B III(a). First, we need a few preliminary results.

Proposition 1.1 Let A and B be integral domains, with A a subring of B, and assume that B is a finitely generated A-module. Then, B is integral over A.

Proof. Recall that B is integral over A iff every $b \in B$ is the zero some *monic* polynomial,

$$b^n + a_1 b^{n-1} + \dots + a_n = 0,$$

with $a_1, \ldots, a_n \in A$. Since B is f.g. over A, let g_1, \ldots, g_m be a finite set of generators of B as an A-module. Pick any $b \in B$. Then, each $bg_i \in B$, and so, we can write

$$bg_i = \sum_{j=1}^m a_{ij}g_j, \quad \text{for } i = 1, \dots, m,$$

for some $a_{ij} \in A$. Consequently, we have the linear system

$$(a_{11} - b)g_1 + a_{12}g_2 + \dots + a_{1m}g_m = 0$$

$$a_{21}g_1 + (a_{22} - b)g_2 + \dots + a_{2m}g_m = 0$$

$$\vdots \qquad = \vdots$$

$$a_{m1}g_1 + a_{m2}g_2 + \dots + (a_{mm} - b)g_m = 0.$$

Then, it is well-known by linear algebra that if C is the matrix of the above system and if \widetilde{C} is the transpose of the matrix of cofactors of C, then

$$\widetilde{C}C = \det(C)I_m$$

Since the above system is Cg = 0 (where g is the vector (g_i)), we get

$$\det(C)g_j = \det(a_{ij} - \delta_{ij}b)g_j = 0, \quad \text{for } j = 1, \dots, m.$$

Since the g_j generate B, we see that

$$\det(a_{ij} - \delta_{ij}b)y = 0 \quad \text{for all } y \in B;$$

in particular, this holds for y = 1, and so,

$$\det(a_{ij} - \delta_{ij}b) = 0$$

is a monic polynomial satisfied by b. \Box

Remark: The converse of Proposition 1.1 also holds (and is easier to prove).

Proposition 1.2 Let A and B be integral domains, with A a subring of B, and assume that B is integral over A. Then, A is a field iff B is a field.

Proof. First, assume that B is a field. Pick $a \neq 0$ in A. Since $A \subseteq B$ and B is a field, $a^{-1} \in B$. Since B is integral over A, we have

$$a^{-n} + a_1 a^{-n+1} + \dots + a_n = 0,$$

for some $a_1, \ldots, a_n \in A$. But then, multiplying by a^{n-1} , we get

$$a^{-1} = -(a_1 + \dots + a_n a^{n-1}),$$

where the righthand side is in A, and so, $a^{-1} \in A$ and A is a field.

Conversely, assume that A is a field. Pick $b \neq 0$ in B. Since B is integral over A, we have

$$b^{n} + a_{1}b^{n-1} + \dots + a_{n-1}b + a_{n} = 0,$$

for some $a_1, \ldots, a_n \in A$, and we may assume that n is minimal, so that $a_n \neq 0$, since $b \neq 0$ and B is an integral domain. We know that $b^{-1} \in \operatorname{Frac}(B)$, and in $\operatorname{Frac}(B)$, if we divide by b and by a_n , with $a_n^{-1} \in A$, since A is a field, we can write

$$b^{-1} = -(a_n^{-1}b^{n-1} + \dots + a_n^{-1}a_{n-1}),$$

where the righthand side is in B. Thus, $b^{-1} \in B$ and B is a field. \square

We can now give the solution to BIII(a). Assume that K is a field, A is a subring of K, and the ring K is a f.g. A-module. Write k = Frac(A). By Proposition 1.1, the ring K is integral over A. By Proposition 1.2, since K is a field, so is A. But then, k = Frac(A) = A, as claimed.

B III(b) This time, we are assuming that K is a field and that there are elements $\alpha_1, \ldots, \alpha_m \in K$ algebraic over $k = \operatorname{Frac}(A)$, so that

$$K = A[\alpha_1, \ldots, \alpha_m].$$

To say that α_i is algebraic over k means that α_i satisfies some polynomial equation

$$c_0^{(i)}\alpha_i^{n_i} + c_1^{(i)}\alpha_i^{n_i-1} + \dots + c_{n_i}^{(i)} = 0,$$

where $c_j^{(i)} \in k$ for $j = 0, ..., n_j$. Since $k = \operatorname{Frac}(A)$ is a field, we may assume that $c_0^{(i)} = 1$, i.e., the polynomial is monic. Now, as $k = \operatorname{Frac}(A)$, each $c_j^{(i)}$ is of the form

$$c_j^{(i)} = \frac{a_j^{(i)}}{b_j^{(i)}}.$$

for some $a_j^{(i)}, b_j^{(i)} \in A$, with $b_j^{(i)} \neq 0$. We can form a unique common denominator, $b \neq 0$, by multiplying all these nonzero denominators, $b_j^{(i)}$, and we see that the α_i 's satisfy monic polynomials

$$\alpha_i^{n_i} + \frac{\widetilde{a}_1^{(i)}}{b} \alpha_i^{n_i - 1} + \dots + \frac{\widetilde{a}_{n_i}^{(i)}}{b} = 0,$$

where $b \in B$ and $\tilde{a}_{j}^{(i)} \in A$, for i = 1, ..., m and $j = 1, ..., n_{i}$. These monic equations show that each α_{i} is integral over A[1/b]. So, we have $K = A[\alpha_{1}, ..., \alpha_{m}]$, with the α_{i} integral over A[1/b]. This implies that K is f.g. over A[1/b]. Indeed, every element of $K = A[\alpha_{1}, ..., \alpha_{m}]$ is a polynomial expression with coefficients in A and monomials of the form

$$\alpha_1^{k_1}\cdots\alpha_m^{k_m}$$

Using the monic equations satisfied by the α_i 's, we can express any power α_i^k for $k \ge n_i$ in terms of $1, \alpha_1, \ldots, \alpha_i^{n_i-1}$, with coefficients in A[1/b], and thus, every monomial $\alpha_1^{k_1} \cdots \alpha_m^{k_m}$ can be expressed as a linear combination of the monomials $\alpha_1^{h_1} \cdots \alpha_m^{h_m}$, with $h_i \le n_i - 1$, for $i = 1, \ldots, m$. So, K is indeed f.g. over A[1/b]. Now, we can apply B III(a) to K and A[1/b], and we get that

$$\operatorname{Frac}(A[1/b]) = A[1/b].$$

However, $\operatorname{Frac}(A)$ contains 1/b, and so, $\operatorname{Frac}(A) = \operatorname{Frac}(A[1/b])$; it follows that

$$k = \operatorname{Frac}(A) = \operatorname{Frac}\left(A\left[\frac{1}{b}\right]\right),$$

for some nonzero element $b \in A$.

Now, assume that A is not a field, so that $A \neq \operatorname{Frac}(A)$. We claim that there is an isomorphism, $\varphi: A_b \longrightarrow A[1/b]$, where $A_b = S^{-1}A$ is the localization of A w.r.t. the multiplicative set $S = \{b^k \mid k \geq 0\}$.

We have the inclusion map, $i: A \to A[1/b]$ and since every b^k becomes invertible in A[1/b], by the universal mapping property of A_b , there is a unique homomorphism, $\varphi: A_b \longrightarrow A[1/b]$, so that

$$i = \varphi \circ h,$$

where $h: A \to A_b$ is the canonical map. Now, since A is an integral domain, the map $h: A \to A_b$ is injective (because h(a) = a/1, and a/1 = a'/1 iff $b^k(a - a') = 0$ iff a = a', since $b \neq 0$ and A is an integral domain). Now, every element of A_b is of the form a/b^k , for some $a \in A$ and some $k \geq 0$, and

$$\varphi\left(\frac{a}{b^n}\right) = \varphi\left(\frac{a}{1}\frac{1}{b^n}\right) = \varphi\left(\frac{a}{1}\right)\varphi\left(\frac{1}{b}\right)^n = \varphi\left(\frac{a}{1}\right)\varphi\left(\frac{b}{1}\right)^{-n} = \varphi(h(a))\varphi(h(b))^{-n}$$

However, $\varphi \circ h = i$, and so,

$$\varphi\left(\frac{a}{b^n}\right) = \varphi(h(a))\varphi(h(b))^{-n} = i(a)(i(b))^{-n} = \frac{a}{b^n} \in A[1/b].$$

Therefore, it is clear that φ is an injection. Since every element in A[1/b] is also of the form a/b^k , with $a \in A$, the morphism φ is also surjective and thus, it is an isomorphism.

Now, we proved in class that there is a one-to-one, inclusion-preserving, correspondence between the prime ideals in $S^{-1}A = A_b$ and the prime ideals, \mathfrak{p} , in A, for which $\mathfrak{p} \cap S = \emptyset$. However, since A_b is a field, its only prime ideal is (0). Since A is an integral domain, (0) is a prime ideal, so it corresponds to (0) in A_b ; consequently, every prime $\mathfrak{p} \neq (0)$ in A must intersect S, which means that $b \in \mathfrak{p}$ for every prime $\mathfrak{p} \neq (0)$, and in particular, for maximal ideals (since A is not a field, there are maximal ideals distinct from (0)). Therefore, b belongs to every maximal ideal in A.

B IV(a). Let $\mathcal{C} = \mathcal{P}(X, \mathcal{A}b)$ be the category of presheaves of abelian groups on the topological space, X. For any open subset, U, in X, we have the functor $\mathcal{S}_U: \mathcal{F} \rightsquigarrow \mathcal{F}(U)$, from $\mathcal{P}(X, \mathcal{A}b)$ to $\mathcal{A}b$. We are seeking a presheaf, $\mathcal{F} \in \mathcal{P}(X, \mathcal{A}b)$ and an object, $\xi \in \mathcal{S}_U(\mathcal{F}) = \mathcal{F}(U)$, so that we have an isomorphism

$$\widetilde{\xi}$$
: Hom _{\mathcal{C}} (\mathcal{F} , $-$) $\longrightarrow \mathcal{S}_{U_{\mathcal{F}}}$

given by the consistent family of morphisms

$$\overline{\xi_{\mathcal{G}}}$$
: Hom _{\mathcal{C}} (\mathcal{F}, \mathcal{G}) $\longrightarrow \mathcal{S}_U(\mathcal{G}) = \mathcal{G}(U)$,

defined via $\widetilde{\xi}_{\mathcal{G}}(\theta) = \mathcal{S}_U(\theta)(\xi)$, for every presheaf, $\mathcal{G} \in \mathcal{P}(X, \mathcal{A}b)$, and every morphism of presheaves, $\theta: \mathcal{F} \to \mathcal{G}$. Now, $\theta: \mathcal{F} \to \mathcal{G}$ is given by a consistent family of morphisms $\theta_V: \mathcal{F}(V) \to \mathcal{G}(V)$, for every open subset, V, of X and $\mathcal{S}_U(\theta) = \theta_U$. Therefore, we need to find a pair (\mathcal{F}, ξ) , as above, so that we have an isomorphism

$$\xi_{\mathcal{G}}$$
: Hom _{\mathcal{C}} (\mathcal{F}, \mathcal{G}) $\longrightarrow \mathcal{G}(U),$

defined via $\tilde{\xi}_{\mathcal{G}}(\theta) = \theta_U(\xi)$. We claim that the pair $(\mathcal{F}, \xi) = (\mathbb{Z}_U, 1)$ works, where \mathbb{Z}_U is the presheaf defined in Problem AI(a), i.e.,

$$\mathbb{Z}_U(W) = \begin{cases} \mathbb{Z} & \text{if } W \subseteq U\\ (0) & \text{if } W \not\subseteq U \end{cases}$$

and with $\rho_U^W = \text{id.}$ Indeed, a morphism $\theta \in \text{Hom}_{\mathcal{C}}(\mathbb{Z}_U, \mathcal{G})$ is uniquely determined by the consistent family of homomorphisms of abelian groups, $\theta_W: \mathbb{Z}_U(W) \to \mathcal{G}(W)$. This means that we have the commutative diagram

$$\begin{aligned} \mathbb{Z}_U(V) & \xrightarrow{\theta_V} & \mathcal{G}(V) \\ & \stackrel{\mathrm{id}}{\longrightarrow} & & \downarrow^{\rho_V^W} \\ \mathbb{Z}_U(W) & \xrightarrow{\theta_W} & \mathcal{G}(W) \end{aligned}$$

whenever $W \subseteq V$. If $W \not\subseteq U$, we have $\mathbb{Z}_U(W) = (0)$ and θ_W is the zero morphism. If $W \subseteq U$, we have $\mathbb{Z}_U(W) = \mathbb{Z}$ and we have the commutative diagram

$$\begin{array}{cccc} \mathbb{Z} & \xrightarrow{\theta_U} & \mathcal{G}(U) \\ & & & \downarrow \rho_V^W \\ \mathbb{Z} & \xrightarrow{\theta_W} & \mathcal{G}(W) \end{array}$$

which implies that $\theta_W = \rho_V^W(\theta_U)$. Thus, θ is uniquely determined by θ_U . But, the homomorphism $\theta_U: \mathbb{Z} \to \mathcal{G}(U)$ is uniquely determined by $\theta_U(1)$, and so, θ is uniquely determined by $\theta_U(1)$. Therefore, the maps $\theta \mapsto \theta_U(1)$ is indeed an isomophism between $\operatorname{Hom}_{\mathcal{C}}(\mathbb{Z}_U, \mathcal{G})$ and $\mathcal{G}(U)$.

B IV(b). We need to check conditions (1)(2)(3) of B IV(b) for being a cover. Condition (1) is obvious and condition (3) is condition (b) of B IV(b). We need to check condition (2). This amounts to showing that given morphisms

$$V_{\gamma}^{(\alpha)} \longrightarrow U_{\alpha} \longrightarrow U \quad \text{and} \quad V_{\delta}^{(\beta)} \longrightarrow U_{\beta} \longrightarrow U,$$

the fibred coproduct $V_{\gamma}^{(\alpha)} \prod_{U} V_{\delta}^{(\beta)}$ exists. This can be demonstrated by constructing a commutative diagram. Sorry, we ran out of time!

B IV(c). By definition, a representable cofunctor, F, on \mathcal{T} is a cofunctor such that there is an isomorphism $\tilde{\xi}$: Hom $_{\mathcal{T}}(-, A) \to F$, for some object $A \in \mathcal{C}$ and some $\xi \in F(A)$, given by the consistent family of morphisms, $\tilde{\xi}_B$: Hom $_{\mathcal{T}}(B, A) \to F(B)$, via $\tilde{\xi}_B(u) = F(u)(\xi)$. But, the conditions of B IV(b) for being a canonical site are precisely the sheaf conditions for presheaves of the form Hom $_{\mathcal{T}}(-, A)$. So, a representable cofunctor, F, on \mathcal{T} is a sheaf w.r.t. \mathcal{T}_{can} .