(n, 1). Furthermore, the reader
should check that every N ∈ n is nilpotent; in fact, N3 = 0. (It turns out that n is
a nilpotent Lie algebra, see Knapp [36]). The connected Lie subgroup of SO0(n, 1)
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associated with n is denoted N and it can be shown that we have the Iwasawa decom-
position of the Lie group SO0(n, 1):

SO0(n, 1) = KAN.

It is easy to check that [a, n] ⊆ n, so a ⊕ n is a Lie subalgebra of so(n, 1) and n is an
ideal of a⊕n. This implies that N is normal in the group corresponding to a⊕n, so AN
is a subgroup (in fact, solvable) of SO0(n, 1). For more on the Iwasawa decomposition,
see Knapp [36]. Observe that the image, n, of n under the Cartan involution, θ, is the
Lie subalgebra

n =


 0 u u
−u> 0 0
u> 0 0

 | u ∈ Rn−1

 .

It is easy to see that the centralizer of a is the Lie subalgebra

m =

{(
B 0
0 0

)
∈ Matn+1,n+1(R) | B ∈ so(n− 1)

}
and the reader should check that

so(n, 1) = m⊕ a⊕ n⊕ n.

We also have
[m, n] ⊆ n,

so m⊕a⊕n is a subalgebra of so(n, 1). The group, M , associated with m is isomorphic
to SO(n−1) and it can be shown that B = MAN is a subgroup of SO0(n, 1). In fact,

SO0(n, 1)/(MAN) = KAN/MAN = K/M = SO(n)/SO(n− 1) = Sn−1.

It is customary to denote the subalgebra m ⊕ a by g0, the algebra n by g1 and n by
g−1, so that so(n, 1) = m⊕ a⊕ n⊕ n is also written

so(n, 1) = g0 ⊕ g−1 ⊕ g1.

By the way, if N ∈ n, then

eN = I +N +
1

2
N2,

and since N + 1
2
N2 is also nilpotent, eN can’t be diagonalized when N 6= 0. This

provides a simple example of matrices in SO0(n, 1) that can’t be diagonalized.

Combining Proposition 2.3 and Proposition 4.16, we have the corollary:

Corollary 4.17 Every matrix A ∈ O(n, 1) can be written as

A =

(
Q 0
0 ε

)
e

 
0 u
u> 0

!

where Q ∈ O(n), ε = ±1 and u ∈ Rn.
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Observe that Corollary 4.17 proves that every matrix, A ∈ SO0(n, 1), can be written as

A = PeS, with P ∈ K ∼= SO(n) and S ∈ p,

i.e.,
SO0(n, 1) = K exp(p),

a version of the polar decomposition for SO0(n, 1).

Now, it is known that the exponential map, exp: so(n) → SO(n), is surjective. So, when
A ∈ SO0(n, 1), since then Q ∈ SO(n) and ε = +1, the matrix(

Q 0
0 1

)
is the exponential of some skew symmetric matrix

C =

(
B 0
0 0

)
∈ so(n, 1),

and we can write A = eCeZ , with C ∈ k and Z ∈ p. Unfortunately, C and Z generally don’t
commute, so it is generally not true that A = eC+Z . Thus, we don’t get an “easy” proof
of the surjectivity of the exponential exp: so(n, 1) → SO0(n, 1). This is not too surprising
because, to the best of our knowledge, proving surjectivity for all n is not a simple matter.
One proof is due to Nishikawa [48] (1983). Nishikawa’s paper is rather short, but this
is misleading. Indeed, Nishikawa relies on a classic paper by Djokovic [20], which itself
relies heavily on another fundamental paper by Burgoyne and Cushman [13], published in
1977. Burgoyne and Cushman determine the conjugacy classes for some linear Lie groups
and their Lie algebras, where the linear groups arise from an inner product space (real or
complex). This inner product is nondegenerate, symmetric, or hermitian or skew-symmetric
of skew-hermitian. Altogether, one has to read over 40 pages to fully understand the proof
of surjectivity.

In his introduction, Nishikawa states that he is not aware of any other proof of the
surjectivity of the exponential for SO0(n, 1). However, such a proof was also given by Marcel
Riesz as early as 1957, in some lectures notes that he gave while visiting the University of
Maryland in 1957-1958. These notes were probably not easily available until 1993, when
they were published in book form, with commentaries, by Bolinder and Lounesto [52].

Interestingly, these two proofs use very different methods. The Nishikawa–Djokovic–
Burgoyne and Cushman proof makes heavy use of methods in Lie groups and Lie algebra,
although not far beyond linear algebra. Riesz’s proof begins with a deep study of the
structure of the minimal polynomial of a Lorentz isometry (Chapter III). This is a beautiful
argument that takes about 10 pages. The story is not over, as it takes most of Chapter IV
(some 40 pages) to prove the surjectivity of the exponential (actually, Riesz proves other
things along the way). In any case, the reader can see that both proofs are quite involved.
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It is worth noting that Milnor (1969) also uses techniques very similar to those used by
Riesz (in dealing with minimal polynomials of isometries) in his paper on isometries of inner
product spaces [41].

What we will do to close this section is to give a relatively simple proof that the expo-
nential map, exp: so(1, 3) → SO0(1, 3), is surjective. In the case of SO0(1, 3), we can use
the fact that SL(2,C) is a two-sheeted covering space of SO0(1, 3), which means that there
is a homomorphism, ϕ:SL(2,C) → SO0(1, 3), which is surjective and that Ker ϕ = {−I, I).
Then, the small miracle is that, although the exponential, exp: sl(2,C) → SL(2,C), is not
surjective, for every A ∈ SL(2,C), either A or −A is in the image of the exponential!

Proposition 4.18 Given any matrix

B =

(
a b
c −a

)
∈ sl(2,C),

let ω be any of the two complex roots of a2 + bc. If ω 6= 0, then

eB = coshω I +
sinh ω

ω
B,

and eB = I +B, if a2 + bc = 0. Furthermore, every matrix A ∈ SL(2,C) is in the image of
the exponential map, unless A = −I +N , where N is a nonzero nilpotent (i.e., N2 = 0 with
N 6= 0). Consequently, for any A ∈ SL(2,C), either A or −A is of the form eB, for some
B ∈ sl(2,C).

Proof . Observe that

A2 =

(
a b
c −a

)(
a b
c −a

)
= (a2 + bc)I.

Then, it is straighforward to prove that

eB = coshω I +
sinh ω

ω
B,

where ω is a square root of a2 + bc is ω 6= 0, otherwise, eB = I +B.

Let

A =

(
α β
γ δ

)
be any matrix in SL(2,C). We would like to find a matrix, B ∈ sl(2,C), so that A = eB. In
view of the above, we need to solve the system

coshω +
sinhω

ω
a = α

coshω − sinhω

ω
a = δ

sinhω

ω
b = β

sinhω

ω
c = γ.
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From the first two equations, we get

coshω =
α+ δ

2
sinhω

ω
a =

α− δ

2
.

Thus, we see that we need to know whether complex cosh is surjective and when complex
sinh is zero. We claim:

(1) cosh is surjective.

(2) sinh z = 0 iff z = nπi, where n ∈ Z.

Given any c ∈ C, we have coshω = c iff

e2ω − 2eωc+ 1 = 0.

The corresponding algebraic equation

Z2 − 2cZ + 1 = 0

has discriminant 4(c2 − 1) and it has two complex roots

Z = c±
√
c2 − 1

where
√
c2 − 1 is some square root of c2 − 1. Observe that these roots are never zero.

Therefore, we can find a complex log of c +
√
c2 − 1, say ω, so that eω = c +

√
c2 − 1 is a

solution of e2ω − 2eωc+ 1 = 0. This proves the surjectivity of cosh.

We have sinhω = 0 iff e2ω = 1; this holds iff 2ω = n2πi, i.e., ω = nπi.

Observe that

sinhnπi

nπi
= 0 if n 6= 0, but

sinhnπi

nπi
= 1 when n = 0.

We know that

coshω =
α+ δ

2

can always be solved.

Case 1. If ω 6= nπi, with n 6= 0, then

sinhω

ω
6= 0

and the other equations can be solved, too (this includes the case ω = 0). Therefore, in this
case, the exponential is surjective. It remains to examine the other case.
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Case 2. Assume ω = nπi, with n 6= 0. If n is even, then eω = 1, which implies

α+ δ = 2.

However, αδ− βγ = 1 (since A ∈ SL(2,C)), so we deduce that A has the double eigenvalue,
1. Thus, N = A − I is nilpotent (i.e., N2 = 0) and has zero trace; but then, N ∈ so(2,C)
and

eN = I +N = I + A− I = A.

If n is odd, then eω = −1, which implies

α+ δ = −2.

In this case, A has the double eigenvalue −1 and A+ I = N is nilpotent. So, A = −I +N ,
where N is nilpotent. If N 6= 0, then A cannot be diagonalized. We claim that there is no
B ∈ so(2,C) so that eB = A.

Indeed, any matrix B ∈ so(2,C) has zero trace, which means that if λ1 and λ2 are the
eigenvalues of B, then λ1 = −λ2. If λ1 6= 0, then λ1 6= λ2 so B can be diagonalized, but
then eB can also be diagonalized, contradicting the fact that A can’t be diagonalized. If
λ1 = λ2 = 0, then eB has the double eigenvalue +1, but A has eigenvalues −1. Therefore,
the only matrices A ∈ SL(2,C) that are not in the image of the exponential are those of the
form A = −I + N , where N is a nonzero nilpotent. However, note that −A = I − N is in
the image of the exponential.

Remark: If we restrict our attention to SL(2,R), then we have the following proposition
that can be used to prove that the exponential map exp: so(1, 2) → SO0(1, 2) is surjective:

Proposition 4.19 Given any matrix

B =

(
a b
c −a

)
∈ sl(2,R),

if a2 + b > 0, then let ω =
√
a2 + bc > 0 and if a2 + b < 0, then let ω =

√
−(a2 + bc) > 0

(i.e., ω2 = −(a2 + bc)). In the first case (a2 + bc > 0), we have

eB = coshω I +
sinh ω

ω
B,

and in the second case (a2 + bc < 0), we have

eB = cosω I +
sin ω

ω
B.

If a2+bc = 0, then eB = I+B. Furthermore, every matrix A ∈ SL(2,R) whose trace satisfies
tr(A) ≥ −2 in the image of the exponential map. Consequently, for any A ∈ SL(2,R), either
A or −A is of the form eB, for some B ∈ sl(2,R).
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We now return to the relationship between SL(2,C) and SO0(1, 3). In order to define a
homomorphism ϕ:SL(2,C) → SO0(1, 3), we begin by defining a linear bijection, h, between
R4 and H(2), the set of complex 2× 2 Hermitian matrices, by

(t, x, y, z) 7→
(
t+ x y − iz
y + iz t− x

)
.

Those familiar with quantum physics will recognize a linear combination of the Pauli matri-
ces! The inverse map is easily defined and we leave it as an exercise. For instance, given a
Hermitian matrix (

a b
c d

)
we have

t =
a+ d

2
, x =

a− d

2
, etc.

Next, for any A ∈ SL(2,C), we define a map, lA:H(2) → H(2), via

S 7→ ASA∗.

(Here, A∗ = A
>
.) Using the linear bijection h: R4 → H(2) and its inverse, we obtain a map

lorA: R4 → R4, where

lorA = h−1 ◦ lA ◦ h.

As ASA∗ is hermitian, we see that lA is well defined. It is obviously linear and since
det(A) = 1 (recall, A ∈ SL(2,C)) and

det

(
t+ x y − iz
y + iz t− x

)
= t2 − x2 − y2 − z2,

we see that lorA preserves the Lorentz metric! Furthermore, it is not hard to prove that
SL(2,C) is connected (use the polar form or analyze the eigenvalues of a matrix in SL(2,C),
for example, as in Duistermatt and Kolk [25] (Chapter 1, Section 1.2)) and that the map

ϕ:A 7→ lorA

is a continuous group homomorphism. Thus, the range of ϕ is a connected subgroup of
SO0(1, 3). This shows that ϕ:SL(2,C) → SO0(1, 3) is indeed a homomorphism. It remains
to prove that it is surjective and that its kernel is {I,−I}.

Proposition 4.20 The homomorphism, ϕ:SL(2,C) → SO0(1, 3), is surjective and its ker-
nel is {I,−I}.
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Proof . Recall that from Theorem 2.6, the Lorentz group SO0(1, 3) is generated by the
matrices of the form (

1 0
0 P

)
with P ∈ SO(3)

and the matrices of the form 
coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1

 .

Thus, to prove the surjectivity of ϕ, it is enough to check that the above matrices are in the
range of ϕ. For matrices of the second kind, the reader should check that

A =

(
e

1
2
α 0

0 e−
1
2
α

)
does the job. For matrices of the first kind, we recall that the group of unit quaternions,
q = a1 + bi + cj + dk, can be viewed as SU(2), via the correspondence

a1 + bi + cj + dk 7→
(

a+ ib c+ id
−c+ id a− ib

)
,

where a, b, c, d ∈ R and a2 + b2 + c2 + d2 = 1. Moreover, the algebra of quaternions, H, is
the real algebra of matrices as above, without the restriction a2 + b2 + c2 + d2 = 1 and R3

is embedded in H as the pure quaternions , i.e., those for which a = 0. Observe that when
a = 0, (

ib c+ id
−c+ id −ib

)
= i

(
b d− ic

d+ ic −b

)
= ih(0, b, d, c).

Therefore, we have a bijection between the pure quaternions and the subspace of the hermi-
tian matrices (

b d− ic
d+ ic −b

)
for which a = 0, the inverse being division by i, i.e., multiplication by −i. Also, when q is a
unit quaternion, let q = a1− bi− cj− dk, and observe that q = q−1. Using the embedding
R3 ↪→ H, for every unit quaternion, q ∈ SU(2), define the map, ρq: R3 → R3, by

ρq(X) = qXq = qXq−1,

for all X ∈ R3 ↪→ H. Then, it is well known that ρq is a rotation (i.e., ρq ∈ SO(3))
and, moreover, the map q 7→ ρq, is a surjective homomorphism, ρ:SU(2) → SO(3), and
Ker ϕ = {I,−I} (For example, see Gallier [27], Chapter 8).

Now, consider a matrix, A, of the form(
1 0
0 P

)
with P ∈ SO(3).
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We claim that we can find a matrix, B ∈ SL(2,C), such that ϕ(B) = lorB = A. We claim
that we can pick B ∈ SU(2) ⊆ SL(2,C). Indeed, if B ∈ SU(2), then B∗ = B−1, so

B

(
t+ x y − iz
y + iz t− x

)
B∗ = t

(
1 0
0 1

)
− iB

(
ix z + iy

−z + iy −ix

)
B−1.

The above shows that lorB leaves the coordinate t invariant. The term

B

(
ix z + iy

−z + iy −ix

)
B−1

is a pure quaternion corresponding to the application of the rotation ρB induced by the
quaternion B to the pure quaternion associated with (x, y, z) and multiplication by −i is
just the corresponding hermitian matrix, as explained above. But, we know that for any
P ∈ SO(3), there is a quaternion, B, so that ρB = P , so we can find our B ∈ SU(2) so that

lorB =

(
1 0
0 P

)
= A.

Finally, assume that ϕ(A) = I. This means that

ASA∗ = S,

for all hermitian matrices, S, defined above. In particular, for S = I, we get AA∗ = I, i.e.,
A ∈ SU(2). We have

AS = SA

for all hermitian matrices, S, defined above, so in particular, this holds for diagonal matrices
of the form (

t+ x 0
0 t− x

)
,

with t+ x 6= t− x. We deduce that A is a diagonal matrix, and since it is unitary, we must
have A = ±I. Therefore, Kerϕ = {I,−I}.

Remark: The group SL(2,C) is isomorphic to the group Spin(1, 3), which is a (simply-
connected) double-cover of SO0(1, 3). This is a standard result of Clifford algebra theory,
see Bröcker and tom Dieck [11] or Fulton and Harris [26]. What we just did is to provide a
direct proof of this fact.

We just proved that there is an isomorphism

SL(2,C)/{I,−I} ∼= SO0(1, 3).

However, the reader may recall that SL(2,C)/{I,−I} = PSL(2,C) ∼= Möb+. Therefore,
the Lorentz group is isomorphic to the Möbius group.

We now have all the tools to prove that the exponential map, exp: so(1, 3) → SO0(1, 3),
is surjective.
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Theorem 4.21 The exponential map, exp: so(1, 3) → SO0(1, 3), is surjective.

Proof . First, recall from Proposition 4.4 that the following diagram commutes:

SL(2,C)
ϕ // SO0(1, 3)

sl(2,C)
dϕ1

//

exp

OO

so(1, 3)

exp

OO
.

Pick any A ∈ SO0(1, 3). By Proposition 4.20, the homomorphism ϕ is surjective and as
Kerϕ = {I,−I}, there exists some B ∈ SL(2,C) so that

ϕ(B) = ϕ(−B) = A.

Now, by Proposition 4.18, for any B ∈ SL(2,C), either B or −B is of the form eC , for some
C ∈ sl(2,C). By the commutativity of the diagram, if we let D = dϕ1(C) ∈ so(1, 3), we get

A = ϕ(±eC) = edϕ1(C) = eD,

with D ∈ so(1, 3), as required.

Remark: We can restrict the bijection h: R4 → H(2) defined earlier to a bijection between
R3 and the space of real symmetric matrices of the form(

t+ x y
y t− x

)
.

Then, if we also restrict ourselves to SL(2,R), for any A ∈ SL(2,R) and any symmetric
matrix, S, as above, we get a map

S 7→ ASA>.

The reader should check that these transformations correspond to isometries in SO0(1, 2) and
we get a homomorphism, ϕ:SL(2,R) → SO0(1, 2). Then, we have a version of Proposition
4.20 for SL(2,R) and SO0(1, 2):

Proposition 4.22 The homomorphism, ϕ:SL(2,R) → SO0(1, 2), is surjective and its ker-
nel is {I,−I}.

Using Proposition 4.22 and Proposition 4.19, we get a version of Theorem 4.21 for
SO0(1, 2):

Theorem 4.23 The exponential map, exp: so(1, 2) → SO0(1, 2), is surjective.
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Also observe that SO0(1, 1) consists of the matrices of the form

A =

(
coshα sinhα
sinhα coshα

)
and a direct computation shows that

e

 
0 α
α 0

!
=

(
coshα sinhα
sinhα coshα

)
.

Thus, we see that the map exp: so(1, 1) → SO0(1, 1) is also surjective. Therefore, we have
proved that exp: so(1, n) → SO0(1, n) is surjective for n = 1, 2, 3. This actually holds for all
n ≥ 1, but the proof is much more involved, as we already discussed earlier.

4.6 More on the Topology of O(p, q) and SO(p, q)

It turns out that the topology of the group, O(p, q), is completely determined by the topology
of O(p) and O(q). This result can be obtained as a simple consequence of some standard
Lie group theory. The key notion is that of a pseudo-algebraic group.

Consider the group, GL(n,C), of invertible n× n matrices with complex coefficients. If
A = (akl) is such a matrix, denote by xkl the real part (resp. ykl, the imaginary part) of akl

(so, akl = xkl + iykl).

Definition 4.9 A subgroup, G, of GL(n,C) is pseudo-algebraic iff there is a finite set of
polynomials in 2n2 variables with real coefficients, {Pi(X1, . . . , Xn2 , Y1, . . . , Yn2)}t

i=1, so that

A = (xkl + iykl) ∈ G iff Pi(x11, . . . , xnn, y11, . . . , ynn) = 0, for i = 1, . . . , t.

Recall that if A is a complex n × n-matrix, its adjoint , A∗, is defined by A∗ = (A)>.
Also, U(n) denotes the group of unitary matrices, i.e., those matrices A ∈ GL(n,C) so
that AA∗ = A∗A = I, and H(n) denotes the vector space of Hermitian matrices, i.e., those
matrices A so that A∗ = A. Then, we have the following theorem which is essentially a
refined version of the polar decomposition of matrices:

Theorem 4.24 Let G be a pseudo-algebraic subgroup of GL(n,C) stable under adjunction
(i.e., we have A∗ ∈ G whenever A ∈ G). Then, there is some integer, d ∈ N, so that G is
homeomorphic to (G ∩U(n))× Rd. Moreover, if g is the Lie algebra of G, the map

(U(n) ∩G)× (H(n) ∩ g) −→ G, given by (U,H) 7→ UeH ,

is a homeomorphism onto G.
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Proof . A proof can be found in Knapp [36], Chapter 1, or Mneimné and Testard [44], Chapter
3.

We now apply Theorem 4.24 to determine the structure of the space O(p, q). We know
that O(p, q) consists of the matrices, A, in GL(p+ q,R) such that

A>Ip,qA = Ip,q,

and so, O(p, q) is clearly pseudo-algebraic. Using the above equation, it is easy to determine
the Lie algebra, o(p, q), of O(p, q). We find that o(p, q) is given by

o(p, q) =

{(
X1 X2

X>
2 X3

) ∣∣∣∣ X>
1 = −X1, X

>
3 = −X3, X2 arbitrary

}
where X1 is a p× p matrix, X3 is a q × q matrix and X2 is a p× q matrix. Consequently, it
immediately follows that

o(p, q) ∩H(p+ q) =

{(
0 X2

X>
2 0

) ∣∣∣∣ X2 arbitrary

}
,

a vector space of dimension pq.

Some simple calculations also show that

O(p, q) ∩U(p+ q) =

{(
X1 0
0 X2

) ∣∣∣∣ X1 ∈ O(p), X2 ∈ O(q)

}
∼= O(p)×O(q).

Therefore, we obtain the structure of O(p, q):

Proposition 4.25 The topological space O(p, q) is homeomorphic to O(p)×O(q)× Rpq.

Since O(p) has two connected components when p ≥ 1, we see that O(p, q) has four
connected components when p, q ≥ 1. It is also obvious that

SO(p, q) ∩U(p+ q) =

{(
X1 0
0 X2

) ∣∣∣∣ X1 ∈ O(p), X2 ∈ O(q), det(X1) det(X2) = 1

}
.

This is a subgroup of O(p)×O(q) that we denote S(O(p)×O(q)). Furthermore, it is easy
to show that so(p, q) = o(p, q). Thus, we also have

Proposition 4.26 The topological space SO(p, q) is homeomorphic to S(O(p)×O(q))×Rpq.

Observe that the dimension of all these space depends only on p+q: It is (p+q)(p+q−1)/2.
Also, SO(p, q) has two connected components when p, q ≥ 1. The connected component of
Ip+q is the group SO0(p, q). This latter space is homeomorphic to SO(q)× SO(q)× Rpq.
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Theorem 4.24 gives the polar form of a matrix A ∈ O(p, q): We have

A = UeS, with U ∈ O(p)×O(q) and S ∈ so(p, q) ∩ S(p+ q),

where U is of the form

U =

(
P 0
0 Q

)
, with P ∈ O(p) and Q ∈ O(q)

and so(p, q) ∩ S(p+ q) consists of all (p+ q)× (p+ q) symmetric matrices of the form

S =

(
0 X
X> 0

)
,

with X an arbitrary p× q matrix. It turns out that it is not very hard to compute explicitly
the exponential, eS, of such matrices (see Mneimné and Testard [44]). Recall that the
functions cosh and sinh also make sense for matrices (since the exponential makes sense)
and are given by

cosh(A) =
eA + e−A

2
= I +

A2

2!
+ · · ·+ A2k

(2k)!
+ · · ·

and

sinh(A) =
eA − e−A

2
= A+

A3

3!
+ · · ·+ A2k+1

(2k + 1)!
+ · · · .

We also set
sinh(A)

A
= I +

A2

3!
+ · · ·+ A2k

(2k + 1)!
+ · · · ,

which is defined for all matrices, A (even when A is singular). Then, we have

Proposition 4.27 For any matrix S of the form

S =

(
0 X
X> 0

)
,

we have

eS =


cosh((XX>)

1
2 )

sinh((XX>)
1
2 )X

(XX>)
1
2

sinh((X>X)
1
2 )X>

(X>X)
1
2

cosh((X>X)
1
2 )

 .

Proof . By induction, it is easy to see that

S2k =

(
(XX>)k 0

0 (X>X)k

)
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and

S2k+1 =

(
0 (XX>)kX

(X>X)kX> 0

)
.

The rest is left as an exercise.

Remark: Although at first glance, eS does not look symmetric, but it is!

As a consequence of Proposition 4.27, every matrix A ∈ O(p, q) has the polar form

A =

(
P 0
0 Q

)
cosh((XX>)

1
2 )

sinh((XX>)
1
2 )X

(XX>)
1
2

sinh((X>X)
1
2 )X>

(X>X)
1
2

cosh((X>X)
1
2 )

 ,

with P ∈ O(p), Q ∈ O(q) and X an arbitrary p× q matrix.
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Chapter 5

Principal Fibre Bundles and
Homogeneous Spaces, II

5.1 Fibre Bundles, Vector Bundles

We saw in Section 2.2 that a transitive action, ·:G × X → X, of a group, G, on a set, X,
yields a description of X as a quotient G/Gx, where Gx is the stabilizer of any element,
x ∈ X. In Theorem 2.26, we saw that if X is a “well-behaved” topological space, G is a
“well-behaved” topological group and the action is continuous, then G/Gx is homeomorphic
to X. In particular the conditions of Theorem 2.26 are satisfied if G is a Lie group and
X is a manifold. Intuitively, the above theorem says that G can be viewed as a family of
“fibres”, Gx, all isomorphic to G, these fibres being parametrized by the “base space”, X,
and varying smoothly when x moves in X. We have an example of what is called a fibre
bundle, in fact, a principal fibre bundle. Now that we know about manifolds and Lie groups,
we can be more precise about this situation.

Although we will not make extensive use of it, we begin by reviewing the definition of
a fibre bundle because we believe that it clarifies the notion of principal fibre bundle, the
concept that is our primary concern. The following definition is not the most general but it
is sufficient for our needs:

Definition 5.1 A fibre bundle with (typical) fibre F and structure group G is a tuple
ξ = (E, π,B, F,G), where E,B, F are smooth manifolds, π:E → B is a smooth surjective
map, G is a Lie group of diffeomorphisms of F and there is some open cover, U = (Uα)α∈I ,
of B and a family, ϕ = (ϕα)α∈I , of diffeomorphisms,

ϕα: π−1(Uα) → Uα × F,

such that the following properties hold:

129
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(a) The diagram

π−1(Uα)

π
$$HHHHHHHHH

ϕα // Uα × F

p1
{{wwwwwwwww

Uα

commutes for all α ∈ I, where p1:Uα × F → Uα is the first projection. Equivalently,
for all (b, y) ∈ Uα × F ,

π ◦ ϕ−1
α (b, y) = b.

The space B is called the base space, E is called the total space, F is called the (typical)
fibre, and each ϕα is called a (local) trivialization. The pair (Uα, ϕα) is called a bundle
chart and the family {(Uα, ϕα)} is a trivializing cover . For each b ∈ B, the space
π−1(b) is called the fibre above b; it is also denoted by Eb, and π−1(Uα) is also denoted
by E � Uα.

For every (Uα, ϕα) and every b ∈ Uα, we have the diffeomorphism

(p2 ◦ ϕα) � Eb:Eb → F,

where p2:Uα × F → F is the second projection, which we denote by ϕα,b; hence, we
have the diffeomorphism ϕα,b: π

−1(b) (= Eb) → F . Furthermore, for all Uα, Uβ in U
such that Uα ∩ Uβ 6= ∅, for every b ∈ Uα ∩ Uβ, there is a relationship between ϕα,b and
ϕβ,b which gives the twisting of the bundle:

(b) The diffeomorphism
ϕα,b ◦ ϕ−1

β,b:F → F

is an element of the group G.

(c) The map gαβ:Uα ∩ Uβ → G defined by

gαβ(b) = ϕα,b ◦ ϕ−1
β,b

is smooth. The maps gαβ are called the transition maps of the fibre bundle.

A fibre bundle ξ = (E, π,B, F,G) is also called a fibre bundle over B. Observe that the
bundle charts, (Uα, ϕα), are similar to the charts of a manifold. Actually, Definition 5.1 is
too restrictive because it does not allow for the addition of compatible bundle charts, for
example, when considering a refinement of the cover, U . This problem can easily be fixed
using a notion of equivalence of trivializing covers analogous to the equivalence of atlases for
manifolds (see Remark (2) below). Also Observe that (b) and (c) imply that there is some
smooth map, gαβ:Uα ∩ Uβ → G, so that

ϕα ◦ ϕ−1
β (b, x) = (b, gαβ(b)(x)),
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for all b ∈ Uα ∩ Uβ and all x ∈ F . Note that the isomorphism
gα,β: (Uα∩Uβ)×F → (Uα∩Uβ)×F describes how the fibres viewed over Uβ are viewed over
Uα. Thus, it might have been better to denote gα,β by gα

β , so that

gβ
α = ϕβ,b ◦ ϕ−1

α,b,

where the subscript, α, indicates the source and the superscript, β, indicates the target.

Intuitively, a fibre bundle over B is a family E = (Eb)b∈B of spaces Eb (fibres) indexed
by B and varying smoothly as b moves in B, such that every Eb is diffeomorphic to F .
The bundle E = B × F where π is the first projection is called the trivial bundle (over B).
The local triviality condition (a) says that locally , that is, over every subset, Uα, from some
open cover of the base space, B, the bundle ξ � Uα is trivial. Note that if G is the trivial
one-element group, then a fibre bundle is trivial.

A Möbius strip is an example of a nontrivial fibre bundle where the base space B is
the circle S1 and the fibre space F is the closed interval [−1, 1] and the structural group is
G = {1,−1}, where −1 is the reflection of the interval [−1, 1] about its midpoint, 0. The
total space E is the strip obtained by rotating the line segment [−1, 1] around the circle,
keeping its midpoint in contact with the circle, and gradually twisting the line segment so
that after a full revolution, the segment has been tilted by π. The reader should work out
the transition functions for an open cover consisting of two open intervals on the circle. A
Klein bottle is also a fibre bundle for which both the base space and the fibre are the circle
S1. Again, the reader should work out the details for this example.

Remark:

(1) The above definition is slightly different (but equivalent) to the definition given in Bott
and Tu [7], page 47-48. Definition 5.1 is closer to the one given in Hirzebruch [34].
Bott and Tu and Hirzebruch assume that G acts effectively on the left on the fibre
F . This means that there is a smooth action, ·:G × F → F , and recall that G acts
effectively on F iff for every g ∈ G,

if g · x = x for all x ∈ F , then g = 1.

Every g ∈ G induces a diffeomorphism, ϕg:F → F , defined by

ϕg(x) = g · x

for all x ∈ F . The fact that G acts effectively on F means that the map g 7→ ϕg is
injective. This justifies viewing G as a group of diffeomorphims of F , and from now
on, we will denote ϕg(x) by g(x).

(2) We observed that Definition 5.1 is too restrictive because it does not allow for the
addition of compatible bundle charts. We can fix this problem as follows: Given a
trivializing cover, {(Uα, ϕα)}, for any open, U , of B and any diffeomorphism,

ϕ: π−1(U) → U × F,



132 CHAPTER 5. PRINCIPAL FIBRE BUNDLES AND HOMOGENEOUS SPACES, II

we say that (U,ϕ) is compatible with the trivializing cover, {(Uα, ϕα)}, iff whenever
U ∩ Uα 6= ∅, there is some smooth map, gα:U ∩ Uα → G, so that

ϕ ◦ ϕ−1
α (b, x) = (b, gα(b)(x)),

for all b ∈ U ∩Uα and all x ∈ F . Two trivializing covers are equivalent iff every bundle
chart of one cover is compatible with the other cover. This is equivalent to saying that
the union of two trivializing covers is a trivializing cover. Then, we can define a fibre
bundle as a tuple, (E, π,B, F,G, {(Uα, ϕα)}), where {(Uα, ϕα)} is an equivalence class
of trivializing covers. As for manifolds, given a trivializing cover, {(Uα, ϕα)}, the set of
all bundle charts compatible with {(Uα, ϕα)} is a maximal trivializing cover equivalent
to {(Uα, ϕα)}.

A special case of the above occurs when we have a trivializing cover, {(Uα, ϕα)}, with
U = {Uα} an open cover of B and another open cover, V = (Vβ)β∈J , of B which is a
refinement of U . This means that there is a map, τ : J → I, such that Vβ ⊆ Uτ(j) for
all β ∈ J . Then, for every Vβ ∈ V , since Vβ ⊆ Uτ(β), the restriction of ϕτ(β) to Vβ is a
trivialization

ϕ′β: π−1(Vβ) → Vβ × F

and conditions (b) and (c) are still satisfied, so (Vβ, ϕ
′
β) is compatible with {(Uα, ϕα)}.

(3) (For readers familiar with sheaves) Hirzebruch defines the sheaf G∞ such that Γ(U,G∞)
is the group of smooth functions g:U → G, where U is some open subset of B and
G is a Lie group acting effectively (on the left) on the fibre F . The group operation
on Γ(U,G∞) is induced by multiplication in G, that is, given two (smooth) functions
g:U → G and h:U → G,

gh(b) = g(b)h(b)

for all b ∈ U .

� Beware that gh is not function composition, unless G itself is a group of functions,
which is the case for vector bundles.

Our conditions (b) and (c) are then replaced by the following equivalent condition: For
all Uα, Uβ in U such that Uα ∩ Uβ 6= ∅, there is some gαβ ∈ Γ(Uα ∩ Uβ, G∞) such that

ϕα ◦ ϕ−1
β (b, x) = (b, gαβ(b)(x)),

for all b ∈ Uα ∩ Uβ and all x ∈ F .

(4) The family of transition functions (gαβ) satisfies the cocycle condition

gαβ(b)gβγ(b) = gαγ(b),
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for all α, β, γ such that Uα ∩Uβ ∩Uγ 6= ∅ and all b ∈ Uα ∩Uβ ∩Uγ. Setting α = β = γ,
we get

gαα = id,

and setting γ = α, we get
gβα = g−1

αβ .

Again, beware that this means that gβα(b) = g−1
αβ (b), where g−1

αβ (b) is the inverse of

gβα(b) in G. In general, g−1
αβ is not the functional inverse of gβα.

The classic source on fibre bundles is Steenrod [58]. The most comprehensive treatment
of fibre bundles and vector bundles is probably given in Husemoller [35]. However, we can
hardly recommend this book. We find the presentation overly formal, and intuitions are
absent. A more extensive list of references is given at the end of Section 5.2.

Remark: (The following paragraph is intended for readers familiar with Čech cohomology.)
The cocycle condition makes it possible to view a fibre bundle over B as a member of a
certain (Čech) cohomology set Ȟ1(B,G), where G denotes a certain sheaf of functions from
the manifold B into the Lie group G, as explained in Hirzebruch [34], Section 3.2. However,
this requires defining a noncommutative version of Čech cohomology (at least, for Ȟ1), and
clarifying when two open covers and two trivializations define the same fibre bundle over B,
or equivalently, defining when two fibre bundles over B are equivalent. If the bundles under
considerations are line bundles (see Definition 5.5), then Ȟ1(B,G) is actually a group. In
this case, G = GL(1,R) ≈ R∗ in the real case and G = GL(1,C) ≈ C∗ in the complex case
(where R∗ = R−{0} and C∗ = C−{0}), and the sheaf G is the sheaf of smooth (real-valued
or complex-valued) functions vanishing nowhere. The group Ȟ1(B,G) plays an important
role, especially when the bundle is a holomorphic line bundle over a complex manifold. In
the latter case, it is called the Picard group of B.

A map of fibre bundles is defined as follows:

Definition 5.2 Given two fibre bundles ξ1 = (E1, π1, B1, F,G) and ξ2 = (E2, π2, B2, F,G)
with the same typical fibre F and the same structure group G, a bundle map (or bundle
morphism) f : ξ1 → ξ2 is a pair f = (fE, fB) of smooth maps fE:E1 → E2 and fB:B1 → B2

such that the following diagram commutes:

E1

π1

��

fE // E2

π2

��
B1 fB

// B2

A bundle map f : ξ1 → ξ2 is an isomorphism if there is some bundle map g: ξ2 → ξ1 called
the inverse of f such that

gE ◦ fE = id, fE ◦ gE = id.
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The bundles ξ1 and ξ2 are called isomorphic. Given two fibre bundles ξ1 = (E1, π1, B, F,G)
and ξ2 = (E2, π2, B, F,G) over the same base space B, a bundle map (or bundle morphism)
f : ξ1 → ξ2 is a pair f = (fE, fB) where fB = id (the identity map). Such a bundle map is
an isomorphism if it has an inverse as defined above. In this case, we say that the bundles
ξ1 and ξ2 over B are isomorphic.

When f is an isomorphism, the surjectivity of π1 and π2 implies that

gB ◦ fB = id, fB ◦ gB = id.

Thus, when f = (fE, fB) is an isomorphism, both fE and fB are diffeomorphisms. Some
authors require the “preservation” of fibres, that is, for every b ∈ B1, the map of fibres

fE � π−1
1 (b):π−1

1 (b) → π−1
2 (fB(b))

must be a diffeomorphism. This is automatic for isomorphisms.

We can also define the notion of equivalence for fibre bundles over the same base space
B (see Hirzebruch [34], Section 3.2, Chern [15], Section 5, and Husemoller [35], Chapter 5).
Equivalence of bundles implies that they are isomorphic.

Definition 5.3 Given two fibre bundles ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G)
over the same base space B, we say that ξ1 and ξ2 are equivalent if there is an open cover
U = (Uα)α∈I for B, a family ϕ = (ϕα)α∈I of trivializations

ϕα: π−1
1 (Uα) → Uα × F

for ξ1, a family ϕ′ = (ϕ′α)α∈I of trivializations

ϕ′α: π−1
2 (Uα) → Uα × F

for ξ2, and a family (ρα)α∈I of smooth maps ρα:Uα → G such that

ϕα ◦ ϕ′α
−1

(b, x) = (b, ρα(b)(x)),

for all b ∈ Uα and all x ∈ F .

Since the trivializations are bijections, the family (ρα)α∈I is unique. The following lemma
shows that equivalent fibre bundles are isomorphic:

Proposition 5.1 If two fibre bundles ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G) over
the same base space B are equivalent, then

g′αβ(b) = ρα(b)−1gαβ(b)ρβ(b),

for all b ∈ Uα ∩ Uβ, where the gαβs are the transition functions associated with the ϕαs and
the g′αβs are the transition functions associated with the ϕ′αs. Furthermore, ξ1 and ξ2 are
isomorphic.
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Proof . We only check the first part, leaving the second as an exercise (or consult Husemoller
[35], Chapter 5). Recall that

ϕα ◦ ϕ−1
β (b, x) = (b, gαβ(b)(x)),

for all b ∈ Uα ∩ Uβ and all x ∈ F . This is equivalent to

ϕ−1
β (b, x) = ϕ−1

α (b, gαβ(b)(x)),

and it is desirable to introduce ψα such that ψα = ϕ−1
α . Then, we have

ψβ(b, x) = ψα(b, gαβ(b)(x)),

and
ϕα ◦ ϕ′α

−1
(b, x) = (b, ρα(b)(x))

becomes
ψ′α(b, x) = ψα(b, ρα(b)(x)).

We have
ψ′β(b, x) = ψβ(b, ρβ(b)(x)) = ψα(b, gαβ(b)(ρβ(b)(x)))

and
ψ′α(b, g′αβ(b)(x)) = ψα(b, ρα(b)(g′αβ(b)(x))).

Since we also have
ψ′β(b, x) = ψ′α(b, g′αβ(b)(x)),

we get
ψα(b, gαβ(b)(ρβ(b)(x))) = ψα(b, ρα(b)(g′αβ(b)(x))),

which implies that
gαβ(b)(ρβ(b)(x)) = ρα(b)(g′αβ(b)(x))),

i.e.
g′αβ(b) = ρα(b)−1gαβ(b)ρβ(b).

In general, isomorphic fibre bundles over the same base B may not be equivalent, because
a smooth map h:U ×F → F may not arise from a smooth map ρ:U → G, in the sense that

h(b, x) = ρ(b)(x),

for all b ∈ U and all x ∈ F . However, this will be the case when G = GL(n,R)) (or
G = GL(n,C))) and when h is a smooth map linear in x for every fixed b. This is the
case for vector bundles, to be considered shortly. Following Hirzebruch [34], it is possible to
modify the notion of a map of fibre bundles over B so that isomorphism of bundles implies
bundle equivalence.
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Definition 5.4 Given two fibre bundles ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G)
over the same base space B, a strong bundle map f : ξ1 → ξ2 is a bundle map as in Definition
5.2 such that the following additional conditions hold:

(a) There is an open cover U = (Uα)α∈I for B, a family ϕ = (ϕα)α∈I of trivializations

ϕα: π−1
1 (Uα) → Uα × F

for ξ1, a family ϕ′ = (ϕ′α)α∈I of trivializations

ϕ′α: π−1
2 (Uα) → Uα × F

for ξ2.

(b) For every b ∈ B, there are some trivializations ϕα: π−1
1 (Uα) → Uα × F and

ϕ′α: π−1
2 (Uα) → Uα × F , with b ∈ Uα, and some smooth map ρα:Uα → G such that

ϕ′α ◦ f ◦ ϕα
−1(u, x) = (u, ρα(b)(x)),

for all u ∈ Uα and all x ∈ F .

A strong bundle map is an isomorphism if it has an inverse as in Definition 5.2. In this case,
we say that the bundles ξ1 and ξ2 over B are strongly isomorphic.

The following lemma is not hard to prove (see Husemoller [35], Chapter 5):

Proposition 5.2 Two fibre bundles ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G) over
the same base space B are equivalent iff they are strongly isomorphic.

Given a fibre bundle ξ = (E, π,B, F,G), we observed that the family g = (gαβ) of
transition maps gαβ:Uα ∩ Uβ → G induced by a trivializing family ϕ = (ϕα)α∈I relative to
the open cover U = (Uα)α∈I for B satisfies the cocycle condition

gαβ(b)gβγ(b) = gαγ(b),

for all α, β, γ such that Uα∩Uβ∩Uγ 6= ∅ and all b ∈ Uα∩Uβ∩Uγ. Without altering anything,
we may assume that gαβ is the (unique) function from ∅ to G when Uα ∩ Uβ = ∅. Then, we
call a family g = (gαβ)(α,β)∈I×I as above a U-cocycle, or simply, a cocycle. Remarkably, given
such a cocycle g relative to U , a fibre bundle ξg over B with fibre F and structure group G
having g as family of transition functions can be constructed. In view of Proposition 5.1,
we say that two cocycles g = (gαβ)(α,β)∈I×I and g′ = (gαβ)(α,β)∈I×I are equivalent if there is
a family (ρα)α∈I of smooth maps ρα:Uα → G such that

g′αβ(b) = ρα(b)−1gαβ(b)ρβ(b),

for all b ∈ Uα ∩ Uβ.
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Theorem 5.3 Given two smooth manifolds B and F , a Lie group G acting effectively on
F , an open cover U = (Uα)α∈I of B, and a cocycle g = (gαβ)(α,β)∈I×I , there is a fibre bundle
ξg = (E, π,B, F,G) whose transition maps are the maps in the cocycle g. Furthermore, if g
and g′ are equivalent cocycles, then ξg and ξg′ are equivalent.

Proof sketch. First, we define the space Z as the disjoint sum

Z =
∐
α∈I

Uα × F.

We define the relation ' on Z × Z as follows: For all (b, x) ∈ Uβ × F and (b, y) ∈ Uα × F ,
if Uα ∩ Uβ 6= ∅,

(b, x) ' (b, y) iff y = gαβ(b)(x).

We let E = Z/ ', and we give E the largest topology such that the the injections
ηα:Uα × F → Z are smooth. The cocycle condition insures that ' is indeed an equivalence
relation. We define π:E → B by π([b, x]) = b. If p:Z → E is the the quotient map, observe
that the maps p ◦ ηα:Uα × F → E are injective, and that

π ◦ p ◦ ηα(b, x) = b.

Thus,
p ◦ ηα:Uα × F → π−1(Uα)

is a bijection, and we define the trivializing maps by setting

ϕα = (p ◦ ηα)−1.

It is easily verified that the corresponding transition functions are the original gαβ. There
are some details to check, for instance, see Husemoller [35], Chapter 5, or Wells [61]. The
fact that ξg and ξg′ are equivalent when g and g′ are equivalent follows from Proposition 5.1
(see Husemoller [35], Chapter 5).

Remark: (The following paragraph is intended for readers familiar with Čech cohomology.)
Obviously, if we start with a fibre bundle ξ = (E, π,B, F,G) whose transition maps are the
cocycle g = (gαβ) and form the fibre bundle ξg, the bundles ξ and ξg are equivalent. This
leads to a characterization of the set of equivalence classes of fibre bundles over a base space
B as the cohomology set Ȟ1(B,G). In the present case, the sheaf G is defined such that
Γ(U,G) is the group of smooth maps from the open subset U of B to the Lie group G. Since
G is not abelian, the coboundary maps have to be interpreted multiplicatively. It is natural
to define

δ0:C
0(U ,G) → C1(U ,G)

by
(δ0g)αβ = g−1

α gβ,
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for any g = (gα), with gα ∈ Γ(Uα,G). As to

δ1:C
1(U ,G) → C2(U ,G),

since the cocycle condition in the usual case is

gαβ + gβγ = gαγ,

we set
(δ1g)αβγ = gαβgβγg

−1
αγ ,

for any g = (gαβ), with gαβ ∈ Γ(Uα ∩ Uβ,G). Note that a cocycle g = (gαβ) is indeed an
element of Z1(U ,G), and the condition for being in the kernel of

δ1:C
1(U ,G) → C2(U ,G)

is the cocycle condition
gαβ(b)gβγ(b) = gαγ(b),

for all b ∈ Uα ∩ Uβ ∩ Uγ. In the commutative case, two cocycles g and g′ are equivalent if
their difference is a boundary, which can be stated as

gαβ + ρβ = g′αβ + ρα = ρα + g′αβ,

where ρα ∈ Γ(Uα,G), for all α ∈ I. In the present case, two cocycles g and g′ are equivalent
iff there is a family (ρα)α∈I , with ρα ∈ Γ(Uα,G), such that

g′αβ(b) = ρα(b)−1gαβ(b)ρβ(b),

for all b ∈ Uα ∩ Uβ. This is the same condition of equivalence defined earlier. Thus, it is
easily seen that if g, h ∈ Z1(U ,G), then ξg and ξh are equivalent iff g and h correspond to
the same element of the cohomology set Ȟ1(U ,G). As usual, Ȟ1(B,G) is defined as the
direct limit of the directed system of sets Ȟ1(U ,G), over the preordered directed family of
open covers. For details, see Hirzebruch [34], Section 3.1. In summary, there is a bijection
between the equivalence classes of fibre bundles over B (with fibre F and structure group
G) and the cohomology set Ȟ1(B,G). In the case of line bundles, it turns out that Ȟ1(B,G)
is in fact a group.

There are two particularly interesting special cases of fibre bundles:

(1) Vector bundles , which are fibre bundles for which the typical fibre is a finite-dimensional
vector space V and the structure group is a subgroup of the group of linear isomor-
phisms (GL(n,R) or GL(n,C), where n = dimV ).

(2) Principal fibre bundles , which are fibre bundles for which the fibre, F , is equal to the
structure group G, with G acting on itself by left translation.
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Although this is not our main concern, we briefly discuss vector bundles.

Definition 5.5 A rank n real smooth vector bundle with fibre V is a tuple ξ = (E, π,B, V )
such that (E, π,B, V,GL(n,R)) is a smooth fibre bundle and the fibre V is a real vector
space of dimension n.

A rank n complex smooth vector bundle with fibre V is a tuple ξ = (E, π,B, V ) such that
(E, π,B, V,GL(n,C)) is a smooth fibre bundle and the fibre V is an n-dimensional complex
vector space (viewed as a real smooth manifold). When n = 1, a vector bundle is called a
line bundle.

Maps of vector bundles are maps of fibre bundles such that the isomorphisms between
fibres are linear.

Definition 5.6 Given two vector bundles ξ1 = (E1, π1, B1, V ) and ξ2 = (E2, π2, B2, V ) with
the same typical fibre V a bundle map (or bundle morphism) f : ξ1 → ξ2 is a pair f = (fE, fB)
of smooth maps fE:E1 → E2 and fB:B1 → B2 such that the following diagram commutes:

E1

π1

��

fE // E2

π2

��
B1 fB

// B2

and such that for every b ∈ B1, the map of fibres

fE � π−1
1 (b):π−1

1 (b) → π−1
2 (fB(b))

is a linear map. A bundle map isomorphism f : ξ1 → ξ2 is defined as in Definition 5.2. Given
two vector bundles ξ1 = (E1, π1, B, V ) and ξ2 = (E2, π2, B, V ) over the same base space B,
a bundle map (or bundle morphism) f : ξ1 → ξ2 and isomorphism of vector bundles over B
are also defined as in Definition 5.2.

Some authors require the preservation of fibres, that is, the map

fE � π−1
1 (b):π−1

1 (b) → π−1
2 (fB(b))

is a bijective linear map.

A holomorphic vector bundle is a fibre bundle where E,B are complex manifolds, V is a
complex vector space of dimension n, the map π is holomorphic, the ϕα are biholomorphic,
and the transistion functions gαβ are holomorphic. When n = 1, a holomorphic vector bundle
is called a holomorphic line bundle.

Definition 5.3 also applies to vector bundles and defines the notion of equivalence of
vector bundles over B. Proposition 5.1 also holds for equivalent vector bundles. This time,
because the fibre is a finite-dimensional vector space, two vector bundles over the same base
space B are isomorphic iff they are equivalent.

Proposition 5.4 Two vector bundles ξ1 = (E1, π1, B, F,G) and ξ2 = (E2, π2, B, F,G) over
the same base space B are equivalent iff they are isomorphic.
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5.2 Principal Fibre Bundles

We now consider principal bundles. Such bundles arise in terms of Lie groups acting on
manifolds.

Definition 5.7 Let G be a Lie group. A principal fibre bundle or for short, a principal
bundle, is a fibre bundle, ξ = (E, π,B,G,G), in which the fibre is equal to the stucture
group, G, and G acts on itself by left translation (multiplication on the left). This means
that every transition function, gαβ:Uα ∩ Uβ → G, satisfies

gαβ(b)(h) = gαβ(b)h,

for all b ∈ Uα ∩ Uβ and all h ∈ G. A principal G-bundle is denoted ξ = (E, π,B,G).

When we want to emphasize that a principal bundle has structure group, G, we use the
locution principal G-bundle.

It turns out that if ξ = (E, π,B,G) is a principal bundle, then G acts on the total space,
E, on the right. For the next proposition, recall that a right action, ·:X × G → X, is free
iff for every x ∈ X, if x · g = x, then g = 1.

Proposition 5.5 If ξ = (E, π,B,G) is a principal bundle, then there is a right action of G
on E. This action takes each fibre to itself and is free. Moreover, E/G is diffeomorphic to
B.

Proof . We show how to define the right action and leave the rest as as exercise. Let
{(Uα, ϕα)} be the equivalence class of trivializing covers defining ξ. For every z ∈ E, pick
some Uα so that π(z) ∈ Uα and let ϕα(z) = (b, h), where b = π(z) and h ∈ G. For any
g ∈ G, we set

z · g = ϕ−1
α (b, hg).

If we can show that this action does not depend on the choice of Uα, then it is clear that
it is a free action. Suppose that we also have b = π(z) ∈ Uβ and that ϕβ(z) = (b, h′). By
definition of the transition functions, we have

h′ = gβα(b)h and ϕβ(z · g) = (b, gβα(b)(hg)).

However,
gβα(b)(hg) = (gβα(b)h)g = h′g,

hence
z · g = ϕ−1

β (b, h′g),

which proves that our action does not depend on the choice of Uα.

Observe that the action of Proposition 5.5 is defined by

z · g = ϕ−1
α,b(ϕα,b(z)g), with b = π(z),

for all z ∈ E and all g ∈ G. It is clear that this action satisfies the two properties: For every
(Uα, ϕα),
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(1) π(z · g) = π(z) and

(2) ϕα(z · g) = ϕ(z) · g, for all z ∈ E and all g ∈ G,

where we define the right action of G on Uα ×G so that (b, h) · g = (b, hg). We say that ϕα

is G-equivariant (or equivariant).

The following proposition shows that it is possible to define a principal G-bundle using
a suitable right action and equivariant trivializations.

Proposition 5.6 Let E be a smooth manifold, G a Lie group and let ·:E × G → E be a
smooth right action of G on E and assume that

(a) The right action of G on E is free;

(b) The orbit space, B = E/G, is a smooth manifold under the quotient topology and the
projection, π:E → E/G, is smooth;

(c) There is a family of local trivializations, {(Uα, ϕα)}, where {Uα} is an open cover for
B = E/G and each

ϕα: π−1(Uα) → Uα ×G

is an equivariant diffeomorphism, which means that

ϕα(z · g) = ϕα(z) · g,

for all z ∈ π−1(Uα) and all g ∈ G, where the right action of G on Uα ×G is
(b, h) · g = (b, hg).

Then, ξ = (E, π,E/G,G) is a principal G-bundle.

Proof . Since the action of G on E is free, every orbit, b = z · G, is isomorphic to G and
so, every fibre, π−1(b), is isomorphic to G. Thus, given that we have trivializing maps, we
just have to prove that G acts by left translation on itself. Pick any (b, h) in Uβ ×G and let
z ∈ π−1(Uβ) be the unique element such that ϕβ(z) = (b, h). Then, as

ϕβ(z · g) = ϕβ(z) · g, for all g ∈ G,

we have
ϕβ(z · g) = ϕβ(ϕ−1

β (b, h) · g) = ϕβ(z) · g = (b, h) · g,

which implies that
ϕ−1

β (b, h) · g = ϕ−1
β ((b, h) · g).

Consequently,

ϕα ◦ ϕ−1
β (b, h) = ϕα ◦ ϕ−1

β ((b, 1) · h) = ϕα(ϕ−1
β (b, 1) · h) = ϕα ◦ ϕ−1

β (b, 1) · h,
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and since

ϕα ◦ ϕ−1
β (b, h) = (b, gαβ(b)(h)) and ϕα ◦ ϕ−1

β (b, 1) = (b, gαβ(b)(1))

we get
gαβ(b)(h) = gαβ(b)(1)h.

This shows that gαβ(b) is multiplication on the left by gαβ(b)(1) and ξ is indeed a principal
G-bundle.

Bröcker and tom Dieck [11] (Chapter I, Section 4) and Duistermaat and Kolk [25] (Ap-
pendix A) define principal bundles using the conditions of Lemma 5.6. Propositions 5.5 and
5.6 show that this alternate definition is equivalent to ours (Definition 5.7).

Even though we are not aware of any practical applications in computer vision or robotics,
we wish to digress briefly on the issue of the triviality of bundles and the existence of sections.

It is certainly a natural question, and it does come up in in physics (field theory), to ask
whether a fibre bundle, ξ, is isomorphic to a trivial bundle (if so, we say that ξ is trivial).
Generally, this is a very difficult question, but a first step can be made by showing that it
reduces to the question of triviality for principal bundles.

Indeed, if ξ = (E, π,B, F,G) is a fibre bundle with fibre, F , using Theorem 5.3, we can
construct a principal fibre bundle, P (ξ), using the transition functions, {gαβ}, of ξ, but using
G itself as the fibre (acting on itself by left translation) instead of F . We obtain the principal
bundle, P (ξ), associated to ξ. Then, given two fibre bundles ξ and ξ′, we see that ξ and ξ′

are isomorphic iff P (ξ) and P (ξ′) are isomorphic. More is true: The fibre bundle ξ is trivial
iff the principal fibre bundle P (ξ) is trivial (this is easy to prove, do it!). Morever, there is
a test for the triviality of a principal bundle, the existence of a (global) section.

Definition 5.8 Given a fibre bundle, ξ = (E, π,B, F,G), a smooth section of ξ is a smooth
map, s:B → E, so that π ◦ s = idB. Given an open subset, U , of B, a (smooth) section of
ξ over U is a smooth map, s:U → E, so that π ◦ s(b) = b, for all b ∈ U ; we say that s is a
local section of ξ. The set of all sections over U is denoted Γ(U, ξ) and Γ(B, ξ) is the set of
global sections of ξ.

The following proposition, although easy to prove, it crucial:

Proposition 5.7 If ξ is a principal bundle, then ξ is trivial iff it possesses some global
section.

Generally, in geometry, many objects of interest arise as global sections of some suitable
bundle (or sheaf): vector fields, differential forms, tensor fields, etc.

There is also a construction that takes us from principal bundles to fibre bundles. Given
a principal bundle, ξ = (E, π,B,G), and given a manifold, F , if G acts effectively on F from
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the left, we can define a fibre bundle, ξ[F ], from ξ, with F as typical fibre. As ξ is a principal
bundle, recall that G acts on E from the right, so we have a right action of G on E×F , via

(z, f) · g = (z · g, g−1 · f).

Consequently, we obtain the orbit set, E×F/ ∼, denoted E×GF , where ∼ is the equivalence
relation

(z, f) ∼ (z′, f ′) iff (∃g ∈ G)(z′ = z · g, g′ = g−1 · f).

Note that the composed map
E × F

pr1−→ E
π−→ B

factors through E ×G F , since

π(pr1(z, f)) = π(z) = π(z · g) = π(pr1(z · g, g−1 · f)).

Let p:E ×G F → B be the corresponding map. The following proposition is not hard to
show:

Proposition 5.8 If ξ = (E, π,B,G) is a principal bundle and F is any manifold such that
G acts effectively on F from the left, then, ξ[F ] = (E ×G F, p,B, F,G) is a fibre bundle with
fibre F and structure group G.

Let us verify that the charts of ξ yield charts for ξ[F ]. For any Uα in an open cover for
B, we have a diffeomorphism

ϕα: π−1(Uα) → Uα ×G.

Observe that we have an isomorphism

(Uα ×G)×G F ∼= Uα × F,

where, as usual, G acts on Uα ×G via (z, h) · g = (z, hg), an isomorphism

p−1(Uα) ∼= π−1(Uα)×G F,

and that ϕα induces an isomorphism

π−1(Uα)×G F
ϕα−→ (Uα ×G)×G F.

So, we get the commutative diagram

p−1(Uα)

p

��

g // Uα × F

pr1

��
Uα Uα,
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which yields a local trivialization for ξ[F ]. In fact, it is easy to see that the transition
functions of ξ[F ] are the same as the transition functions of ξ.

The fibre bundle ξ[F ] is called the fibre bundle induced by ξ. Now, if we start with a
fibre bundle, ξ, with fibre F and structure group G, make the associated principal bundle,
P (ξ), and then the induced fibre bundle, P (ξ)[F ], what is the relationship between ξ and
P (ξ)[F ]?

The answer is: ξ and P (ξ)[F ] are equivalent (this is because the transition functions are
the same.)

Now, if we start with a principal G-bundle, ξ, make the fibre bundle, ξ[F ], as above, and
then the principal bundle, P (ξ[F ]), we get a principal bundle equivalent to ξ. Therefore, the
maps

ξ 7→ ξ[F ] and ξ 7→ P (ξ),

are mutual inverses and they set up a bijection between equivalence classes of principal G-
bundles over B and equivalence classes of fibre bundles over B (with structure group, G).
Moreover, this map extends to morphisms, so it is functorial. As a consequence, in order
to “classify” equivalence classes of fibre bundles (assuming B and G fixed), it is enough to
know how to classify principal G-bundles over B. Given some reasonable conditions on the
coverings of B, Milnor solved this classification problem, but this is taking us way beyond
the scope of these notes!

For more on fibre bundles, vector bundles and principal bundles, see Steenrod [58], Bott
and Tu [7], Madsen and Tornehave [39], Griffith and Harris [30], Wells [61], Hirzebruch
[34], Milnor and Stasheff [43], Davis and Kirk [19], Atiyah [2], Chern [15], Choquet-Bruhat,
DeWitt-Morette and Dillard-Bleick [17], Hirsh [33], Sato [54], Narasimham [47], Sharpe [57]
and also Husemoller [35], which covers much more, including characteristic classes.

Proposition 5.6 shows that principal bundles are induced by suitable right actions but
we still need sufficient conditions to guarantee conditions (a), (b) and (c). Such conditions
are given in the next section.

5.3 Homogeneous Spaces, II

Now that we know about manifolds and Lie groups, we can revisit the notion of homogeneous
space given in Definition 2.8, which only applied to groups and sets without any topology
or differentiable structure.

Definition 5.9 A homogeneous space is a smooth manifold, M , together with a smooth
transitive action, ·:G×M →M , of a Lie group, G, on M .

In this section, we prove that G is the total space of a principal bundle with base space
M and structure group, Gx, the stabilizer of any x ∈M .
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If M is a manifold, G is a Lie group and ·:M × G → M is a smooth right action, in
general, M/G is not even Hausdorff. A sufficient condition can be given using the notion
of a proper map. If X and Y are two Hausdorff topological spaces,1 a continuous map,
ϕ:X → Y , is proper iff for every topological space, Z, the map ϕ× id:X ×Z → Y ×Z is a
closed map (A map, f , is a closed map iff the image of any closed set by f is a closed set).
If we let Z be a one-point space, we see that a proper map is closed. It can be shown (see
Bourbaki, General Topology [9], Chapter 1, Section 10) that a continuous map, ϕ:X → Y ,
is proper iff ϕ is closed and if ϕ−1(y) is compact for every y ∈ Y . If ϕ is proper, it is easy
to show that ϕ−1(K) is compact in X whenever K is compact in Y . Moreover, if Y is also
locally compact, then Y is compactly generated, which means that a subset, C, of Y is closed
iff K ∩ C is closed in C for every compact subset K of Y (see Munkres [46]). In this case
(Y locally compact), ϕ is a closed map iff ϕ−1(K) is compact in X whenever K is compact
in Y (see Bourbaki, General Topology [9], Chapter 1, Section 10).2 In particular, this is
true if Y is a manifold since manifolds are locally compact. Then, we say that the action
·:M ×G→M is proper iff the map

M ×G −→M ×M, (x, g) 7→ (x, x · g)

is proper.

If G and M are Hausdorff and G is locally compact, then it can be shown (see Bourbaki,
General Topology [9], Chapter 3, Section 4) that the action ·:M ×G→ M is proper iff for
all x, y ∈ M , there exist some open sets, Vx and Vy in M , with x ∈ Vx and y ∈ Vy, so that
the closure, K, of the set K = {g ∈ G | Vx · g ∩ Vy 6= ∅} is compact in G. In particular, if
G has the discrete topology, this conditions holds iff the sets {g ∈ G | Vx · g ∩ Vy 6= ∅} are
finite. Also, if G is compact, then K is automatically compact, so every compact group acts
properly. If the action ·:M ×G→M is proper, then the orbit equivalence relation is closed
since it is the image of M × G in M ×M , and so, M/G is Hausdorff. We then have the
following theorem proved in Duistermaat and Kolk [25] (Chapter 1, Section 11):

Theorem 5.9 Let M be a smooth manifold, G a Lie group and let ·:M ×G→M be a right
smooth action which is proper and free. Then, M/G is a principal G-bundle of dimension
dimM − dimG.

Theorem 5.9 has some interesting corollaries. Let G be a Lie group and let H be a closed
subgroup of G. Then, there is a right action of H on G, namely

G×H −→ G, (g, h) 7→ gh,

and this action is clearly free and proper. Because a closed subgroup of a Lie group is a Lie
group, we get the following result whose proof can be found in Bröcker and tom Dieck [11]
(Chapter I, Section 4) or Duistermaat and Kolk [25] (Chapter 1, Section 11):

1It is not necessary to assume that X and Y are Hausdorff but, if X and/or Y are not Hausdorff, we
have to replace “compact” by ”quasi-compact.” We have no need for this extra generality.

2Duistermaat and Kolk [25] seem to have overlooked the fact that a condition on Y (such as local
compactness) is needed in their remark on lines 5-6, page 53, just before Lemma 1.11.3.
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Corollary 5.10 If G be a Lie group and H a closed subgroup of G, then, the right action
of H on G defines a principal H-bundle, ξ = (G, π,G/H,H), where π:G → G/H is the
canonical projection. Moreover, π is a submersion, which means that dπg is surjective for
all g ∈ G (equivalently, the rank of dπg is constant and equal to dimG/H, for all g ∈ G).

Now, if ·:G ×M → M is a smooth transitive action of a Lie group, G, on a manifold,
M , we know that the stabilizers, Gx, are all isomorphic and closed (see Section 2.5, Remark
after Theorem 2.26). Then, we can let H = Gx and apply Corollary 5.10 to get the following
result (mostly proved in in Bröcker and tom Dieck [11] (Chapter I, Section 4):

Proposition 5.11 Let ·:G ×M → M be smooth transitive action of a Lie group, G, on a
manifold, M . Then, G/Gx and M are diffeomorphic and G is the total space of a principal
bundle, ξ = (G, π,M,Gx), where Gx is the stabilizer of any element x ∈M .

Thus, we finally see that homogeneous spaces induce principal bundles. Going back to
some of the examples of Section 2.2, we see that

(1) SO(n+ 1) is a principal SO(n)-bundle over the sphere Sn (for n ≥ 0).

(2) SU(n+ 1) is a principal SU(n)-bundle over the sphere S2n+1 (for n ≥ 0).

(3) SL(2,R) is a principal SO(2)-bundle over the upper-half space, H.

(4) GL(n,R) is a principal O(n)-bundle over the space SPD(n) of symmetric, positive
definite matrices.

(5) SO(n+ 1) is a principal O(n)-bundle over the real projective space RPn (for n ≥ 0).

(6) SU(n + 1) is a principal U(n)-bundle over the complex projective space CPn (for
n ≥ 0).

(7) O(n) is a principal O(k)×O(n− k)-bundle over the Grassmannian, G(k, n).

(8) From Section 2.5, we see that the Lorentz group, SO0(n, 1), is a principal SO(n)-
bundle over the space, H+

n (1), consisting of one sheet of the hyperbolic paraboloid
Hn(1).

Thus, we see that both SO(n+1) and SO0(n, 1) are principal SO(n)-bundles, the differ-
ence being that the base space for SO(n + 1) is the sphere, Sn, which is compact, whereas
the base space for SO0(n, 1) is the (connected) surface, H+

n (1), which is not compact. More
examples can be given, for example, see Arvanitoyeogos [1].
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[38] Serge Lang. Fundamentals of Differential Geometry. GTM No. 191. Springer Verlag,
first edition, 1999.

[39] Ib Madsen and Jorgen Tornehave. From Calculus to Cohomology. De Rham Cohomology
and Characteristic Classes. Cambridge University Press, first edition, 1998.

[40] Jerrold E. Marsden and T.S. Ratiu. Introduction to Mechanics and Symmetry. TAM,
Vol. 17. Springer Verlag, first edition, 1994.

[41] John Milnor. On isometries of inner product spaces. Inventiones Mathematicae, 8:83–97,
1969.

[42] John W. Milnor. Morse Theory. Annals of Math. Series, No. 51. Princeton University
Press, third edition, 1969.

[43] John W. Milnor and James D. Stasheff. Characteristic Classes. Annals of Math. Series,
No. 76. Princeton University Press, first edition, 1974.
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