Homework I (due January 27), Math 603, Spring 2003. (GJZ)

B III(a). First, we need a few preliminary results. Assume that N is a flat R°’-module and
let 0: M — Z be a linear map of R-modules. We have the map, 1® 0: N @ M — N Qg Z,
and we claim that

Ker(1®0) 2 N®grKer(d) and Im(1®60)= N ®xIm(0).
Indeed, since N is flat, from the exact sequence
0 — Ker (9) — MLz

we get the exact sequence

0— N®pKer(§) — NogM 2 Ney 7,

which shows that Ker (1 ® 0) =2 N ® Ker (). We also have the exact sequences

MLIm(Q)—M) and 0 — Im () - Z,

where is 0’ is the corestriction of 6 to Im (f) and i is the inclusion of Im (6) into Z, with
0 =iof@; since N is flat, we get the exact sequences

NopM 2L N@pim(0) — 0 and 0 — N @pIm(0) -2 N @p 2,

and we have (1®1i)o(1®60) =1® (iof) =1®40, with 1 ® 0 surjective and 1 ® ¢ injective,
which shows that Im (1 ® ) =2 N @ Im (0).

We also need the following propositions.

Proposition 1.1 Let M be a faithfully flat R°°-module. For any linear map, 6: N' — N, of
R-modules, if 1 ® 60 =0, then 6 = 0.

Proof. As M is faithfully flat, it is flat, and we observed that Im (1 ® §) = M ®g Im (0).
Thus, if 1 ® § = 0, we have Im (1 ® 0) = (0), i.e., M @ Im (0) = (0); since M is faithfully
flat, we must have Im (6) = (0), i.e., # = 0. O
Proposition 1.2 Let M be a faithfully flat R°°-module. Then, any sequence

N 25 N Y N" s exact

ioff the sequence

M@ N 25 Mo N2 Mor N" is exact.



Proof. One direction is obvious, since M is flat (namely, if the first sequence is exact, then
the tensored one is exact).

Conversely, assume that the sequence

Mer N 25 Moy N 25 Mep N is exact. (%)

Exactness implies that (1 ® 1) o (1® ¢) =0, ie., 1® (Y op) =0. As M is faithfully flat,
by Proposition 1.1, ¥ o ¢ = 0. Let K = Ker ¥ and I = Im ¢; we just proved that I C K.
Consider the exact sequence

0— I - K- K/I—0.

We would like to prove that K /I = (0). Since M is flat, we get the exact sequence

0— Merl- 2 MopK 25 Moy (K/I) — 0. (1)
However, we showed earlier that

MerK=Ker(1®y) and M®rl=Imn(l® ).
As exactness of the sequence (x) means that

Im (1® ¢) =Ker(1®1v),
we get M ®@g I = M ®pr K; exactness of the sequence (1) implies that
M®g (K/I)= (M K)/(MegrI)=(0).

But then, 1 ® # = 0, and since M is faithfully flat, by Proposition 1.1, we get @ = 0.
Therefore, K/I = (0), i.e., K = I, and the sequence

N 22 N 2 N" s exact. O

As a corollary of Proposition 1.2, we get

Corollary 1.3 Let M be a faithfully flat R°P-module (resp. R-module). For any linear
map, 0: N' — N, of R-modules (resp. of R°P-modules), 1 ®60 (resp. 0 ®1) is injective (resp.
surjective) iff 0 is injective (surjective).

We are now ready to prove B III(a). Assume that : A — B is a homomorphism of
rings and that B is faithfully flat over A via 6. First, assume that M is a finitely generated
A-module, and let eq,...,es be a set of generators. We know that if M and N are two
modules and M is generated by eq,...,es and N is generated by fi,..., f;, then M ®4 N is



generated by the e; ® f; (this also holds for infinite sets of generators). As B is generated
by 1 (over A), we see that e; ® 1,..., e, ® 1 generate M ® 4 B.

Conversely, assume that M ® 4 B is finitely generated. As M ® 4 B is generated by vectors
of the form e; ® 1, where e; € M, there is a finite number of vectors, eq,...,e,, such that
e1®1,...,e,®1 generate M ®4 B. Let N be the submodule of M generated by ey, ..., e,.
We have an exact sequence 0 — N —— M, where 7 is injective, and since B is faithfully
flat over A, it is flat, and so, we get the exact sequence

0—NosB,5 Mo,B.
However, since M ® 4 B is generated by e;®1,...,e,®1 and N is generated by ey, ..., ey, the
map ¢ ® 1 is surjective. Since M is faithfully flat, by Corollary 1.3, the map i is surjective.
But now, i is bijective, so M = M’ is finitely generated.

B III(b). We also need a preliminary proposition.
Proposition 1.4 Let

0— M -2 M -2 M — 0 (+)
be an exact sequence. If M is f.g. and M" is f.p., then, M’ is f.g.
Proof. Let
Rl —o (1)

be a finite presentation of M”, which means that () is exact, with Fy, F; some f.g. free
modules. Say ey, ..., e, is a basis of Fy. Since () is exact, the map 1 is surjective, and so,
for i = 1,...,s, there is some ¢g; € M so that ¢(g;) = ((e;). If we define the linear map,
9: FO — M, by
Ole;)=gi,i=1,...,s,
we see that 8 =1 06. Now, as () is exact, foa =0, s0 ¥ o6 o a = 0; thus,
0o a(F)C Ker ¢ =1Im ¢.

Since F7 is free (and so, projective), the above implies that there is a linear map, y: F; — M/,
so that

poy=~H0oa.
Therefore, we get the following commutative diagram

Ker 1M”

Fy — Ey — M — 0

l'y l@ 1am

0 — M — M — M — 0
I

Coker v — Coker § — Coker 1pyv — 0
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in which the second row is exact because () is exact and the thid row is exact because (x)
is exact. Thus, we can apply the snake lemma, and we get the exact sequence

0 = Ker 1,;» — Coker v — Coker § — Coker 1,;» = 0.

Consequently,
Coker v = Coker 0 = M /0(Fy).

Now, Fy and M are finitely generated, and so, Coker v = M /0(Fy) is f.g. We also have the
exact sequence
0 — v(F;) — M’ — Coker v — 0.

As F) is f.g., so if y(F}), and we just proved that Coker « is f.g. By a proposition proved in
class, M’ is also f.g., as desired. O

Now, for the proof of B III(b). Assume that M is f.p., and let
F1 — F() — M —0 (T)

be a finite presentation of M, with Fy, F} some f.g. free modules. Since B is faithfully flat,
we get the exact sequence

FiloaB— Fy®4B— M®4B— 0.

However, 'y = [[¢ Aand Fy = [[ A, for some finite sets, S, T, and F1®4B = [[((A®4B) =
[Is B and similarly F, = [[; B, which shows that F; ®4 B and Fy ®4 B are still f.g. free
modules. Therefore, M ® 4 B is still f.p.

Conversely, assume that M ®4 B is f.p. In particular, M ®4 B is f.g., and by B III(a),
M is f.g. Thus, there is an exact sequence

0 — K— F— M —0,

where F' is a f.g, free module and K = Ker (F — M). As B is faithfully flat, we get the
exact sequence
0 —K®4B—F®sB—M®sB—0.

In the above sequence, F'® 4 B is f.g. because F' is free and f.g., and by hypothesis, M ® 4 B
is f.p. By Proposition 1.4, the module K ®4 B is f.g. By B Ill(a), again, we see that K
is f.g. Now, since K is a f.g. submodule, there is a f.g. free module, Fj, and a surjection
Fy — K, and

Fy— F — M — 0,

is a finite presentation of M.

B III(c). By definition, an A-module, M, is locally free iff M, = M ®4 A, is free over A, for
every prime ideal p C A.



Assume that B is faithfully flat over A via 6: A — B and that M is an A-module that is
locally free. Let ¢ C B be any prime ideal in B, and let p = q° = 671(q) be the contraction
of g in A. From the definition of By, it is obvious that B, can be viewed as an Ap,-module
and as an A-module. Then, we have

2

(M ®a B), (M ®a B) ®p By
M ®4 (B ®p By)
M ®, B,

M ®a (Ap ®Ap Bq)
(M ®4 Ap) ®4, By
M, .4, By

11 1R

I

Since M, is a free p-module,
M, = H A,,
T

for some set, T'; so,
MP ®Ap Bq = (HAP) ®Ap BCI = HBCU
T T

and we see that (M ®4 B), is a free Bi-module.

Conversely, assume that M ® 4 B is locally free over B and that M is f.p. (we don’t know
how to prove the required statement in general, and we suspect that it is false, although we
don’t have a counterexample either). By a theorem proved in class, as M is f.p., M is locally
free (over A) iff M is flat over A. Since M is f.p., so is M ® 4 B (we proved that in (b)), and
so, M ®4 B is locally free over B iff it is flat over B. Consider any exact sequence

0— N — N
We need to prove that
0 — N4 M — N ®4 M is still exact.
If not, let K be the kernel of the map N ® 4 M — N’ ®4 M; we have an exact sequence
00— K-—NsM— N @4 M.
Since B is flat over A (in fact, faithfully flat), the sequence
00— K®sB— (NQsM)®sB— (N ®4 M)®4 B is exact,
that is, the sequence

O—>K®A3—>N®A<M®AB)—>N/®A(M®AB) is exact.



However, as M ®4 B is flat over B, by hypothesis, we must have K ® 4 B = (0) and since B
is faithfully flat over A, we get K = (0). Therefore, M is indeed flat over A. In conclusion,
under the hypothesis that M is f.p., we proved that if M ®4 B is locally free over B, then
M is locally free over A (of course, B is faithfully flat over A). O

B IV(a). Let A be a ring and consider the exact sequence of A-modules
0— M — M — M"—0. (%)
Assume that M” is flat and let N be any A°°-module. We need to prove that the sequence
0 — NQUM — NoAa M — N, M — 0 is still exact.
We can write N as a factor of some free A°°-module, F"
0—K-—F-—N-—0. (k)

Then, by tensoring (%) with K, F' and N by and tensoring (xx) with M’ M and M" we
obtain the following commutative diagram:

K@AM’ e K®AM e K@AM” — 0
o1 02 J3

0 — F\M — F\M — FyM' — 0

Neo M - NeyM — N@yM' — 0

0 0 0

The second row is exact because F' is free, and thus flat; the third column is exact because
M" is flat, and the other rows and columns are exact because tensor is right-exact. We need
to prove that 0: N @y, M' — N ®, M is injective.

If we look at the first two rows, we see that the snake lemma applies, and we get the
exact sequence

Ker 03 2, Coker 01 — Coker 0,.

However, the right-exactness of the first two rows implies Coker ; = N®x M’ and Coker 0y =
N ®p M; so, we have the exact sequence

Ker 65 = N @y M’ -5 N @, M.

Since the third column is exact (because M") is flat, we have Ker d3 = 0, and so, we have
the exact sequence

0— N, M - Noy M,
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which proves that 6 is injective, as required. Therefore, the sequence

0 — NI\M — N, M — N,y M" — 0 is indeed exact.

B IV(b). Again, we have an exact sequence
0O— M —M-— M —0, (%)

where M" is flat. Further, assume that M is also flat. Consider any exact sequence,
0 — N’ — N, of A°®*-modules and tensor (x) with N’ and N. We get the following
commutative diagram:

0 0

! |

0 — No M 5% No M — No M — 0

s [ l

0 — N M SN NIM — NuM' — 0.

The second column is exact because M is flat and the third column is exact because M” is
flat; the rows are exact, by (a), since M” is flat. We need to prove that : N'@y M’ — Ny M’
is injective.
As the rows are exact, both « and o' are injective, and as the middle column is exact,
is also injective. However, from the commutative diagram, we have
poa =aob,
and since v o ¢ is injective, it follows that € is injective. So, we proved that if M is flat,

then M’ is flat.

Now, assume that M’ is flat. This time, we have the following commutative diagram:

0 0

0 — NeyM 2 NexM 2 Ney M — 0
| Js 8
0 — Ney M = NeyM L Ney M’ — 0.
The rows are exact and the first and third column are exact. We need to prove that
0: N' @y M — N ®, M is injective. This time, ¢ and ~ are injective, since the first and the
third columns are exact. We can apply the five lemma (since the map 0 — 0 is surjective),

and we deduce that 6 is injective. A direct diagram chase goes as follows. Pick x € N’ @, M
and assume that 6(z) = 0. Then,

Bob(z)=7yo0p(z)=0.
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However, ~ is injective, which implies that §'(z) = 0. Since Im o/ = Ker (¥, there is some
y € N'®p M’ so that o/(y) = x. But, 8 o d/(y) = 0(x) =0 and

0oa(y) =aowpy),

where both ¢ and « are injective. Thus, y = 0, and so x = 0.
Therefore, assuming that M” is flat, we proved that M is flat iff M’ is flat.

The modules M and M’ may both be flat with M” not flat. Let A =7Z, M/ =nZ, M =7
and M" = Z/nZ, where n > 2. The module M" is not flat since it is torsion, the sequence

0 —nZ — 7Z— Z/nZ — 0 is exact,

and M and M’ are flat over Z, as free modules.



