CS 267: Applications of Parallel
Computers

Graph Partitioning

Kathy Yelick

http://www.cs.berkeley.edu/~yelick/cs267

4/15/2004 CS267, Yelick

Qutline of Graph Partitioning Lectures

* Review definition of Graph Partitioning problem
» Overview of heuristics

 Partitioning with Nodal Coordinates
* Planar graphs
 How well can graphs be partitioned in theory?
e Graphs in higher dimensions

 Partitioning without Nodal Coordinates

e Multilevel Acceleration
* BIG IDEA, appears often in scientific computing

e Comparison of Methods and Applications

Definition of Graph Partitionin

Given a graph G = (N, E, Wy, WE)
* N = nodes (or vertices),

e E = edges 1(2
* Wy = node weights
W = edge weights 5

Ex: N = {tasks}, Wy = {task costs}, edge (J,k) in E means task |
sends Wg(],k) words to task k

Choose a partition N = N; U N, U ... U Np such that
« The sum of the node weights in each N; is “about the same”

* The sum of all edge weights of edges connecting all different pairs
N; and Nk is minimized

Ex: balance the work load, while minimizing communication
Special case of N = N; U N2: Graph Bisection

4/15/2004 CS267, Yelick

Applications
» Telephone network design
 Original application, algorithm due to Kernighan

e Load Balancing while Minimizing Communication

e Sparse Matrix times Vector Multiplication

e Solving PDEs

 N={1,....n}, (k) in Eif A(},K) nonzero,

 Wn() = #nonzeros inrow j, Wg(,k) =1
e VLSI Layout

e N = {units on chip}, E ={wires}, Wg(j,k) = wire length
e Sparse Gaussian Elimination

« Used to reorder rows and columns to increase parallelism, and
to decrease “fill-in”

e Data mining and clustering
* Physical Mapping of DNA

4/15/2004 CS267, Yelick 4

_Cost of Graph Partitioning
e Many possible partitionings r Samplo Graph Partiongs
to search
 Just to divide Iin 2 parts there are:
n choose n/2 ~
sgrt(2n/pi)*2" possibilities

Q Q@ ©
ERslEne)

. - N N .
el

)

@

g < < <

Edge Crossings = 10

» Choosing optimal partitioning is NP-complete

* (NP-complete = we can prove it is a hard as other well-known
hard problems in a class Nondeterministic Polynomial time)

* Only known exact algorithms have cost = exponential(n)
* We need good heuristics

4/15/2004 CS267, Yelick 6

First Heuristic: Repeated Graph Bisection

e To partition N into 2k parts
e bisect graph recursively k times

» Henceforth discuss mostly graph bisection

Spactal Parthlen

. & A e
= ! . ‘h— -::. '—-._..ér' L ‘
e AT N Tl ~

E“i\ f“'

E@ cut adges

4/15/2004 CS267, Yelick

Edge Separators vs. Vertex Separators

* Edge Separator: Eg (subset of E) separates G if removing E from E
leaves two ~equal-sized, disconnected components of N: N; and N,

* Vertex Separator: Ng (subset of N) separates G if removing Ng and
all incident edges leaves two ~equal-sized, disconnected
components of N: N; and N,

G = (N, E), Nodes N and Edges E
Es = green edges or blue edges
Ng =

red vertices

* Making an Ng from an Eg: pick one endpoint of each edge in Eg
* [Ns| <= [Es| ?
« Making an Eg from an Ng: pick all edges incident on Ng
e |Es|] <=d *|Ng| where d is the maximum degree of the graph ?

« We will find Edge or Vertex Separators, as convenient
4/15/2004 CS267, Yelick 8

Overview of Bisection Heuristics

 Partitioning with Nodal Coordinates
 Each node has x,y,z coordinates - partition space

Finite Element Mesh of NASA Airfoil

Ay A
s

il ["
o 'L#Aé i

1

nar

D&

VAV,
N

o7
0.6
1] o

04[]

AV

e R YA T Ty
I D o Sy g VAT
_ I S At L S v oo
ool NP AREOCHARD
AN
Fi

0aF

RIH AKX .
VRO

s}

1 1 I
4] 0 Dz 03 0.& ns

« Partitioning without Nodal Coordinates
e E.g., Sparse matrix of Web documents
 A(},k) = # times keyword j appears in URL k
e Multilevel acceleration (BIG IDEA)
o Approximate problem by “coarse graph,” do so recursively

4/15/2004 CS267, Yelick

Nodal Coordinates: How Well Can We Do?

« Consider a special case:
A graph with nodal coordinates
e The graph is planar
* A planar graph can be drawn in plane without edge
crossings
* Ex: m x m grid of m? nodes: [vertex separator Ng with
INs| = m = sqrt(|N]) (see last slide for m=5)
 Theorem (Tarjan, Lipton, 1979): If G is planar, LINg such
that
* N=N; UNgU N> is a partition,
e [N1| <= 2/3 |N| and |N2| <= 2/3 |N|
* [Ns| <=sqrt(8 * [NJ)
 Theorem motivates intuition of following algorithms

4/15/2004 CS267, Yelick 10

Nodal Coordinates: Inertial Partitionin

* For a graph in 2D, choose line with half the nodes on
one side and half on the other

 In 3D, choose a plane, but consider 2D for simplicity

 Choose a line L, and then choose an L" perpendicular to
it, with half the nodes on either side

1. Choose aline L through the points
L given by a*(x-xbar)+b*(y-ybar)=0,
with a2+b2=1; (a,b) is unit vector [Jto L e
2. Project each point to the line

For each nj = (Xx],yj), compute coordinate
Sj = -b*(xj-xbar) + a*(yj-ybar) along L

3. Compute the median (xbar,ybar
Let Sbar = median(Sy,...,Sn) (a, \
4. Use median to partition the nodes \/

Let nodes with Sj < Sbar be in Nz, rest in N2
4/15/2004 CS267, Yelick 11

Inertial Partitioning: Choosing L

o Clearly prefer L on left below

Ny A N, -
000000000000 o006
4 0666666666 6." 1&L-E-t-1»

D S S S e S S i S s S S g o00e
'* \ 4

 Mathematically, choose L to be a total least squares fit
of the nodes

* Minimize sum of squares of distances to L (green lines on last
slide)

e Equivalent to choosing L as axis of rotation that minimizes the
moment of inertia of nodes (unit weights) - source of name

4/15/2004 CS267, Yelick 12

Inertial Partitioning: choosing L (continued
A L

(a,b) is unit vector
perpendicular to L

(xbar,ybar

(a, \
%j (length of j-th green line)? \J

=2 [(Xj - xbar)? + (yj - ybar)? - (-b*(x; - xbar) + a*(y; - ybar))?]
Pythagorean Theorem

=az* Zj (xj - xbar)?2 + 2*a*b* Zj (Xj - xbar)*(xj - ybar) + b2 Zj (y; - ybar)?

—a2* X1 +_2*a*b* X2 + b2* X3

=[ab]*|X1 X2| *|a
X2 X3] |b
Minimized by choosing
(xbar , ybar) = (Zj xj , Zj yj) / N = center of mass
(a,b) = eigenvector of smallest eigenvalue of |X1 XZ]

X2 X3
4/15/2004 CS267, Yelick 13

Nodal Coordinates: Random Spheres

» Generalize nearest neighbor idea of a planar graph to
higher dimensions

e For intuition, consider a the graph defined by a regular
3D mesh

 An n by n by n mesh of |[N| = n3 nodes
e Edges to 6 nearest neighbors
 Partition by taking plane parallel to 2 axes
e Cuts n2 =|N|2/3 = O(|E|2/3) edges

 For the general graphs 7
* Need a notion of well-shaped
* (Any graph fits in 3D without crossings!)

4/15/2004 CS267, Yelick 14

Random Spheres: Well Shaped Graphs

» Approach due to Miller, Teng, Thurston, Vavasis

 Def: A k-ply neighborhood system in d dimensions is a
set {Dg,...,Dn} of closed disks in RY such that no point in
Rd is strictly interior to more than k disks

 Def: An (a,k) overlap graph is a graph defined in terms
of a >= 1 and a k-ply neighborhood system {D4,...,Dn}:
There Is a node for each D;, and an edge from j to I If
expanding the radius of the smaller of D; and D; by >a
causes the two disks to overlap

EX: n-by-n mesh is a (1,1) overlap graph
Ex: Any planar graph is (a,k) overlap for
some a,k

2D Mesh is
(1,1) overlap
graph

4/15/2004 CS267, Yelick 15

Generalizing Lipton/Tarjan to Higher Dimensions

 Theorem (Miller, Teng, Thurston, Vavasis, 1993): Let
G=(N,E) be an (a,k) overlap graph in d dimensions with
n=|N|. Then there is a vertex separator Ns such that
* N=N; UN;UN,and
N1 and N2 each has at most n*(d+1)/(d+2) nodes

* Ng has at most O(Q * k1/d x n(d-1)/d) nodes
 When d=2, same as Lipton/Tarjan
 Algorithm:

 Choose a sphere S in RO

* Edges that S “cuts” form edge separator Eg

 Build Ng from Eg

e Choose “randomly”, so that it satisfies Theorem with high
probability
4/15/2004 CS267, Yelick 16

Stereoqraphic Projection

» Stereographic projection from plane to sphere

* In d=2, draw line from p to North Pole, projection p’ of p is
where the line and sphere intersect

p = (X,y) p’ = (2x,2y,x? +y? 1) [(x? + y? + 1)

e Similar in higher dimensions

4/15/2004 CS267, Yelick 17

Choosing a Random Sphere

* Do stereographic projection from Rd to sphere in Rd+1

* Find centerpoint of projected points
« Any plane through centerpoint divides points ~evenly
e There is a linear programming algorithm, cheaper heuristics

« Conformally map points on sphere
» Rotate points around origin so centerpoint at (0,...0,r) for some r
 Dilate points (unproject, multiply by sqrt((1-r)/(1+r)), project)
* this maps centerpoint to origin (0,...,0)

* Pick a random plane through origin
* Intersection of plane and sphere is circle

e Unproject circle
* yields desired circle C In Rd

» Create Ns: | belongs to Ns if a*D; intersects C

4/15/2004 CS267, Yelick 18

o

o

o AT

A DAY oy
B e i
1 e e
K A

A

A

SR

y
AWAT

iy

o

Random Sphere Algorithm (Gilbert)

Firni= El=meniM==h

Kas AV

AV

-

LIEERIn ™

<%

i

"
S

AV
g

w7
A

) g

g e
e Sl

R
A

YA

Ry ey ey "‘.’
T A T LT
e LT
T
A N A s g I e 4‘
AT
R
S SRl
GAEAEL hﬁ% REE ﬁ:‘
ST SR et e S T
I ey Py Y

A VY. VA o A,
alavaares oA A
VWY 5 T W Yo v, 5 v

g g
T

0 3ar

0 5-

04

02

12

Q4

0 5

0 3

Random Sphere Algorithm (Gilbert)

]
05

20

Random Sphere Algorithm (Gilbert)

Pont= Proj=atad onta the Sphears

Fyura i Projected mesh paints. The large dat 18 the centerpamt.

4/15/2004 21

Random Sphere Algorithm (Gilbert)

4/15/2004 CS267, Yelick

22

Random Sphere Algorithm (Gilbert

M==zh Pont=inth= Flan=

a1 R IR
04t

02z

4 5
ﬂE- [| n
-1 1]]]]
-1 .5 o 05 1

4/

R Figure i The separating circle projected back to the plane.

Faridon of e Origrm Meah

4/15, 42 ot edgex

Nodal Coordinates: Summar

Other variations on these algorithms
Algorithms are efficient

Rely on graphs having nodes connected (mostly) to “nearest
neighbors” in space

 algorithm does not depend on where actual edges are!
Common when graph arises from physical model

Ignore edges, but can be used as good starting guess for
subsequent partitioners that do examine edges

Can do poorly if graph connection is not spatial:

Details at
« www.cs.berkeley.edu/~demmel/cs267/lecturel8/lecturel8.html
o Wwww.parc.xerox.com/spl/members/qgilbert (tech reports and SW)

o www-sal.cs.uiuc.edu/~steng
4/15/2004 CS267, Yelick

25

Coordinate-Free: Breadth First Search (BFS)

* Given G(N,E) and a root node r in N, BFS produces
» A subgraph T of G (same nodes, subset of edges)
 Tis atree rooted atr
 Each node assigned a level = distance from r

root
T Level O
N1 Level 1
Level 2
"""""""""""""""""""""""""" Level3
N2 Level 4
Tree edges —

Horizontal edges —
Inter-level edges —

4/15/2004 CS267, Yelick 26

Breadth First Search
» Queue (First In First Out, or FIFO) root

* Enqueue(x,Q) adds x to back of Q

* X = Dequeue(Q) removes x from front of Q

e« Compute Tree T(Nt,E1)

Nt = {(r,0)}, ET = empty set ... Initially T =root r, which is at level O
Enqueue((r,0),Q) ... Put root on initially empty Queue Q
Mark r ... Mark root as having been processed
While Q not empty ... While nodes remain to be processed
(n,level) = Dequeue(Q) ... Get anode to process
For all unmarked children c of n
Nt = Nt U (c,level+1) ... Add child c to Nt
Er=ETU(n,c) ... Add edge (n,c)to ET
Enqueue((c,level+1),Q)) ... Add child c to Q for processing
Mark c ... Mark c as processed
Endfor
Endwhile

4/15/2004 CS267, Yelick

Partitioning via Breadth First Search

* BFS identifies 3 kinds of edges

 Tree Edges - partof T
» Horizontal Edges - connect nodes at same level
 Interlevel Edges - connect nodes at adjacent levels

* No edges connect nodes in levels
differing by more than 1 (why?)

e BFS partioning heuristic
e N=N; UNs, where
« Nj; ={nodes at level <=L},
* N, ={nodes at level > L}
e Choose L so |N3]| close to |[Ny|

BFS partition of a 2D Mesh
using center as root:

N1 =levels O, 1, 2,3

N2 =levels 4,5, 6

4/15/2004 CS267, Yelick

28

Coordinate-Free: Kernighan/Lin

e Take a initial partition and iteratively improve it
« Kernighan/Lin (1970), cost = O(|N|3) but easy to understand
* Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but
more complicated
» Given G = (N,E,Wg) and a partitioning N = A U B, where
|Al = |B]
T =cost(A,B) = 2 {W(e) where e connects nodes in A and B}
e Find subsets X of A and Y of B with |X| =|Y]

e Swapping X and Y should decrease cost:
e newA=A-XUY and newB=B-YUX
 newT = cost(newA , newB) < cost(A,B)

* Need to compute newT efficiently for many possible X
and Y, choose smallest

4/15/2004 CS267, Yelick 29

Kernighan/Lin: Preliminary Definitions

T =cost(A, B), newT = cost(hewA, newB)
* Need an efficient formula for newT; will use
 E(a) = external cost ofain A =S {W(a,b) for b in B}
e [(@) =internal costofain A=S {W(a,a’) for other a’ in A}
e D(a) =costofain A =E(a) -1(a)
e E(b), I(b) and D(b) defined analogously for b in B
e Consider swapping X = {a} and Y = {b}
* newA=A-{a} U{b}, newB =B -{b} U {a}
e newT =T -(D(a) + D(b) - 2*w(a,b)) =T - gain(a,b)
» gain(a,b) measures improvement gotten by swapping a and b
* Update formulas
 newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b) fora’'in A,a’ !'=a
 newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a) forb’in B, b’ !=Db

4/15/2004 CS267, Yelick 30

Kernighan/Lin Algorithm

Compute T =cost(A,B) for initial A, B ... cost = O(|N|?)
Repeat
... One pass greedily computes |N|/2 possible X,Y to swap, picks best
Compute costs D(n) for all nin N ... cost = O(|N|?)
Unmark all nodes in N ... cost = O(|N])
While there are unmarked nodes ... IN|/2 iterations
Find an unmarked pair (a,b) maximizing gain(a,b) ... cost = O(|N|?)
Mark a and b (but do not swap them) ... cost=0(1)
Update D(n) for all unmarked n,
as though a and b had been swapped ... cost = O(|N])
Endwhile

... At this point we have computed a sequence of pairs
... (@l,bl), ..., (ak,bk) and gains gain(l1),...., gain(k)
... where k = |N|/2, numbered in the order in which we marked them

Pick m maximizing Gain = 2k=1to m gain(k) ... cost = O(|N])
... Gain is reduction in cost from swapping (al,bl) through (am,bm)

If Gain > 0then ...itis worth swapping
Update newA=A-{al,...,.am}U{bl,...bm} ... cost = O(|N])
Update newB =B -{ bl,....om}U{al,....am} ... cost = O(|N])
Update T =T - Gain ... cost=0(1)

endif

Until Gain <=0

4/15/2004 CS267, Yelick 31

Comments on Kernighan/Lin Algorithm

* Most expensive line show in red

 Some gain(k) may be negative, but if later gains are
large, then final Gain may be positive
e can escape “local minima” where switching no pair helps

« How many times do we Repeat?

» K/L tested on very small graphs (|JN|<=360) and got
convergence after 2-4 sweeps

« For random graphs (of theoretical interest) the probability of
convergence in one step appears to drop like 2-INI/30

4/15/2004 CS267, Yelick 32

Coordinate-Free: Spectral Bisection

« Based on theory of Fiedler (1970s), popularized by
Pothen, Simon, Liou (1990)

* Motivation, by analogy to a vibrating string

 Basic definitions

e Vibrating string, revisited

* Implementation via the Lanczos Algorithm

* To optimize sparse-matrix-vector multiply, we graph partition

e To graph partition, we find an eigenvector of a matrix
associated with the graph

e To find an eigenvector, we do sparse-matrix vector multiply
* No free lunch ...

4/15/2004 CS267, Yelick 33

Motivation for Spectral Bisection

* Vibrating string

e Think of G = 1D mesh as masses (nodes) connected by springs
(edges), i.e. a string that can vibrate

* Vibrating string has modes of vibration, or harmonics
» Label nodes by whether mode - or + to partition into N- and N+
o Same idea for other graphs (eg planar graph ~ trampoline)

Modes of a Vibrating String
Lowest Frequency lambda(1)

Second Frequency lambda(2)

Third Frequency lambda(3)

4/15/2004 CS267, Yelick 34

Basic Definitions

 Definition: The incidence matrix In(G) of a graph G(N,E)
IS an |N| by |E| matrix, with one row for each node and
one column for each edge. If edge e=(i,j) then column e
of In(G) is zero except for the i-th and j-th entries, which

are +1 and -1, respectively.

 Slightly ambiguous definition because multiplying column e of In(G)
by -1 still satisfies the definition, but this won’t matter...

 Definition: The Laplacian matrix L(G) of a graph G(N,E)
IS an |N| by [N| symmetric matrix, with one row and
column for each node. It is defined by

* L(G) (i,i) = degree of node | (number of incident edges)
e L(G) (i,)) =-1ifi!=jand there is an edge (i,))
e L(G) (i,)) = 0 otherwise

4/15/2004 CS267, Yelick 35

Exam

MNodes nomberad in black
Edges nombered in bine

4/15/2004

LI - L L

1
-1
1

Incidence and Laplacian Matrices

Incidence Matrix In({3)
_ 1 2 3 4_
-1

1-1
1-1
1-1
| 1

W o b B e

2 3456 7 89
1
-1 1

1

10 11 12

CS267, Yelick

le of In(G) and L(G) for Sim

LT - L L

le Meshes

Laplacian Matrix L({{z)
1 3 4 A__

1| 1-1

2 -1 2 41

3 -102 1

4 -1 0241

5 L -1 1_]

1 2345678 9
-1 41

-1 3-1
-12 -1

36

Properties of Laplacian Matrix

 Theorem 1: Given G, L(G) has the following properties

(proof on web page)
e L(G) is symmetric.

* This means the eigenvalues of L(G) are real and its eigenvectors
are real and orthogonal.

e Rows of L sum to zero:

e Lete=]1,...,1]7, i.e. the column vector of all ones. Then
L(G)*e=0.

* The eigenvalues of L(G) are nonnegative:
e 0=A1<=A2<=...<=Ap
 The number of connected components of G is equal to the
number of Aj equal to 0.

 Definition: A,(L(G)) is the algebraic connectivity of G
 The magnitude of A2 measures connectivity
e In particular, A2 '= 0 if and only if G is connected.

4/15/2004 CS267, Yelick 38

Spectral Bisection Algorithm

e Spectral Bisection Algorithm:
o Compute eigenvector v, corresponding to A2(L(G))
e For each node n of G
« if vp(n) <0 put node n in partition N-
e else put node n in partition N+

 Why does this make sense? First reasons...

 Theorem 2 (Fiedler, 1975): Let G be connected, and N- and N+
defined as above. Then N- is connected. If no vz(n) = 0, then
N+ IS also connected. (proof on web page)

» Recall A,(L(G)) is the algebraic connectivity of G

 Theorem 3 (Fiedler): Let G,(N,E,) be a subgraph of G(N,E), so
that G; is “less connected” than G. Then A,(L(G)) <= Ay(L(G)),
l.e. the algebraic connectivity of G; is less than or equal to the
algebraic connectivity of G. (roof on web page)

4/15/2004 CS267, Yelick 40

Motivation for Spectral Bisection (recap)

* Vibrating string has modes of vibration, or harmonics

 Modes computable as follows
* Model string as masses connected by springs (a 1D mesh)
* Write down F=ma for coupled system, get matrix A

e Eigenvalues and eigenvectors of A are frequencies and shapes
of modes

» Label nodes by whether mode - or + to get N- and N+

o Same idea for other graphs (eg planar graph ~ trampoline)
Modes of a Vibrating String

Lowest Frequency lambda(1)

Second Frequency lambda(2)

Third Frequency lambda(3)

4/15/2004 41

_Details for Vibrating String Analogy
e Force on mass j = k*[x(j-1) - x(j)] + k*[x(7+1) - x(j)]
= -k*[-x(-1) + 2*x()) - x(+1)]

e F=ma yields m*x”(j) = -k*[-x(j-1) + 2*x(j) - x(j+1)]

e Writing (*) for |=1,2,...,n yields

(X(l)\
X(2)

dx?2 X(j)

\).(.(.n)J

4/15/2004

=-k*

[2*x(1) - X(2)
-X(1) + 2*x(2) - x(3)

-x.(.j.—l) + 2*X()) - x(j+1)

L .2.’;x(n-1) - x(n)

(-m/k) X" = L*X

\

/

=-k*

Vibrating Mass Spring System

x(1)

rX(l)\
x(2)

()

x(5)

QZ(.”) J

(*)

=_k*L*

rX(l) 3
X(2)

(X(n)

42

Details for Vibrating String (continued)

o -(M/K) X" = L*X, where X = [X1,X2,...,Xn |7
o Seek solution of form x(t) = sin(a*t) * x0

e L*x0 = (m/k)*a2 * x0 = A * x0

« For each integer i, get A =2*(1-cos(i*1v(n+1)), x0 = ’sin(l*i*rd(n+1))\
sin(2**1v(n+1))

sin(n*i*1v(n+1))
e Thus x0 is a sine curve with frequency proportional to iL ’
e Thus a2 = 2*k/m *(1-cos(i*17(n+1)) or o ~ sqrt(k/m)*Te:i/(n+1)

(\
oL =12 -1 not quite L(1D mesh),

-1 2 -1 but we can fix that ...

\ /

4/15/2004 CS267, Yelick 43

Motivation for Spectral Bisection

* Vibrating string has modes of vibration, or harmonics

 Modes computable as follows
* Model string as masses connected by springs (a 1D mesh)
* Write down F=ma for coupled system, get matrix A

e Eigenvalues and eigenvectors of A are frequencies and shapes
of modes

» Label nodes by whether mode - or + to get N- and N+
« Same idea for other graphs (eg planar graph ~ trampoline)

"Vibrating String"’ for Spectral Bisection

4/15/2004 CS267, Yelick 44

Eigenvectors of L(1D mesh

Cramk Parddaninm o Chaln &N
Ciraph Pardtioning a Chaln, n=50
i I
Eigenvector 1 :
(aII Ones) n T : ... —
T S S S S _
I I I I I I I I I
& 10 18 bl o} bt an ag 410 48 &0
Eigenvector 2 :
| | | | ; | | | |
& 10 18 bl o} bt an ag 410 48 &0
2nd alg]anvaemr
| ! | | I I | | |
Eigenvector 3
| | | | i | | | |

& 10 15 20 25 an A& 40 45 &0
ard elgenvestar

4/15/2004 CS267, Yelick 45

2nd eigenvector of L(planar mesh)

2riginal FE mesh Flot of v2 from abowve

Plot of v2 head on

;-
0.5
0-
0.5
] _//‘m
1D D 10 -10 0 TEELN

4/15/2004 CS267, Yelick

4th el

envector of L

Original FE mash

10Qr

=
N
! .l.':i'i.

o s T

7
L5
o
A
Y,

S

Crcla noda i if vd{i]=0

4/15/vu—+

10 0 10

lanar mesh

Flot of vd from abova

Flot ofwvd haad on

.
-10

a7

LUV 1 THUN

Computing Vo and A, of L(G) using Lanczos

» Given any n-by-n symmetric matrix A (such as L(G)) Lanczos
computes a k-by-k “approximation” T by doing k matrix-vector

products, k << n
Choose an arbitrary starting vector r

b(0) = ||r[|
=0
repeat
=+l
a() =r/b(-1) ... scale a vector
r=A*q()) ... matrix vector multiplication, the most expensive step
r=r-b(-1)*v(-1) ... “saxpy”, or scalar*vector + vector
a() =v()" *r ... dot product
r=r-a()*v() .. “saxpy”
b(j) =||r|| ... compute vector norm
until convergence ... details omitted
T=(a1) bQ))
b(1) a(2) b(2) O
b(2) a(3) b(3)
O b(k-2) a(k-1) b(k-1)
\ b(k-1) a(k) J
groxmate A’s eigenvalues/vectors using T's
4/15 200 CS267, Yelick 48

Spectral Bisection: Summary

« Laplacian matrix represents graph connectivity

« Second eigenvector gives a graph bisection
 Roughly equal “weights” in two parts
« Weak connection in the graph will be separator
* Implementation via the Lanczos Algorithm
* To optimize sparse-matrix-vector multiply, we graph partition

e To graph partition, we find an eigenvector of a matrix
associated with the graph

e To find an eigenvector, we do sparse-matrix vector multiply

e Have we made progress?

« The first matrix-vector multiplies are slow, but use them to learn
how to make the rest faster

4/15/2004 CS267, Yelick 49

Introduction to Multilevel Partitioning

o If we want to partition G(N,E), but it is too big to do
efficiently, what can we do?

* 1) Replace G(N,E) by a coarse approximation G¢(N¢,Ec), and
partition G¢ instead

» 2) Use partition of G¢ to get a rough partitioning of G, and then
iteratively improve it

 What if G still too big?
* Apply same idea recursively

4/15/2004 CS267, Yelick 50

Multilevel Partitioning - High Level Algorithm

(N+,N-) = Multilevel Partition(N, E)
... recursive partitioning routine returns N+ and N- where N = N+ U N-

if IN] is small
(D) Partition G = (N,E) directly to get N = N+ U N-
Return (N+, N-)
else

(2) Coarsen G to get an approximation G¢ = (N¢, Ec)

(3) (Nc+ , N¢-) = Multilevel _Partition(N¢, Ec)

(4) Expand (N¢+, N¢-) to a partition (N+, N-) of N

(5) Improve the partition (N+, N-)

Return (N+, N-)
endif
“V - cycle:” O CD(S)
2.3\

How do we L
Coarsen? O ®<5>
Expand? 23N 7
improve? O D

(2,3)\ /(4)

4/15/2004 CS267, Yelick cD(l) 51

Multilevel Kernighan-Lin

e Coarsen graph and expand partition using maximal
matchings

 Improve partition using Kernighan-Lin

4/15/2004 CS267, Yelick 52

Maximal Matching
 Definition: A matching of a graph G(N,E) is a subset En, of
E such that no two edges in Ey, share an endpoint

 Definition: A maximal matching of a graph G(N,E) is a
matching Em to which no more edges can be added and
remain a matching

* A simple greedy algorithm computes a maximal matching:

4/15/2004

let E,, be empty
mark all nodes in N as unmatched
fori=1to |N| ... Visit the nodes in any order
If i has not been matched
mark i as matched
if there is an edge e=(i,j) where jis also unmatched,

add e to E,
mark j as matched
endif
endif

endfor _
CS267, Yelick 53

Maximal Matchin

. Example

4/15/2004

:

A

CS267, Yelick

0

54

Coarsening using a maximal matching

1) Construct a maximal matching Em of G(N,E)

for all edges e=(j,k) in Em 2) collapse matches nodes into a single one
Put node n(e) in N¢
W(n(e)) = W()) + W(k) ... gray statements update node/edge weights

for all nodes n in N not incident on an edge in Eyy 3) add unmatched nodes
Putnin N¢c ... donot change W(n)
... Now each noderin Nis “inside” a unique node n(r) in N¢

... 4) Connect two nodes in Nc if nodes inside them are connected in E
for all edges e=(j,k) in Em
for each other edge e’=(j,r) in E incident on |
Put edge ee = (n(e),n(r)) in Ec
W(ee) = W(e’)
for each other edge e’=(r,k) in E incident on k
Put edge ee = (n(r),n(e)) in Ec
W(ee) = W(e’)

If there are multiple edges connecting two nodes in N¢, collapse them,
adding edge weights

4/15/2004 CS267, Yelick 55

Example of Coarsenin

How to coarsen a graph using a maximal matching

G=(N,E) Ge=(N:,E¢)

E j, is shown in red N isshown in red

Edge weights shown in blue Edge weights shown in blue
Node weights are all one Node weights shown in black

4/15/2004 CS267, Yelick 56

Expanding a partition of G~ to a partition of G

Converting a coarse partition to a fine partition

Partition shown in green

4/15/2004 CS267, Yelick 57

Multilevel Spectral Bisection

e Coarsen graph and expand partition using maximal
Independent sets

 Improve partition using Rayleigh Quotient Iteration

4/15/2004 CS267, Yelick 58

Maximal Independent Sets

» Definition: An independent set of a graph G(N,E) is a subset N; of N
such that no two nodes in N;j are connected by an edge

» Definition: A maximal independent set of a graph G(N,E) is an
independent set N; to which no more nodes can be added and
remain an independent set

* A simple greedy algorithm computes a maximal independent set:
let Nj be empty

for k =1 to |N| ... Visit the nodes in any order
If node k is not adjacent to any node already in N;i
add k to N;
endif Maximal Independent Subset N; of N
endfor

L $ 9 $ 9 $ 9 $ 9

® and ®# -pDodesof N

L -nodes of N i

4/15/2004 CS267, Yelick 59

Coarsening using Maximal Independent Sets

... Build “domains” D(k) around each node k in Nj to get nodes in N¢
... Add an edge to E; whenever it would connect two such domains
Ec; = empty set
for all nodes k in N;
D(k) = ({k}, empty set)
... first set contains nodes in D(k), second set contains edges in D(k)
unmark all edges in E
repeat
choose an unmarked edge e = (k,j) from E
if exactly one of k and | (say k) is in some D(m)
mark e
add j and e to D(m)
else if k and j are in two different D(m)’s (say D(mi) and D(m)))
mark e
add edge (mk, mj) to E;
else if both k and j are in the same D(m)
mark e
add e to D(m)
else
leave e unmarked
endif
until no unmarked edges
4/15/2004 CS267, Yelick 60

Example of Coarsening

Computing G ofrom G

® and ¢ -nodesofN

o -nodes of N i

-edgesin E

-edgesinE |

{33 - encloses domain D, = node of N,

4/15/2004 CS267, Yelick 61

Expanding a partition of G to a partition of G

* Need to convert an eigenvector v¢ of L(G¢) to an
approximate eigenvector v of L(G)

« Use interpolation:

For each node jin N
If jis also anode in N¢, then

V(j) =ve() ... usesame eigenvector component
else
v(j) = average of v (k) for all neighbors k of j in N¢
end if
endif

4/15/2004 CS267, Yelick 62

Example: 1D mesh of 9 nodes

Z2nd Elgenvectars of G = ehaln of nedas

1 I I I I T I I
S — vactar of 8. nodsa ahaln : : :
n B L - - -' ,. r -\.' -

- — —r - — iu'a::tm of 5 noda sub:fthaln

0.8

0.4

n.z

4/15/2004 CS267, Yelick 63

Improve eigenvector: Rayleigh Quotient lteration
J=0
pick starting vector v(0) ... from expanding V¢
repeat
J=1+1
r() =v'(-1) * L(G) * v(j-1)
. 1()) = Rayleigh Quotient of v(j-1)
= good apprOX|mate eigenvalue
V(J) = (L(G) - r()*1) L * v(j-1)
. expensive to do exactly, so solve approximately
.. using an iteration called SYMMLQ,
... Wwhich uses matrix-vector multiply (no surprise)
vj)=v() /|l v(g) |l ...normalize v())
until v(j) converges
.. Convergence is very fast: cubic

4/15/2004 CS267, Yelick 64

Errar
i
=}

10

10

10

10

4/15/2004

-1z

-14

-1B

Example of convergence for 1D mesh

Convarganze of Raylalgh Quotlent Itaratien

...

Elgen '.rectuir efrrer

15

2

2.5

[taratlhn Numbar
CS267, Yelick

65

Available Implementations

« Multilevel Kernighan/Lin
« METIS (www.cs.umn.edu/~metis)
e ParMETIS - parallel version

e Multilevel Spectral Bisection

« S. Barnard and H. Simon, “A fast multilevel implementation of
recursive spectral bisection ...”, Proc. 6th SIAM Conf. On
Parallel Processing, 1993

e Chaco (www.cs.sandia.gov/CRF/papers_chaco.html)
* Hybrids possible

e Ex: Using Kernighan/Lin to improve a partition from spectral
bisection

4/15/2004 CS267, Yelick 66

Comparison of methods

« Compare only methods that use edges, not nodal coordinates
 CS267 webpage and KK95a (see below) have other comparisons

* Metrics
« Speed of partitioning
 Number of edge cuts
« Other application dependent metrics

e Summary
 No one method best

« Multi-level Kernighan/Lin fastest by far, comparable to Spectral in the
number of edge cuts
e www-users.cs.umn.edu/~karypis/metis/publications/mail.html
» see publications KK95a and KK95b

« Spectral give much better cuts for some applications
 Ex:image segmentation
 www.cs.berkeley.edu/~jshi/Grouping/overview.html
 see “Normalized Cuts and Image Segmentation”

4/15/2004 CS267, Yelick 67

Number of edges cut for a 64-way partition

For Multilevel Kernighan/Lin, as implemented in METIS (see KK95a)

of # of # Edges cut | Expected| Expected

Graph Nodes Edges for 64-way | # cuts for| # cuts for| Description
partition | 2D mesh | 3D mesh

144 144649 | 1074393 88806 6427 31805 | 3D FE Mesh
4ELT 15606 45878 2965 2111 7208 | 2D FE Mesh
ADD32 4960 9462 675 1190 3357 | 32 bit adder
AUTO 448695 | 3314611 194436 11320 67647 | 3D FE Mesh
BBMAT 38744 993481 55753 3326 13215 | 2D Stiffness M.
FINANS512 (4752 261120 11388 4620 20481 | Lin. Proaq.
LHR10 10672 209093 58784 1746 5595 | Chem. Eng.
MAP1 267241 334931 1388 8736 47887 | Highway Net.
MEMPLUS| 17758 54196 17894 2252 7856 | Memory circuit
SHYY161 76480 152002 4365 4674 20796 | Navier-Stokes
TORSO 201142 | 1479989 117997 7579 39623 | 3D FE Mesh

Expected # cuts for 64-way partition of 2D mesh of n nodes
N2+ 2¢n/2)V2 + ax(nia)l2 + . + 32%(n/32)1/2 ~ 17 » n1/2

Expected # cuts for 64-way partition of 3D mesh of n nodes =
. +32%(n/32)213 ~ 11.5* r16§/3

4/15/2004

n2/3 4+ 2*(n/2)2/3 + 4% %/;1

. Yelick

23 4

Speed of 256-way partitioning (from KK95a
Partitioning time in seconds
of # of Multilevel Multilevel
Graph Nodes Edges Spectral Kernighan/ Description
Bisection Lin
144 144649 | 1074393 607.3 48.1 3D FE Mesh
4ELT 15606 45878 25.0 3.1 2D FE Mesh
ADD32 4960 9462 18.7 1.6 32 bit adder
AUTO 448695 | 3314611 2214.2 179.2 3D FE Mesh
BBMAT 38744 993481 474.2 25.5 2D Stiffness M.
FINAN512 74752 261120 311.0 18.0 Lin. Prog.
LHR10 10672 209093 142.6 8.1 Chem. Eng.
MAP1 267241 334931 850.2 44.8 Highway Net.
MEMPLUS| 17758 54196 117.9 4.3 Memory circuit
SHYY161 76480 152002 130.0 10.1 Navier-Stokes
TORSO 201142 | 1479989 1053.4 63.9 3D FE Mesh
Kernighan/Lin much faster than Spectral Bisection!
4/15/2004 CS267, Yelick 69

Coordinate-Free Partitioning: Summary

» Several techniques for partitioning without coordinates
» Breadth-First Search — simple, but not great partition
« Kernighan-Lin — good corrector given reasonable partition
» Spectral Method — good partitions, but slow

 Multilevel methods

» Used to speed up problems that are too large/slow

« Coarsen, partition, expand, improve

e Can be used with K-L and Spectral methods and others
« Speed/quality

 For load balancing of grids, multi-level K-L probably best

 For other partitioning problems (vision, clustering, etc.) spectral
may be better

» Good software available

4/15/2004 CS267, Yelick 70

s Graph Partitioning a Solved Problem?

* Myths of partitioning due to Bruce Hendrickson
mm) 1. Edge cut = communication cost
m) 2. Simple graphs are sufficient
mm) 3. Edge cutis the right metric
4. EXisting tools solve the problem
5. Key is finding the right partition
6. Graph partitioning is a solved problem

« Slides and myths based on Bruce Hendrickson’s:
“Load Balancing Myths, Fictions & Legends”

4/15/2004 CS267, Yelick 71

Myth 1: Edge Cut = Communication Cost

 Mythl: The edge-cut deceit
edge-cut = communication cost

 Not quite true:

 #vertices on boundary is actual communication volume
« Do not communicate same node value twice

« Cost of communication depends on # of messages too (a term)
e Congestion may also affect communication cost

* Why is this OK for most applications?
 Mesh-based problems match the model: cost is ~ edge cuts
o Other problems (data mining, etc.) do not

4/15/2004 CS267, Yelick 72

Myth 2: Simple Graphs are Sufficient

e Graphs often used to encode data dependencies
e Do X before doing Y

« Graph partitioning determines data partitioning
« Assumes graph nodes can be evaluated in parallel
« Communication on edges can also be done in parallel
* Only dependence is between sweeps over the graph

* More general graph models include:

» Hypergraph: nodes are computation, edges are communication,
but connected to a set (>= 2) of nodes

 Bipartite model: use bipartite graph for directed graph

« Multi-object, Multi-Constraint model: use when single structure
may involve multiple computations with differing costs

4/15/2004 CS267, Yelick 73

Myth 3: Partition Quality is Paramount

« When structure are changing dynamically during a
simulation, need to partition dynamically
* Speed may be more important than quality
 Partitioner must run fast in parallel

e Partition should be incremental
« Change minimally relative to prior one

e Must not use too much memory

« Example from Touheed, Selwood, Jimack and Bersins
« 1 M elements with adaptive refinement on SGI Origin

* Timing data for different partitioning algorithms:
* Repartition time from 3.0 to 15.2 secs
e Migration time : 17.8 to 37.8 secs
o Solve time: 2.54 to 3.11 secs

4/15/2004 CS267, Yelick 74

References

 Detalls of all proofs on Jim Demmel’s 267 web page

e A. Pothen, H. Simon, K.-P. Liou, “Partitioning sparse
matrices with eigenvectors of graphs”, SIAM J. Mat.
Anal. Appl. 11:430-452 (1990)

* M. Fiedler, “Algebraic Connectivity of Graphs”, Czech.
Math. J., 23:298-305 (1973)

M. Fiedler, Czech. Math. J., 25:619-637 (1975)

e B. Parlett, “The Symmetric Eigenproblem”, Prentice-Hall,
1980

o www.cs.berkeley.edu/~ruhe/lantplht/lantplht.html
o www.netlib.org/laso

4/15/2004 CS267, Yelick 75

Summary

 Partitioning with nodal coordinates:
e Inertial method
 Projection onto a sphere
 Algorithms are efficient
« Rely on graphs having nodes connected (mostly) to “nearest
neighbors” in space
 Partitioning without nodal coordinates:
» Breadth-First Search — simple, but not great partition
« Kernighan-Lin — good corrector given reasonable partition
» Spectral Method — good partitions, but slow

e Today:
» Spectral methods revisited

e Multilevel methods
4/15/2004 CS267, Yelick 76

