
Homework IV (due March 17), Math 603, Spring 2003. (GJZ)

B II(a). In this problem, we assume that A is a noetherian integral domain. Furthermore,
in this question, A is a normal domain, not a field.

In this question, of course, we assume that a ∈ A is not a unit. Let p be a prime ideal
in A associated with Aa which is also a maximal ideal in A We want to prove that p is a
projective locally free module of rank 1, i.e., p ∈ Pic(A).

Set
(p −→ A) = {ξ ∈ Frac(A) | ξp ⊆ A}.

Obviously, A ⊆ (p −→ A). First, we show that (p −→ Aa) 6= Aa. For this we prove

Proposition 1.1 Let A be a noetherian domain. For any two ideals, A and B of A, if
(A −→ B) = B, then A is not contained in any prime associated with B.

Proof . Let
B = q1 ∩ · · · ∩ qt

be a reduced primary decomposition of B. Then,

√
B = p1 ∩ · · · ∩ pt,

where the pi =
√

qi are the primes associated with B. Since (A −→ B) = B, we can easily
prove that (As −→ B) = B, for all s ≥ 1. Assume that A ⊆ pi, for some i with 1 ≤ i ≤ t.
Since A is noetherian, pi is finitely generated. Let α1, . . . , αm be generators for pi. Since
pi =

√
qi, for each αi, there is some positive integer, di, so that αdi

i ∈ qi; if we let d =
∑n

i=1 di,
we find that pd

i ⊆ qi. As A ⊆ pi, we get Ad ⊆ qi and so, (Ad −→ qi) = A. It follows that

B = (Ad −→ B) =
t⋂

j=1

(Ad −→ qj) =
⋂
j 6=i

(Ad −→ qj) ⊇
⋂
j 6=i

qj ⊇ B,

and thus, B =
⋂

j 6=i qj, contradicting the fact that
⋂t

j=1 qj is a reduced primary decomposi-
tion of B. Therefore, A is not contained in any prime associated with B.

Remark: The converse of Proposition 1.1 also holds and is easier to prove.

Now, if p is a prime associated with Aa, by Proposition 1.1, we must have
(p −→ Aa) > Aa.

Since (p −→ Aa) > Aa, for any x ∈ (p −→ Aa) − Aa, consider ξ = x/a ∈ Frac(A). As
x ∈ (p −→ Aa), we have xp ⊆ Aa, and so ξ ∈ (p −→ A)∩ Frac(A), with ξ /∈ A. This proves
that

(p −→ A) > A.
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Consider and ξ ∈ (p −→ A)− A. Clearly, ξp is an ideal in A. Assume that

ξp ⊆ p.

Since A is noetherian, p is finitely generated, and as in a previous homework problem, for
every generator, mi, of p, we can express each ξmi as a linear combination of the mi’s. From
this, we obtain the fact that ξ is the zero of a monic polynomial equation with coefficients
from A (the determinant of a linear system). However, A is integrally closed; so, ξ ∈ A, a
contradiction.

Using the above fact, we claim that

(p −→ A)p = A.

Since A ⊆ (p −→ A), we have p ⊆ (p −→ A)p; since ξp 6⊆ p for any ξ ∈ (p −→ A)− A, we
must have (p −→ A)p > p. As p is maximal, we deduce that

(p −→ A)p = A.

This implies that
a1b1 + · · ·+ anbn = 1

for some ai ∈ p and some bi ∈ (p −→ A), for i = 1, . . . , n. Let q be any prime in A. We
claim that aibi is a unit of Aq, for some i. Otherwise, as Aq is a local ring, we would have
aibi ∈ q for i = 1, . . . , n, so, 1 ∈ q, a contradiction. Then, we claim that

pq = aiAq.

Since ai ∈ p, it is clear that aiAq ⊆ pq. Conversely, pick x ∈ pq. Since bi ∈ (p −→ A),
we have bix ∈ Aq, so, aibix ∈ aiAq and since aibi is a unit of Aq, we get x ∈ aiAq. Thus,
pq ⊆ aiAq, and our claim is proved.

Therefore, each pq is a free module of rank 1, and so, p is locally free or rank 1. Since
A is noetherian, p is f.g., and by a result proved in class, p is projective and locally free of
rank 1, as claimed.

B II(b). The ring A is a noetherian domain satisfying:

(i) For every nonzero minimal prime, p, of A, the ring Ap is a P.I.D.

(ii) A =
⋂

ht(p)=1 Ap.

By definition, a nonzero minimal prime (in a noetherian domain) is a prime of height 1.
Since every P.I.D. is integrally closed, by (i), for every height 1 prime, p, the local domain
Ap is integrally closed. Since any intersection of integrally closed domains is an integrally
closed domain, by (ii), the ring A is an integrally closed domain, i.e., a normal domain.

B II(c). Although this is not needed, since it is an interesting fact, we prove that every
commutative ring possesses minimal prime ideals. More precisely, we have the proposition:
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Proposition 1.2 Let A be a commutative ring. Then, every prime ideal, P, contains some
minimal prime ideal, p.

Proof . Let S be the set of primes contained in P ordered so that p ≤ q iff q ⊆ p. Obviously,
P ∈ S and S is nonempty. We claim that S is inductive. Given any chain, {pi}i∈I , of primes
in S, we contend that q =

⋂
i∈I pi is a prime ideal. Let a, b ∈ A with a /∈ q and b /∈ q. Then,

there is some i ∈ I with a /∈ pi and b /∈ pi. As pi is prime, we must have ab /∈ pi. But then,
ab /∈

⋂
i∈I pi = q, which shows that q is prime. Since S is inductive, S has some maximal

element, p, i.e., there is a minimal prime, p, contained in P.

We claim that in a noetherian domain, every nonzero minimal prime is an isolated prime
of some principal ideal, (a).

Let p 6= (0) be a minimal prime of A. Since p 6= (0), we can pick some a ∈ p, and we
have (a) ⊆ p. Let

(a) = q1 ∩ · · · ∩ qt

be a reduced primary decomposition. Then,√
(a) = p1 ∩ · · · ∩ pt,

where the pi =
√

qi are the primes associated with (a). Clearly, pi 6= (0). We have
√

(a) ⊆ p,
since (a) ⊆ p and every prime is its own radical. Thus, we have

p1 · · · pt ⊆ p1 ∩ · · · ∩ pt ⊆ p,

which implies that pi ⊆ p, for some i. However, p is a minimal prime, and so, pi = p.

Now, assume that A is a noetherian normal domain. We must prove that properties (i)
and (ii) of (b), hold. It turns out that (i) is a consequence of Theorem 1.3 proved in B
II(d). Indeed, we just proved that every nonzero minimal prime is an isolated prime of some
principal ideal, (a), and Theorem 1.3 finishes the proof.

It remains to prove (ii). For this, consider any a/b ∈ Frac(A) and assume that a/b ∈ Ap

for every height 1 prime, p; equivalently, we have a ∈ bAp for every height 1 prime, p. We
wish to prove that a ∈ bA. Let

bA = q1 ∩ · · · ∩ qt

be a reduced primary decomposition of bA, and let pi =
√

qi, be the corresponding isolated
primes. If we can prove that

qi ⊇ (bApi
) ∩ A,

we are done. Indeed, we know that a ∈ (bApi
) ∩ A for i = 1, . . . , t, so a ∈

⋂t
i=1 qi = bA.

Now, every element of Api
is of the form α/β, where β ∈ A− pi and α ∈ A. Thus,

aβ = bα ∈ qi,
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for i = 1, . . . , t, since bA = q1 ∩ · · · ∩ qt. Since qi is primary and aβ ∈ qi, if a /∈ qi, then
βk ∈ qi, for some k ≥ 1. As pi =

√
qi, we deduce that β ∈ pi, a contradiction. Therefore,

a ∈ qi, as claimed. This proves that

qi ⊇ (bApi
) ∩ A

for i = 1, . . . , t and concludes the proof of (ii).

B II(d).

Theorem 1.3 If A is a noetherian normal domain and A = (a) = Aa is principal ideal
(where a is not a unit), then every isolated prime ideal of A has height 1.

Proof . First, we need the fact that every isolated prime, p, of A = Aa is a prime of the form
p = (b −→ Aa) and that such a prime is also minimal among the primes containing Aa.
This fact has not yet been shown in class, but it is standard; for instance, see Serre, Local
Algebra.

Let m = pe in Ap be the maximal ideal of Ap. Since p = (b −→ Aa), we get
m = (b −→ Apa). As in (a), consider

(m −→ Ap) = {ξ ∈ Frac(A) | ξm ⊆ Ap}.

As m = (b −→ Apa), we have b/a ∈ (m −→ Ap), yet b/a /∈ Ap (because if b/a ∈ Ap, then
b ∈ aAp and m = Ap, which is absurd). Note that (b/a)m is an ideal of Ap. If (b/a)m ⊆ m,
then, as in (a), b/a would be integral over Ap. However, A is noetherian and integrally closed.
It follows that Ap is also noetherian and integrally closed. Thus, b/a ∈ Ap, a contradiction.
As m is maximal in Ap, we conclude that

(b/a)m = Ap.

Thus, we have (b/a)c = 1, for some c ∈ m. We claim that

m = cAp.

Since c ∈ m, we have cAp ⊆ m. Pick any x ∈ m. We have (b/a)x ∈ Ap, so,
(b/a)cx = x ∈ cAp. Therefore, m ⊆ cAp, and we are done.

It follows that m is a principal ideal in Ap. Therefore, Ap is a noetherian local domain
whose maximal ideal is principal. The following proposition implies that Ap is a P.I.D.

Proposition 1.4 If B is a noetherian local domain and its maximal ideal, m, is principal,
then B is a P.I.D.

Proof . Let m = bB. First, we claim that
⋂

n mn = (0). Indeed, if we let q =
⋂

n mn = (0),
we have qm = q. As A is noetherian, q is finitely generated; so, by Nakayama’s lemma,
q = (0).
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We define the function v: B → N ∪ {−∞, +∞} as follows: For any b ∈ B,

v(b) =

{−∞ if b /∈ m

n if b ∈ mn and b /∈ mn+1

+∞ if b = 0.

Let A be any nonzero ideal in B. Since B is local, A ⊆ m. Thus, there is some a ∈ A

for which v is minimal when a ranges over A. Say v(a) = n. Then, A ⊆ mn = bnB. In
particular, we have a = bnc, for some c ∈ B. Since a ∈ mn and a /∈ mn+1, we must have
c /∈ m. However, as B is a local ring, this implies that c is a unit, and so, bn ∈ aB ⊆ A.
Since A ⊆ mn = bnB, we deduce that A = bnB, i.e., A is a principal ideal. Therefore, B is a
P.I.D.

Now, as Ap is a P.I.D., it has Krull dimension 1; thus, m has height 1, and so, p also has
height 1.
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B VI(a). Let A be an integral domain. We want to prove that

A =
⋂

p∈Spec A

Ap =
⋂

m∈Max A

Am.

Since A is an integral domain, there is an natural inclusion A ↪→ Frac(A) of A into its total
fraction field, Frac(A). Also, for every prime ideal, p ∈ Spec A, we have a natural inclusion
A ↪→ Ap. It follows that

A ⊆
⋂

p∈Spec A

Ap ⊆
⋂

m∈Max A

Am,

since every maximal ideal is a prime ideal. Thus, it suffices to prove that⋂
m∈Max A

Am ⊆ A.

Let B =
⋂

m∈Max A Am; we need to prove that B ⊆ A. We will use the proposition used in
class that says that for every A-module, M , if Mm = (0) for every maximal ideal, m ∈ Max A,
then M = (0). Here, M = B/A.

For every m ∈ Max A, it is clear that the multiplicative set S = A − m is also a multi-
plicative set in B, and since A ⊆ B ⊆ Am, we get

Am = S−1A ⊆ S−1B ⊆ S−1Am = Am.

Therefore, Am = S−1A = S−1B. Moreover, since we have an exact sequence

0 −→ A −→ B −→ B/A −→ 0

and since S−1A is flat over A, by tensoring with S−1A over A (using the fact that S−1M ∼=
M ⊗A S−1A for any A-module, M), we get

0 −→ S−1A −→ S−1B −→ S−1(B/A) −→ 0 is exact;

we deduce that
S−1(B/A) ∼= S−1B/S−1A.

However, we just proved that S−1A = S−1B, so, S−1(B/A) = (0), i.e., (B/A)m = (0) for all
m ∈ Max A, which implies that B/A = (0), i.e., B = A, as required.

B VI(b). Now, A is any commutative ring and f(T ) is a polynomial of degree d in A[T ].

First, assume that the coefficient, a0, of T d in f(T ) is a unit. If so, the ideal (f(T )) is
also generated by the monic polynomial g(T ) = a−1

0 f(T ) of degree d. Now, since g(T ) is
monic, we can divide any polynomial, p(T ) ∈ A[T ] by g(T ). So, we can write

p(T ) = g(T )q(T ) + r(T ), with deg(r(T )) ≤ d− 1.
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It follows that A[T ]/(f(T )) is isomorphic to the A-module of polynomials of degree at most
r−1, modulo g(T ) (this means that p1(T )p2(T ) = the remainder of the division of p1(T )p2(T )
modulo g(T )). However, this module is generated by 1, T, . . . , T d−1. Furthermore, these
monomials are linearly independent, because if

a0T
d−1 + · · ·+ ad−2T + ad−1 = 0 (mod g(T )),

as deg(g(T )) = d, we must have

a0T
d−1 + · · ·+ ad−2T + ad−1 ≡ 0 in A[T ].

(i.e., it is the zero polynomial.) Therefore, A[T ]/(f(T )) is isomorphic to a free A-module of
rank d; hence, A[T ]/(f(T )) is isomorphic to a projective A-module of rank d.

Now, assume that A[T ]/(f(T )) is isomorphic to a projective A-module of rank d. This
means that for every prime ideal p ∈ Spec A, the A-module (A[T ]/(f(T )))p is free of rank
d. Assume that that the coefficient, a0, of T d in f(T ) is not a unit; we are going to derive a
contradiction. If a0 is not a unit, then the ideal (a0) = Aa0 is properly contained in A, so,
there is some maximal (thus, prime) ideal, p, with (a0) ⊆ p. For this p, by hypothesis, we
have an exact sequence

0 −→ (f(T ))p −→ A[T ]p −→ Ad
p −→ 0.

However, going back to the defintion of localization, it is clear that A[T ]p ∼= Ap[T ] and
(f(T ))p

∼= f(T )Ap[T ]. Now, Ap is a local ring, and since Ad
p is free, Ad

p is flat. Therefore, if
we tensor with κ(Ap), by a proposition proved in a previous homework and in class, we get
an exact sequence:

0 −→ f(T )κ(Ap)[T ] −→ κ(Ap)[T ] −→ κ(Ap)
d −→ 0.

In this sequence, all modules involved are vector spaces over κ(Ap) and f(T ) denotes the
polynomial obtained from f(T ) by reducing the coefficients of f(T ) modulo pe, the maximal
ideal of Ap. But, a0 ∈ p, so a0 = 0 and f(T ) is a polynomial of degree at most d − 1. By
the first part of the proof, this would imply that κ(Ap)[T ]/(f(T )κ(Ap)[T ]) has dimension at
most d− 1, a contradiction. Therefore, a0 must be a unit.
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