Homework V (due December 9), Math 602, Fall 2002. (GJSZ)

B II1.(d) First, we need to recall that if M is a I'-module, then, viewing M as a Z-module,
the Z-module Homz(I', M) is made into a I-module by defining the (left) action of I' on
Homy(T', M) as follows: For any v € I' and any f € Homy(I', M), we define vf as the
Z-linear map given by

(v/YAN) = f(N\y), forall X eTl.
We have

(Y + NN =+ ) A) = fFO) + () = ()N + ()N,
and
(a(vf)A) = (vf)(Aa) = f(Aay) = ((a7)f)(N),
confirming that Homz(T", M) is indeed a I-module with this action.
Let F' be a free abelian group (a Z-module).

Proposition 1.1 If F is a free Z-module, then F'P = Homy(F,Q/Z) is an injective Z-
module.

Proof . Since F is a free Z-module, F' = [[¢Z, for some index set, S. So,

FP = Homgy(F,Q/Z) = Homy(] | 2,Q/Z) = [ [ Hom(Z,Q/z) = [ [ Q/2.
S S S

However, Q is obviously divisible, and and factors of divisible are divisible. Thus, Q/Z is
a divisible abelian group; but we proved in class that a divisible abelian group is injective,
so, Q/Z is injective. We also proved in class that any product of injectives is injective.
Therefore, [ Q/Z is injective, and so, F'? is also injective. [

Given a Z-module, M, we define a natural Z-linear map, m — m, from M to

MPP = Hom z(Homz(M,Q/Z),Q/Z), as follows: For every m € M and every
f € HomZ(Ma Q/Z)a

It is clear that such a map is Z-linear.
Proposition 1.2 For every Z-module, M, the natural map M — MPP is injective.

Proof. 1t is enough to show that m # 0 implies that m # 0, i.e., there is some
f € Homz(M,Q/7Z) so that f(m) # 0.

Consider the cyclic subgroup, (m), of M generated by m. We define a Z-linear map,
f:(m) — Q/Z, as follows: If m has infinite order, let f(km) = k/2 (mod Z), and if m
has finite order, n, let f(km) = k/n (mod Z). Since 0 — (m) — M is exact and Q/Z
is injective, the map f:(m) — Q/Z extends to a map f: M — Q/Z, with f(m) # 0, as
claimed. O



Theorem 1.3 For every Z-module, M, there is some injective Z-module, P, and an injec-
tion M — P.

Proof. Consider the Z-module, M?. We know that there is some free Z-module, F, so that
the sequence
F— MP — 0 is exact.

Since Hom z(—, Q/Z,) is left-exact, we get the exact sequence
0 — Homy(MP” Q/Z) — Homy(F,Q/Z),

ie.,

0 — MPP — Homy(F,Q/Z).

Thus, we have an injection MPP — Homgy(F,Q/Z). However, by Proposition 1.1, the
Z-module Homz(F,Q/7Z) is injective and by Proposition 1.2, we have an injection

M — MPP . Therefore, composing these injections, we get an injection

M — Homy(F,Q/Z), with Homz(F,Q/Z) injective, as desired. O

B III.(e) Recall from B III.(d) that for any Z-module, M, the module Homy(I', M) is a

[-module.
Define the map, j: M — Homy(I', M), as follows: For every m € M and every v € T',
j(m)(y) = ym.
Proposition 1.4 If M is a I'-module, the map j: M — Homz(T', M) is a I'-linear injection.

Proof. We have

jm+m)(y) =y(m+m') =ym+ym' = j(m)() + j(m)(7),

for all v € ' and all m,m’ € M. We also have

JAm)(v) = v(Am) = (yA)m,

for all m € M and all v, A € T', and by definition of the I'-action on Homz(T", M), we have

(Aj(m))(7) = 3(m)(vA) = (YA)m,

for all m € M and all y,\ € I'. Thus, j(m) is I-linear for all m € M. If j(m) = 0, then
j(m)(y) =0 for all v € I', and in particular, for v = 1. So, j(m)(1) = Im = m = 0, and the
map J is injective. J

Recall from B III.(c) that if N is an injective Z-module, then the I'-module Homz(I", N)
is injective.

We finally get the main theorem of this problem.
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Theorem 1.5 For every I'-module, M, there is some injective I'-module, P, and an injection
M — P.

Proof. 1If we view M as a Z-module, by Theorem 1.3, there is an injective Z-module, N,
and an injection, M — N. So, we have the exact sequence

00— M — N,
and since Homz(I", —) is left-exact, we get the exact sequence
0 — Homy(I', M) — Homy(I', N).

Thus, we have an injection Homz(I', M) — Homz(I', N), and by Proposition 1.4, there is
an injection M — Homz(I", M), so we get an injection M — Homz(I", N). But, since N
is Z-injective, by B III.(c), the -module Homz(I", NV) is injective, and our result is proved.
O

Remark: A proof of Theorem 1.5 not using the existence of injectives in Ab can be given,
following Godement.

Recall that if M is a I'-module and N is any Z-module, then Homz (M, N) is a I'P-module
under the right I-action given by: For any f € Homyz(M, N),

(f7)(m) = f(ym),

for all m € M and all v € I'. Similarly, if M is a ['°°-module and N is any Z-module, then
Homyz(M, N) is a I-module under the left I'-action given by: For any f € Homyz(M, N),

(vf)(m) = f(m~),

for all m € M and all ¥ € I. Then, MP = Homz(M,Q/Z) is a ['P-module if M is a
[-module (resp. a I'-module is M is ['°P-module). Furthermore, Proposition 1.2 holds, i.e.,
there is a I-injection, M — MPP. The new ingredient is the following proposition:

Proposition 1.6 If M is a projective I°P-module, then MP is an injective I'-module.

Proof. Consider the diagram
o — X — X

&

MD

where the row is exact. To prove that MP is injective, we need to prove that ¢ extends to a
map ¢': X’ — MP. The map ¢ yields the map Homz(MP? Q/Z) — Homz(X,Q/Z), i.e.,



MPP — XP and since we have an injection M — MPP we get a map 6: M — XP.
Now, since Q/Z is injective, Homz(—, Q/Z) maps the exact sequence

0— X — X'
to the exact sequence
Homy(X',Q/Z) — Homz(X,Q/Z) — 0,

ie.,
XP_xP_ 0.

So, we have the diagram

M

R

XP — X — 0,

where the row is exact, and since M is projective, the map 6 lifts to a map 6: M — X'P.
Consequently, we get a map X PP — MP. and since we have an injection X’ — X'PP.
we get a map X’ — MP extending ¢, as desired. Therefore, M is injective. O

We can now prove Theorem 1.5, but using the proof of Theorem 1.3. We consider the
I'°’-module MP. We know that there is a free I'°P-module, F, so that

F— MP — 0 is exact.

But, F being free, it is projective, and since Homyz(—, Q/Z) is left-exact, we get the exact

sequence
0 — MPP — FP,

By Proposition 1.6, the module F'? is injective. Composing the natural injection
M — MPP with the injection MPP — FP_ we obtain our injection, M — FP of M
into an injective.

B V.(a) Let k be a field, and f(X) be a monic polynomial of even degree in k[X]. Say
fX) =X+ X o 4 0y X 4 At X 4+ ag
We seek some polynomials g(X) and 7(X) so that
f(X)=g(X)*+7(X), with deg(r(X)) <m.
If g(X) and r(X) exist, then we must have deg(g(X)) = m, say

g(X) = b X"+ b X" by,
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Now, we can easily compute the coefficients of g(X)?. In fact, we only need the coefficients

of the monomials X*, where m < k < 2m. They are

X by

X2m=b 2boby

X2m_2 . 2b0b2 —|— b%

X2m73 : 2b0b3 + 2b1b2

X2m_4 : 2b0b4 + 2blbg + b%

X2m_5 . 2b0b5 + 2b1b4 + 2b2b3

2m—2k 2
X : 2boboi + 2b1bog—1 + - - - + 2bp—_1bpq1 + b,
X2 Obobogyr + 2b1bog + - + 2bkby gy

If we want to find g(X) and r(X) so that f(X) = ¢g(X)? + r(X), with deg(r(X)) < m, we
must solve the system of equations

1 = b
a, = Qbobl
o = 2b0b2 -+ b%
a3 = 2b0b3 -+ lebg
a, = 2b0b4 + 2b1b3 + bg
as = 2bob5 + 2blb4 + 2b2b3
agp — Qbobgk + 2b1b2k_1 + -+ 2bk_1bk+1 + bi
o1 = 2b0bog41 + 2b1bgg + - - 4 2040511
am = 2boby + 2b1by 1 + -+ + 2by_1by1 + b5 if m=2p, else
Ay = 2bObm + 2blbmfl —+ -4 2bpbp+1 ifm= 2p -+ 1.

Observe that by = £1, but than once by is determined, the coefficients by, .. ., b,, are uniquely
determined. Therefore, g(X) is uniquely determined, up to sign, and then,
r(X) = f(X) — g(X)? is also uniquely determined.

B V.(b) We now assume that & = Q and that f(X) has integer coefficients and is not the
square of a polynomial in Q[X]. We still assume that f(X) is monic of even degree, since
the result we wish to prove is false otherwise! Indeed, if say f(X) = X3, then Y2 = X3 is
satisfied whenever X is a square.



The key is this: If n is a positive integer and r € Z, then
n? +r is not a square if either 0 <7 <2n or —2n+2 <r <0.

Indeed, (n+1)> = n?+2n+1, and if 0 < r < 2n, then n? < n*+r < (n+1), so n?+r is not a
square. Similarly, (n—1)? = n?—2n+1, and if —2n+2 < r <0, then (n—1)? < n?+7r < n?,
so n? 4+ r is not a square.

For a numerical example, consider f(X) = X*+ X3+1. Clearly f(X) is a perfect square
for

X=-2 f(-2) =9
X=-1 f(-1) =1
X=0 f(0) =

X=2 f(2) =25

Also, f(—=3) =81 — 9+ 1 = 73, not a square. We claim that these are the only solutions.
For this, we express f(X) as g(X)? + r(X), as above. We get

1
fX)=X'"+X*+1= 7 (BX? +4X —1)” 48X +63).

Clearly, if (8X2 +4X — 1)? + 8X + 63 is not a square, then f(X) is not a square, and we
claim that this is the case for X < —4 or X > 3.

If X >3 then 8X? +4X — 1> 0 and 8X + 63 > 0, and by the criterion stated above, if
8X +63 < 2(8X* +4X — 1)
then (8X?% +4X — 1)? +8X + 63 is not a square. This will be the case if
8X 463 < 16X% +8X — 2,

that is, if 16 X2 > 65, which holds if X > 3.
If X < —4, then 8X2 +4X — 1> 0 and 8X + 63 < 0, by the criterion stated above, if

—2(8X%+4X —1) +2 < 8X +63
then (8X?% +4X — 1)? +8X + 63 is not a square. This will be the case if
—16X?% —8X +4 < 8X + 63,

that is, if 16X2 > —16X — 59, which holds if X < —4.

Now, in general, we claim that there is some (possible large) K > 0 so that for | X| > K,
f(X) is not a square.



We use a slightly modified version our criterion that allows us to treat the cases r < 0
and r > 0 uniformly. Recall that we showed that if n is a positive integer and r € Z, then

n? 4+ r is not a square if either 0 <7 <2n or —2n+2 <r <0.
It follows that if n is a positive integer and r € Z, then
n? 4+ r is not a square if either 0 <r <2n—2 or 0 < —r < 2n — 2.

From B V.(a), we may write

where h(X),r(X) € Z[X], N € N, deg(g(X)) = m and deg(r(X)) = p < m. We want
to show that for |X| large enough, g(X)? + T(X) is not a square. We can write g(X) =
aX™ + O(X™ 1) and r(X) = bX? + O(X?™!), where O(X™!) stands for a polynomial
of degree at most m — 1 (and similarly for r(X)). Now, for |X| large, g(X) ~ aX™ and
r(X) ~ aX?.

First, assume X >> 0 (i.e., X > 0 and large). We may assume that g(X) > 0 and
r(X) > 0, since otherwise we use —¢g(X) and —r(X) in the above criterion. So, we must
have a,b > 0, and the condition

bXP <2aX™ —2

can certainly be fulfilled for X > 0 large enough, since p < m.

Now, assume X << 0. Again, we may assume that g(X) > 0 and r(X) > 0. Then,
either m is even and a > 0, or m is odd and a < 0. So, we can replace X by —X and in the
second case, a by —a, and we are back to the case where X >> 0 and a > 0. We can do the
same thing with b.X?, and again, the condition

bXP < 2aX™ —2
is fulfilled for X > 0 large enough, since p < m.

B VI. We have to prove that the Z-module
M=]]z
N

is not projective (even though, each factor, Z, is projective).

To do so, we will use the following lemma, whose proof is given a little later.

Lemma 1.7 FEvery submodule of a free module over a P.I.D. is free.



Lemma 1.7 implies that every projective module over a P.I.D. is free. Indeed, for every
projective module, P, there is some (projective) module, P, so that P[[ P = F, where F
is a free module. So, the projective module, P, is a submodule of a free module, F' (over a
P.I.D.), and by Lemma 1.7, it is free.

Consequently, to prove that a module, M, over a P.I.D. is not projective, it is enough to
prove that M has some submodule that is not free. This is because, as we just proved, over
a P.I.D., any projective module is free, and by Lemma 1.7, again, every submodule of a free
module is free.

It turns out that Lemma 1.7 follows from a more general proposition (whose proof is not
harder than the proof of Lemma 1.7).

Proposition 1.8 Let R be a ring and assume that every (left) ideal 2 # (0) is projective.
Then, every submodule of a free R-module is isomorphic to a coproduct of ideals (in R).

Proof. Let F be a free R-module, and let {e)},ca be a basis of F. Consider any submodule,
M, of F, and for any nonempty subset, I, of A, let F; = [[,.; Re; be the free module
generated by the family of basis vectors, {e;}ics, and let M; = M N F;. Define S as the
collection

S = {(I,{Qlj}jeJ) | JCTCA, J#0, %, is an ideal in R and MIE’HQLJ}.
jed

Observe that S is nonempty, since ({\}, R) € S, for every A € A. Partially order S as
follows:

(AU es) < (I A Fwer)
iftrcr,JjgcJg, andQlj:Ql;- for all 7 € J.

It is immediately checked that S is inductive (because every element of a coproduct of
modules only has finitely many nonzero components). Thus, by Zorn’s lemma, the set S has
a maximal element, say (I, {2;};cs).

We claim that I = A, which establishes the lemma, since My = M NFy=MNF = M.

If I # A, there is some k € A so that k ¢ I; write K = [U{k}. We can’t have My = Mj,
since this would contradict the maximality of I. Thus, Mg # M;. Then,

MK = MIU{k} = MOF[U{k} =Mn <F]HR€k) = M[HMH(R€k>7

and we can define the homomorphism ¢: Mx — R by projecting the second summand of
My = M;[] M N (Rex) onto R. If we let 2, = Im ¢, we see that 2 is a nonzero ideal in
R, since M # M and, obviously, we have the exact sequence

O—>M]—>MK—>QLk—>0



However, by the hypothesis on the ring R, the ideal 2 is projective, so, the above sequence
splits, i.e., we have
My = M; [ ] 2

But, by definition of S, we have M; =[] ier Ui for some subset, J, of I. Therefore, we get

M =M [T J] 2

jeJU{k}

contradicting the maximality of (I, {2, };cs). Therefore, we must have I = A, and we are
done. [

If Ris a P.I.D., every nonzero ideal, 2, in R is of the form Ra, for some a € R; so, A = R,
via the isomorphism A € R — Aa € 2, and 2 is obviously projective. Then, Proposition
1.8 shows that every submodule, M, of a free module, F', over a P.I.D. is isomorphic to a
coproduct, [[,., R, i.e., M is free: This proves Lemma 1.7

Let K be the submodule of M = [ Z defined by

K ={() = (&) € M| (Vn)(3k = k(n))(2" | & for all j > k(n))}.
Our goal is to prove that K is not free. We will need the following standard proposition:

Proposition 1.9 Given a commutative ring, R, if M is a left R-module and A is an ideal
in R, then M/UAM is a left R/2A-module. In particular, if A is a mazimal ideal, then M /AN
is a vector space over the field R/, and if M is a free module, then the cardinality of any
basis for M is equal to the dimension the vector space M /AM. Thus, if M is a free module,
any two bases of M have the same cardinality, called the rank of M.

Proof. For instance, see Algebra, by Lang, or Introduction to Homological Algebra, by
Rotman. [J

Observe that
(k12, k922 k32°, ... k,2",..) €K

for all (ki,ko, ..., kn,...) € ZN, and so, #(K) is an uncountable cardinal. Now, if K were
free, its rank would be uncountable, because if it were countable, we would have

K=]]z
N

a countable union of countable sets, which is countable, a contradiction. Also observe that
2K is a submodule of K, and so, by Proposition 1.9, the factor module K/2K is a vector
space over Z/27Z, of the same dimension as K. Thus, dim(K/2K) would be uncountable.
However, it is countable, as we will prove next. Thus, we get a contradiction and K is not
free, and a fortiori, not projective.



Let ¢ denote the image in K /2K of any & € K. If ¢ € K, by definition, there is some
finite number, n, so that 2 | ; for all j > n. Thus, we can write

E=(ki,...,kn,0,...,0)+ 2n,
where we also have n € K. Then,

§ = (k1 (mod 2))e; + -+ + (k, (mod 2))ey,

where e; = (0,...,0,1,0,...,0,...), with 1 in the ith slot, and this shows that K/2K is
generated by countably many vectors, as claimed.
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