Homework III (due February 24), Math 603, Spring 2003. (GJZ)

B II(a). In this question, k is a field and A = k[X}, ..., X,]. We define a set-theoretic map,
©: Q" — Spec A, as follows: For every & = (&1,...,&,) € Q,

p(&) =p&) ={f Al () =0}

It is clear that p(&) is a prime ideal. The map X; — &;, for i = 1,...,n, extends uniquely to
a homomorphism, 0, from A = k[X,..., X,] to Q, such that §(f) = f(£) and obviously,

Ker 6 = p(&).

Thus, we obtain an isomorphism, 8: A/p(¢) — Im @ between A/p(£) and a subring of 2. So,
Frac(A/p(€)) can be viewed as a subfield of 2. By definition, f(p(¢)) is the image, f, of f in
A/p(€), and this image can be identified with 0(f) = 6(f) = f(£) in Q. Since we will prove
shortly that ¢ is surjective, every prime ideal of Spec A is of the form p(&), for some £ € Q"
and the function induced by f on Spec A can be identified with the function induced by f
on ", via 6.

To prove that ¢ is continuous, it is enough to show that the inverse image of a closed set
of Spec A is a closed set in the k-topology. A closed set, C', in Spec A is of the form

C={p€SpecA|p2O}
where 2 is an ideal in A. A closed set in the k-topology is a set of the form
VR ={ccQ"| f(§) =0 forall feA},

where 2 is any ideal of A = k[X7, ..., X,], because any ideal of A is finitely generated (since
A is noetherian, as k is a field). Then,

pH(O)={ee Q" [{feAlf(&) =0} U}

and so,
e HO)={£€eQ" | f(€)=0 forall feAl,
a closed set in the k-topology.
Let us now prove that ¢ is surjective. Let p be any prime ideal of A = k[X}, ..., X,] and
let ; = X; be the image of X; in A/p, fori=1,...,n. Then,
klxy, ...,z =2 A/p and k(xy,...,z,) = Frac(A/p).

We may assume after renumbering x1, ..., z, that {z;,..., 2.} is a transcendence basis of
k(xi,...,x,) over k. As  is assumed to have infinitely many transcendental elements over



k, we can find yi,...,y, € Q algebraically independent over k so that there is a (injective)
k-algebra homomorphism
0:k(xy,...,x,) —

with 0(x;) = y;, fori = 1,...,r. Now, as k(z1,...,x,) is algebraic over k(xy,...,z,) and Q
is algebraically closed, the homomorphism # can be extended to an injective homomorphism
also denoted 6:

0:k(xq,...,2,) — Q.

This is easily proved using Zorn’s lemma and the fact that  is algebraically closed. If we
let y; = 0(x;), for i = 1,...,n, then we claim that y = (y1,...,y,) is such that ¢(y) = p.
Indeed, we have f(y1,...,y,) = 0iff f(zq,...,2,) =0iff f €p.

B II(b). Observe that Q™ =V ((0)). The fact that Q" is irreducible will follow from the more
general fact that if 2 is a prime ideal, then V(2) is irreducible, as (0) is a prime ideal.

Assume that V() = V() U V(y), where V(2;) and V(2) are proper subsets of
V(). Then, there is some f € A with f € 2, and f ¢ 2 and there is some g € A with
g € Ay and g ¢ A. But, fg vanishes on V() so fg € A, contradicting the fact that 2 is
prime.

B II(c). The closure of a point & € Q" is the set V(p(£)). Thus, & ~ 7 iff {£} = {n} iff
p(&) = p(n) iff p(§) = p(n). It follows that ¢ yields a bijection, P, between Q"/ ~ and
Spec A. We already know from (a) that the map ¢ is continuous, and clearly, it induces a
continuous map on 2"/ ~. It remains to prove that g maps closed sets to closed sets. Now,
the closed sets V(f) = {€ € Q™ | f(§) = 0} generate the closed sets in the k-topology (every
closed set is some intersection of sets of the form V'(f)), so it is enough to consider the image
of a closed set of the form {€ | f(¢) = 0} under @ (here, £ denotes the equivalence class of &
modulo ~). The image of this closed set is clearly {p € Spec A | f € p} (since every prime
ideal of A is of the form p(¢), as we just showed), a closed set in Spec A.

B V(a). Let A be an integral domain and let K = Frac(A). If p € Spec(A[X]) is a prime
ideal such that p N A = (0), then we claim that p is a principal ideal.

Consider the multiplicative subset S = A — {0}. It is immediate by definition that
ST1A[X] = K[X]. Furthermore, there is a one-to-one inclusion preserving correspondence
between the prime ideals, p, of A[X] such that p NS = () and the extended ideals, p¢, in
K[X]. As S=A— {0}, we have pN S =0 iff pN A = (0). Furthermore, since K is a field,
every ideal of K[X] is a principal ideal, f(X)K[X], and we may assume by multiplying by a
common denominator that f(X) € A[X]. But, then p¢ = f(X)K[X] for some f(X) € A[X]
and so, p is the principal ideal f(X)A[X].

B V(b). In this question, let A be a UFD, let K = Frac(A), and let n = a/b € K, where a
and b are relatively prime in A. Consider the homomorphism 6: A[X] — K given by



We claim that Ker 0 = (bX — a).

We need to prove that any polynomial, f(X) € A[X] which vanishes on n = a/b in K is
divisible by X — a. Since A is a UFD, so is A[X]. So, we can write

f(X) = api(X) - - ps(X)

where a € A is a unit and p;(X), ..., ps(X) are irreducible polynomials in A[X]. If f(n) =0,
then ap;(n) - - - ps(n) = 0, and since K is a field, we have p;(n) = 0, for some ¢ with 1 <7 < s.
Viewing p;(X) as a polynomial in K [X], this implies that

a
P = (X = 2) g(X),
ie., pi(X) = (bX — a)r(X), with r(X) € K(X). Thus, p;(X) is reducible over K (X).
However, by Gauss’ lemma, if a polynomial is reducible over K[X] then it is already reducible
over A[X]. As p;(X) is irreducible in A[X] and a and b are relatively prime we must have
r(X)=1and ¢(X) =bX — a; so, f(X) is divisible by bX — a.
It follows that Ker 6 = (bX — a), and by the first homomorphism theorem,

Aln] =2 AIX]/(bX — a).

If b is a unit, then we can divide any polynomial in A[X] by bX — a, and we get A[n]
A[X]/(bX —a) = A. In this case, A[n] is, of course, flat. The converse is true (i.e., if A[n] is
flat over A, then b is a unit). In fact, this holds for any ring, see HW IV, Problem B VI(b).

>~

B V(c). In this question, k is a field and £ = f(X)/g(X) € k(X) is a non-constant rational
function with f and g relatively prime, which implies that f and g are not both constant.
First, we claim that ¢ is transcendental over k. If not, £ would be the zero of some polynomial
over k and after clearing denominators, we would obtain an equation

aof +arfT g+ ag 1 fgtT 4 aqg? =0,
and so, we would have
agg” = —flaof* " +arf g+ agiig™h).

Since g is relatively prime to f, it should divide agf4 ! +a; f¥ 29+ -- - +aq_19%"!, and thus,
g would divide ag f?!. Since g is relatively prime to f, it would have to be a constant. But
then, f would have to be a constant too, a contradiction.

Note that X is a zero of the polynomial

fY) =&9(Y) € k()[Y],
and thus, X is algebraic over k(§), which shows that dimy)k(X) is finite.

We claim that f(Y) — £g(Y) is irreducible over k(£). Since & is transcendental over
k, this is equivalent to proving that f(Y) — Zg(Y') is irreducible over k(Z), for some new
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indeterminate, Z. However, by Gauss’s lemma, as k[Z] is a UFD, f(Y)—Zg(Y) is irreducible
in k(Z)[Y] iff it is irreducible in k[Z][Y]. Moreover, k[Z][Y] = k[Y][Z], and f(Y) — Zg(Y)
is a polynomial of degree 1 in Z and f(Y) and ¢(Y") are relatively prime, so f(Y) — Zg(Y)
is irreducible in k[Y][Z].

It follows that dimye)k(X) is equal to the degree (in Y) of f(Y) — £g(Y). But, this
degree is clearly max{deg(f(X)),deg(g(X))} and so,

dimy(e)k(X) = max{deg(f (X)), deg(g(X))}.



