
Homework III (due February 24), Math 603, Spring 2003. (GJZ)

B II(a). In this question, k is a field and A = k[X1, . . . , Xn]. We define a set-theoretic map,
ϕ: Ωn → Spec A, as follows: For every ξ = (ξ1, . . . , ξn) ∈ Ωn,

ϕ(ξ) = p(ξ) = {f ∈ A | f(ξ) = 0}.

It is clear that p(ξ) is a prime ideal. The map Xi 7→ ξi, for i = 1, . . . , n, extends uniquely to
a homomorphism, θ, from A = k[X1, . . . , Xn] to Ω, such that θ(f) = f(ξ) and obviously,

Ker θ = p(ξ).

Thus, we obtain an isomorphism, θ: A/p(ξ) → Im θ between A/p(ξ) and a subring of Ω. So,
Frac(A/p(ξ)) can be viewed as a subfield of Ω. By definition, f(p(ξ)) is the image, f , of f in
A/p(ξ), and this image can be identified with θ(f) = θ(f) = f(ξ) in Ω. Since we will prove
shortly that ϕ is surjective, every prime ideal of Spec A is of the form p(ξ), for some ξ ∈ Ωn,
and the function induced by f on Spec A can be identified with the function induced by f
on Ωn, via θ.

To prove that ϕ is continuous, it is enough to show that the inverse image of a closed set
of Spec A is a closed set in the k-topology. A closed set, C, in Spec A is of the form

C = {p ∈ Spec A | p ⊇ A, }

where A is an ideal in A. A closed set in the k-topology is a set of the form

V (A) = {ξ ∈ Ωn | f(ξ) = 0 for all f ∈ A},

where A is any ideal of A = k[X1, . . . , Xn], because any ideal of A is finitely generated (since
A is noetherian, as k is a field). Then,

ϕ−1(C) = {ξ ∈ Ωn | {f ∈ A | f(ξ) = 0} ⊆ A}

and so,
ϕ−1(C) = {ξ ∈ Ωn | f(ξ) = 0 for all f ∈ A},

a closed set in the k-topology.

Let us now prove that ϕ is surjective. Let p be any prime ideal of A = k[X1, . . . , Xn] and
let xi = Xi be the image of Xi in A/p, for i = 1, . . . , n. Then,

k[x1, . . . , xn] ∼= A/p and k(x1, . . . , xn) ∼= Frac(A/p).

We may assume after renumbering x1, . . . , xn that {x1, . . . , xr} is a transcendence basis of
k(x1, . . . , xn) over k. As Ω is assumed to have infinitely many transcendental elements over
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k, we can find y1, . . . , yr ∈ Ω algebraically independent over k so that there is a (injective)
k-algebra homomorphism

θ: k(x1, . . . , xr) −→ Ω

with θ(xi) = yi, for i = 1, . . . , r. Now, as k(x1, . . . , xn) is algebraic over k(x1, . . . , xr) and Ω
is algebraically closed, the homomorphism θ can be extended to an injective homomorphism
also denoted θ:

θ: k(x1, . . . , xn) −→ Ω.

This is easily proved using Zorn’s lemma and the fact that Ω is algebraically closed. If we
let yi = θ(xi), for i = 1, . . . , n, then we claim that y = (y1, . . . , yn) is such that ϕ(y) = p.
Indeed, we have f(y1, . . . , yn) = 0 iff f(x1, . . . , xn) = 0 iff f ∈ p.

B II(b). Observe that Ωn = V ((0)). The fact that Ωn is irreducible will follow from the more
general fact that if A is a prime ideal, then V (A) is irreducible, as (0) is a prime ideal.

Assume that V (A) = V (A1) ∪ V (A2), where V (A1) and V (A2) are proper subsets of
V (A). Then, there is some f ∈ A with f ∈ A1 and f /∈ A and there is some g ∈ A with
g ∈ A2 and g /∈ A. But, fg vanishes on V (A), so fg ∈ A, contradicting the fact that A is
prime.

B II(c). The closure of a point ξ ∈ Ωn is the set V (p(ξ)). Thus, ξ ∼ η iff {ξ} = {η} iff
p(ξ) = p(η) iff ϕ(ξ) = ϕ(η). It follows that ϕ yields a bijection, ϕ, between Ωn/ ∼ and
Spec A. We already know from (a) that the map ϕ is continuous, and clearly, it induces a
continuous map on Ωn/ ∼. It remains to prove that ϕ maps closed sets to closed sets. Now,
the closed sets V (f) = {ξ ∈ Ωn | f(ξ) = 0} generate the closed sets in the k-topology (every
closed set is some intersection of sets of the form V (f)), so it is enough to consider the image
of a closed set of the form {ξ | f(ξ) = 0} under ϕ (here, ξ denotes the equivalence class of ξ
modulo ∼). The image of this closed set is clearly {p ∈ Spec A | f ∈ p} (since every prime
ideal of A is of the form p(ξ), as we just showed), a closed set in Spec A.

B V(a). Let A be an integral domain and let K = Frac(A). If p ∈ Spec(A[X]) is a prime
ideal such that p ∩ A = (0), then we claim that p is a principal ideal.

Consider the multiplicative subset S = A − {0}. It is immediate by definition that
S−1A[X] ∼= K[X]. Furthermore, there is a one-to-one inclusion preserving correspondence
between the prime ideals, p, of A[X] such that p ∩ S = ∅ and the extended ideals, pe, in
K[X]. As S = A− {0}, we have p ∩ S = ∅ iff p ∩ A = (0). Furthermore, since K is a field,
every ideal of K[X] is a principal ideal, f(X)K[X], and we may assume by multiplying by a
common denominator that f(X) ∈ A[X]. But, then pe = f(X)K[X] for some f(X) ∈ A[X]
and so, p is the principal ideal f(X)A[X].

B V(b). In this question, let A be a UFD, let K = Frac(A), and let η = a/b ∈ K, where a
and b are relatively prime in A. Consider the homomorphism θ: A[X] → K given by

θ(f(X)) = f(η).
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We claim that Ker θ = (bX − a).

We need to prove that any polynomial, f(X) ∈ A[X] which vanishes on η = a/b in K is
divisible by bX − a. Since A is a UFD, so is A[X]. So, we can write

f(X) = αp1(X) · · · ps(X)

where α ∈ A is a unit and p1(X), . . . , ps(X) are irreducible polynomials in A[X]. If f(η) = 0,
then αp1(η) · · · ps(η) = 0, and since K is a field, we have pi(η) = 0, for some i with 1 ≤ i ≤ s.
Viewing pi(X) as a polynomial in K[X], this implies that

pi(X) =
(
X − a

b

)
q(X),

i.e., pi(X) = (bX − a)r(X), with r(X) ∈ K(X). Thus, pi(X) is reducible over K(X).
However, by Gauss’ lemma, if a polynomial is reducible over K[X] then it is already reducible
over A[X]. As pi(X) is irreducible in A[X] and a and b are relatively prime we must have
r(X) = 1 and qi(X) = bX − a; so, f(X) is divisible by bX − a.

It follows that Ker θ = (bX − a), and by the first homomorphism theorem,
A[η] ∼= A[X]/(bX − a).

If b is a unit, then we can divide any polynomial in A[X] by bX − a, and we get A[η] ∼=
A[X]/(bX − a) ∼= A. In this case, A[η] is, of course, flat. The converse is true (i.e., if A[η] is
flat over A, then b is a unit). In fact, this holds for any ring, see HW IV, Problem B VI(b).

B V(c). In this question, k is a field and ξ = f(X)/g(X) ∈ k(X) is a non-constant rational
function with f and g relatively prime, which implies that f and g are not both constant.
First, we claim that ξ is transcendental over k. If not, ξ would be the zero of some polynomial
over k and after clearing denominators, we would obtain an equation

a0f
d + a1f

d−1g + · · ·+ ad−1fgd−1 + adg
d = 0,

and so, we would have

adg
d = −f(a0f

d−1 + a1f
d−2g + · · ·+ ad−1g

d−1).

Since g is relatively prime to f , it should divide a0f
d−1 +a1f

d−2g + · · ·+ad−1g
d−1, and thus,

g would divide a0f
d−1. Since g is relatively prime to f , it would have to be a constant. But

then, f would have to be a constant too, a contradiction.

Note that X is a zero of the polynomial

f(Y )− ξg(Y ) ∈ k(ξ)[Y ],

and thus, X is algebraic over k(ξ), which shows that dimk(ξ)k(X) is finite.

We claim that f(Y ) − ξg(Y ) is irreducible over k(ξ). Since ξ is transcendental over
k, this is equivalent to proving that f(Y ) − Zg(Y ) is irreducible over k(Z), for some new

3



indeterminate, Z. However, by Gauss’s lemma, as k[Z] is a UFD, f(Y )−Zg(Y ) is irreducible
in k(Z)[Y ] iff it is irreducible in k[Z][Y ]. Moreover, k[Z][Y ] ∼= k[Y ][Z], and f(Y ) − Zg(Y )
is a polynomial of degree 1 in Z and f(Y ) and g(Y ) are relatively prime, so f(Y )− Zg(Y )
is irreducible in k[Y ][Z].

It follows that dimk(ξ)k(X) is equal to the degree (in Y ) of f(Y ) − ξg(Y ). But, this
degree is clearly max{deg(f(X)), deg(g(X))} and so,

dimk(ξ)k(X) = max{deg(f(X)), deg(g(X))}.
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