Homework II (due February 10), Math 603, Spring 2003. (GJZ)

B III(a). First, we need a few preliminary results.

Proposition 1.1 Let A and B be integral domains, with A a subring of B, and assume that
B is a finitely generated A-module. Then, B is integral over A.

Proof. Recall that B is integral over A iff every b € B is the zero some monic polynomial,
'+ a b+ 4a, =0,

with aq,...,a, € A. Since B is f.g. over A, let gi,..., g be a finite set of generators of B
as an A-module. Pick any b € B. Then, each bg; € B, and so, we can write

bg; = Z%’gj, fori=1,....m,
j=1

for some a;; € A. Consequently, we have the linear system

(@11 —b)g1 + a1292 + - - - + @1mGm = 0
angr + (a —b)ga + -+ + agmgm = 0

am191 + @maga + -+ + (Gmm — 0)gm = 0.

Then, it is well-known by linear algebra that if C' is the matrix of the above system and if
C is the transpose of the matrix of cofactors of C, then

CC = det(C)1,,.

Since the above system is C'g = 0 (where g is the vector (g;)), we get
det(C)g; = det(a;; — d;;b)g; =0, for j=1,...,m.
Since the g; generate B, we see that
det(a;; — 6;;0)y =0 for all y € B;

in particular, this holds for y = 1, and so,

det(a;; — 0;;0) =0
is a monic polynomial satisfied by b. [

Remark: The converse of Proposition 1.1 also holds (and is easier to prove).
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Proposition 1.2 Let A and B be integral domains, with A a subring of B, and assume that
B is integral over A. Then, A is a field iff B is a field.

Proof. First, assume that B is a field. Pick a # 0 in A. Since A C B and B is a field,
a~! € B. Since B is integral over A, we have

a"+aa "M 4 +a, =0,

for some ay,...,a, € A. But then, multiplying by a"~ !, we get

at=—(a; + - +ana" ),

where the righthand side is in A, and so, a=! € A and A is a field.
Conversely, assume that A is a field. Pick b # 0 in B. Since B is integral over A, we have
bV +a b+ -+ ap_1b+a, =0,

for some ay,...,a, € A, and we may assume that n is minimal, so that a, # 0, since b # 0
and B is an integral domain. We know that b=! € Frac(B), and in Frac(B), if we divide by
b and by a,, with a,! € A, since A is a field, we can write

bt = —(a, ' 0" o ata, ),

where the righthand side is in B. Thus, b~! € B and B is a field. O

We can now give the solution to BIII(a). Assume that K is a field, A is a subring of K,
and the ring K is a f.g. A-module. Write k& = Frac(A). By Proposition 1.1, the ring K is
integral over A. By Proposition 1.2, since K is a field, so is A. But then, k = Frac(A) = A,
as claimed.

B III(b) This time, we are assuming that K is a field and that there are elements
aiq, ..., € K algebraic over k = Frac(A), so that

K =Alay, ..., o).
To say that «; is algebraic over £ means that «a; satisfies some polynomial equation
c(()i)a?i + cgi)o/-”_l 44D =0,

i n;

where cgi) € kfor j =0,...,n;. Since k = Frac(A) is a field, we may assume that c(()i) =1,

i.e., the polynomial is monic. Now, as k = Frac(A), each cy) is of the form




for some agi), b;i) € A, with bgi) # 0. We can form a unique common denominator, b # 0,
by multiplying all these nonzero denominators, bg.i), and we see that the a;’s satisfy monic
polynomials
@ )
n; 21 i + -4+ n1:07
al + b a’b b
where b € B and 'dg»i) €A fori=1,...,mand j =1,...,n;. These monic equations show
that each «; is integral over A[1/b]. So, we have K = Alay, ..., o), with the «; integral over

A[1/b]. This implies that K is f.g. over A[1/b]. Indeed, every element of K = Alay, ..., ]
is a polynomial expression with coefficients in A and monomials of the form

k1 k
apt o

Using the monic equations sastisfied by the a;’s, we can express any power af for k > n;
in terms of 1, ...,a" !, with coefficents in A[1/b], and thus, every monomial o' - - - afm
can be expressed as a linear combination of the monomials 0/1“ co-alm with by < ny— 1, for
i=1,...,m. So, K is indeed f.g. over A[1/b]. Now, we can apply B III(a) to K and A[1/b],
and we get that

Frac(A[1/b]) = A[1/b].
However, Frac(A) contains 1/b, and so, Frac(A) = Frac(A[1/b]); it follows that

k = Frac(A) = Frac (A ED ,

for some nonzero element b € A.

Now, assume that A is not a field, so that A # Frac(A). We claim that there is an isomor-
phism, ¢: A, — A[1/b], where A, = S™'A is the localization of A w.r.t. the multiplicative
set S ={b* | k> 0}.

We have the inclusion map, i: A — A[1/b] and since every b* becomes invertible in A[1/b],
by the universal mapping property of A, there is a unique homomorphism, ¢: A, — A[1/0],
so that

1t =@oh,
where h: A — A, is the canonical map. Now, since A is an integral domain, the map
h: A — Ay is injective (because h(a) = a/1, and a/1 = d’/1 iff b*(a — a’) = 0 iff a = @/, since
b# 0 and A is an integral domain). Now, every element of A is of the form a/b*, for some
a € A and some k > 0, and

@ (%) = (%bin) = (%) @ (%)n = (%) @ (%) S w(h(a))p(h(b))".

However, ¢ o h =1, and so,

a

@ (37) = wlh(@)e(h(b) ™" = i()i(b) " = = € A[1/1].



Therefore, it is clear that ¢ is an injection. Since every element in A[1/b] is also of the form
a/b¥, with a € A, the morphism ¢ is also surjective and thus, it is an isomorphism.

Now, we proved in class that there is a one-to-one, inclusion-preserving, correspondence
between the prime ideals in S™'A = A, and the prime ideals, p, in A, for which p N S = 0.
However, since A, is a field, its only prime ideal is (0). Since A is an integral domain, (0) is
a prime ideal, so it corresponds to (0) in Ap; consequently, every prime p # (0) in A must
intersect S, which means that b € p for every prime p # (0), and in particular, for maximal
ideals (since A is not a field, there are maximal ideals distinct from (0)). Therefore, b belongs
to every maximal ideal in A.

B1V(a). Let C = P(X, Ab) be the category of presheaves of abelian groups on the topological
space, X. For any open subset, U, in X, we have the functor Sy: F ~~ F(U), from P(X, Ab)
to Ab. We are seeking a presheaf, 7 € P(X, Ab) and an object, £ € Sy(F) = F(U), so that
we have an isomorphism

E: Hom¢(F,—) — Sy,

given by the consistent family of morphisms
&g:Home(F,G) — Sy(G) = G(U),

defined via &g(0) = Sy(A)(€), for every presheaf, G € P(X, Ab), and every morphism of
presheaves, 8: F — G. Now, #:F — G is given by a consistent family of morphisms
Ov:F(V) — G(V), for every open subset, V, of X and Sy(f) = 6y. Therefore, we need
to find a pair (F,§), as above, so that we have an isomorphism

gg:HomC(:'r7 g) - g(U)v
defined via &g(0) = 0y (€). We claim that the pair (F,€) = (Zy,1) works, where Zy is the
presheaf defined in Problem Al(a), i.e.,
Z ifWCU
Zu(W) = { 0) #WZU,

and with p}Y = id. Indeed, a morphism 6 € Hom¢(Zy,G) is uniquely determined by the
consistent family of homomorphisms of abelian groups, Oy : Zy (W) — G(W). This means
that we have the commutative diagram

Zu(V) 2% G(V)
o
Zy(W) — G(W)

whenever W C V. If W & U, we have Zy(W) = (0) and 6y is the zero morphism. If
W C U, we have Zy(W) = Z and we have the commutative diagram

z 2 g
Jo e
z ogw)
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which implies that 0y = pl¥ (fy). Thus, 6 is uniquely determined by 6. But, the homo-
morphism 0y:Z — G(U) is uniquely determined by 6;(1), and so, # is uniquely determined
by 6y (1). Therefore, the maps 6 — 6;;(1) is indeed an isomophism between Hom¢(Zy, G)
and G(U).

B IV(b). We need to check conditions (1)(2)(3) of B IV(b) for being a cover. Condition (1)
is obvious and condition (3) is condition (b) of B IV(b). We need to check condition (2).
This amounts to showing that given morphisms

V@ U, —U and V) —U;—1,

the fibred coproduct ‘/7(&) I, V;B ) exists. This can be demonstrated by constructing a com-
mutative diagram. Sorry, we ran out of time!

B IV(c). By definition, a representable cofunctor, F', on 7 is a cofunctor such that there is
an isomorphism E Hom7(—, A) — F, for some object A € C and some & € F(A), given by
the consistent family of morphisms, £5: Hom (B, A) — F(B), via &5(u) = F(u)(€). But,
the conditions of B IV(b) for being a canonical site are precisely the sheaf conditions for

presheaves of the form Hom7(—, A). So, a representable cofunctor, F', on 7 is a sheaf w.r.t.
Zan-



