Spring 2015 CIS 610

Advanced Geometric Methods in Computer Science Jean Gallier

Homework 5

April 28; Due May 7, 2015

Problem B1 (160). Recall that a nonempty k-dimensional affine subspace \mathcal{A} of \mathbb{R}^n is determined by a pair (a_0, U) , where $a_0 \in \mathbb{R}^n$ is any point in \mathcal{A} and U is a k-dimensional subspace of \mathbb{R}^n called the *direction* of \mathcal{A} . Two pairs (a_0, U) and (b_0, U) define the same affine subspace \mathcal{A} iff $b_0 - a_0 \in U$ (in fact, U consists of all vectors of the form b - a, with $a, b \in \mathcal{A}$).

The subspace U can be represented by any basis (u_1, \ldots, u_k) of vectors $u_i \in U$, and so \mathcal{A} is represented by the *affine frame* $(a_0, (u_1, \ldots, u_k))$.

Two affine frames $(a_0, (u_1, \ldots, u_k))$ and $(b_0, (v_1, \ldots, v_k))$ represent the same affine subspace \mathcal{A} iff there is an invertible $k \times k$ matrix $\Lambda = (\lambda_{ij})$ such that

$$v_j = \sum_{i=1}^k \lambda_{ij} u_i, \quad 1 \le j \le k,$$

and if there is some vector $c \in \mathbb{R}^k$ such that

$$b_0 = a_0 + \sum_{i=1}^k c_i u_i$$

Note that (Λ, c) defines an invertible affine map of \mathbb{R}^k .

A basis (u_1, \ldots, u_k) of U is represented by a $n \times k$ matrix of rank k, say A, so the affine subspace \mathcal{A} is represented by the pair (a_0, A) , where $a_0 \in \mathbb{R}^n$ and A is a $n \times k$ matrix of rank k. The equivalence relation on pairs (a_0, A) is given by

$$(a_0, A) \equiv (b_0, B)$$

iff there exists a pair (Λ, c) , where Λ is an invertible $k \times k$ matrix $(\Lambda \in \mathbf{GL}(k, \mathbb{R}))$ and c is some vector in \mathbb{R}^k , such that

$$B = A\Lambda$$
 and $b_0 = a_0 + Ac$.

Using Gram-Schmidt, we may assume that (u_1, \ldots, u_k) is an orthonormal basis, which means that the columns of the matrix A are orthonormal; that is,

$$A^{\top}A = I_k$$

Then, in the equivalence relation defined above, the matrix Λ is an orthogonal $k \times k$ matrix $(\Lambda \in \mathbf{O}(k))$.

The (real) affine Grassmannian AG(k, n) consists of all k-dimensional affine subspaces of \mathbb{R}^n $(1 \le k \le n)$.

Recall that the Euclidean group $\mathbf{E}(n)$ consists of all invertible affine maps (Q, u), with $Q \in \mathbf{O}(n)$ and $u \in \mathbb{R}^n$, and that the special Euclidean group $\mathbf{SE}(n)$ consists of all invertible affine maps (Q, u), with $Q \in \mathbf{SO}(n)$ and $u \in \mathbb{R}^n$. As usual, we represent an element (Q, u) of $\mathbf{E}(n)$ (or $\mathbf{SE}(n)$) by the $(n + 1) \times (n + 1)$ matrix

$$\begin{pmatrix} Q & u \\ 0 & 1 \end{pmatrix},$$

with \mathbb{R}^n embedded in \mathbb{R}^{n+1} by adding 1 as (n+1)th coordinate.

Define an action of the group $\mathbf{SE}(n)$ on AG(k, n) as follows: if $\mathcal{A} \in AG(k, n)$, for any affine frame (a_0, A) representing \mathcal{A} (where $A^{\top}A = I_k$), for any $(Q, u) \in \mathbf{SE}(n)$, then

$$(Q, u) \cdot \mathcal{A} = (Qa_0 + u, QA).$$

(1) Check that the above action does not depend on the affine frame (a_0, A) chosen for \mathcal{A} .

(2) Prove the above action is transitive.

(3) Next, we determine the stabilizer of the affine subspace defined by the affine frame $(0, (e_1, \ldots, e_k))$, where e_1, \ldots, e_k are the first k canonical basis vectors of \mathbb{R}^n . This affine subspace is also represented by $(0, P_{n,k})$, where $P_{n,k}$ is the $n \times k$ matrix consisting of the first k columns of the identity matrix I_n ; namely

$$P_{n,k} = \begin{pmatrix} I_k \\ 0_{n-k,k} \end{pmatrix}.$$

Prove that the stabilizer of the affine subspace defined by $(0, P_{n,k})$ is the group $H = S(\mathbf{E}(k) \times \mathbf{O}(n-k))$ given by the set of matrices

$$H = \left\{ \begin{pmatrix} Q & 0 & u \\ 0 & R & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| Q \in \mathbf{O}(k), R \in \mathbf{O}(n-k), \det(Q) \det(R) = 1, u \in \mathbb{R}^k \right\}.$$

(4) For any k and n such that $1 \le k \le n$, let $I_{k,n-k}$ be the matrix

$$I_{k,n-k} = \begin{pmatrix} I_k & 0\\ 0 & -I_{n-k} \end{pmatrix}.$$

Note that $I_{k,n-k}^2 = I_n$.

Let $\sigma: \mathbf{SE}(n) \to \mathbf{SE}(n)$ be the map given by

$$\sigma \begin{pmatrix} Q & z \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} I_{k,n-k} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} Q & z \\ 0 & 1 \end{pmatrix} \begin{pmatrix} I_{k,n-k} & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} Q & z \\ 0 & 1 \end{pmatrix} \in \mathbf{SE}(n).$$

Prove that $\sigma^2 = \text{id}$, and that σ is a group homomorphism (that is, $\sigma((Q, u)(R, v)) = \sigma(Q, u)\sigma(R, v)$, for all $(Q, u), (R, v) \in \mathbf{SE}(n)$).

(5) The subgroup $\mathbf{SE}(n)^{\sigma}$ fixed by σ is defined by

$$\mathbf{SE}(n)^{\sigma} = \{ P \in \mathbf{SE}(n) \mid \sigma(P) = P \}.$$

Prove that

$$\mathbf{SE}(n)^{\sigma} = \left\{ \begin{pmatrix} Q & 0 & u \\ 0 & R & 0 \\ 0 & 0 & 1 \end{pmatrix} \middle| Q \in \mathbf{O}(k), R \in \mathbf{O}(n-k), \det(Q) \det(R) = 1, u \in \mathbb{R}^k \right\}.$$

(6) Let $\mathfrak{se}(n)$ be the following vector space

$$\mathfrak{se}(n) = \left\{ \begin{pmatrix} S & -A^{\top} & u \\ A & T & v \\ 0 & 0 & 0 \end{pmatrix} \middle| S \in \mathfrak{so}(k), \ T \in \mathfrak{so}(n-k), \ A \in \mathcal{M}_{n-k,k}, \ u \in \mathbb{R}^k, \ v \in \mathbb{R}^{n-k} \right\}.$$

Are the matrices in $\mathfrak{se}(n)$ skew-symmetric? If not, give a necessary and sufficient condition for such matrices to be skew-symmetric.

Check that the map $\theta \colon \mathfrak{se}(n) \to \mathfrak{se}(n)$ given by

$$\theta(X) = \begin{pmatrix} I_{k,n-k} & 0\\ 0 & 1 \end{pmatrix} X \begin{pmatrix} I_{k,n-k} & 0\\ 0 & 1 \end{pmatrix}, \quad X \in \mathfrak{se}(n)$$

is the derivative $d\sigma_I$.

Prove that θ is a linear involution of $\mathfrak{se}(n)$. Prove that the subspaces

$$\mathfrak{h} = \{ X \in \mathfrak{se}(n) \mid \theta(X) = X \}$$
$$\mathfrak{m} = \{ X \in \mathfrak{se}(n) \mid \theta(X) = -X \}$$

are given by

$$\mathfrak{h} = \left\{ \begin{pmatrix} S & 0 & u \\ 0 & T & 0 \\ 0 & 0 & 0 \end{pmatrix} \middle| S \in \mathfrak{so}(k), \ T \in \mathfrak{so}(n-k), \ u \in \mathbb{R}^k \right\}$$

and

$$\mathfrak{m} = \left\{ \begin{pmatrix} 0 & -A^{\top} & 0 \\ A & 0 & v \\ 0 & 0 & 0 \end{pmatrix} \middle| A \in \mathcal{M}_{n-k,k}, v \in \mathbb{R}^{n-k} \right\}.$$

(7) Prove (very quickly) that

 $\mathfrak{se}(n) = \mathfrak{h} \oplus \mathfrak{m},$

and that $\dim(\mathfrak{m}) = (k+1)(n-k)$.

Apply Proposition 18.22 to conclude that the affine Grassmannian AG(k, n) is a reductive homogeneous space with a simple reductive decomposition $\mathfrak{se}(n) = \mathfrak{h} \oplus \mathfrak{m}$. In fact, except for the fact that there is no Ad(H)-invariant metric on \mathfrak{m} (because H is not compact), all the other properties of a symmetric space are satisfied.

Problem B2 (60). Consider the Lie group SO(n) with the bi-invariant metric induced by the inner product on $\mathfrak{so}(n)$ given by

$$\langle B_1, B_2 \rangle = \frac{1}{2} \operatorname{tr}(B_1^\top B_2).$$

For any two matrices $B_1, B_2 \in \mathfrak{so}(n)$, let γ be the curve given by

$$\gamma(t) = e^{(1-t)B_1 + tB_2}, \quad 0 \le t \le 1.$$

This is a curve "interpolating" between the two rotations $R_1 = e^{B_1}$ and $R_2 = e^{B_2}$.

(1) Prove that the length $L(\gamma)$ of the curve γ is given by

$$L(\gamma) = \left(-\frac{1}{2}\operatorname{tr}((B_2 - B_1)^2)\right)^{\frac{1}{2}}.$$

(2) We know that the geodesic from R_1 to R_2 is given by

$$\gamma_g(t) = R_1 e^{tB}, \quad 0 \le t \le 1,$$

where $B \in \mathfrak{so}(n)$ is the principal log of $R_1^{\top}R_2$ (if we assume that $R_1^{\top}R_2$ is not a rotation by π , i.e, does not admit -1 as an eigenvalue).

Conduct numerical experiments to verify that in general, $\gamma(1/2) \neq \gamma_g(1/2)$.

Problem B3 (40). Prove that for any matrix

$$X = \begin{pmatrix} 0 & -u^\top \\ u & 0 \end{pmatrix},$$

where $u \in \mathbb{R}^n$ (a column vector), we have

$$e^{tX} = \begin{pmatrix} \cos(\|u\| t) & -\sin(\|u\| t) \frac{u^{\top}}{\|u\|} \\ \sin(\|u\| t) \frac{u}{\|u\|} & I + (\cos(\|u\| t) - 1) \frac{uu^{\top}}{\|u\|^2} \end{pmatrix}.$$

Problem B4 ((Extra Credit) (50). Review Gauss' Lemma (Proposition 13.7) and its proof. Do Carmo states Gauss' lemma in the following form:

Let $(M, \langle -, -\rangle)$ be a Riemannian manifold. For any $p \in M$ and for any $v \in T_p M$ such that ||v|| < i(p) (so that $\exp_p(v)$ is defined), for every $w \in T_p M \approx T_v(T_p M)$, we have

$$\langle (d \exp_p)_v(v), (d \exp_p)_v(w) \rangle = \langle v, w \rangle.$$

Do Carmo begins his proof by saying, let

$$w = w_T + w_N,$$

where w_T is the projection of w on the subspace spanned by v and w_N is the projection of w onto the orthogonal complement of that subspace (in T_pM). He then says "since $(d \exp_p)_v$ is linear and by definition of \exp_p , we have

$$\langle (d \exp_p)_v(v), (d \exp_p)_v(w_T) \rangle = \langle v, w_T \rangle,$$

it suffices to prove that

$$\langle (d \exp_p)_v(v), (d \exp_p)_v(w_N) \rangle = \langle v, w_N \rangle,$$

and we can assume that $w_N \neq 0$."

Explain why what Do carmo says is correct, and why his version of Gauss Lemma reduces to the version in Proposition 13.7.

Problem B5 (100). Let *E* be a real vector space of dimension $n \ge 1$, and let $\langle -, - \rangle_1$ and $\langle -, - \rangle_2$ be two inner products on *E*. Let $\varphi_k \colon E \to E^*$ be the linear map given by

$$\varphi_k(u)(v) = \langle u, v \rangle_k, \quad u, v \in E, k = 1, 2.$$

(1) Prove that if (u_1, \ldots, u_n) is an orthonormal basis for $(E, \langle -, - \rangle_1)$, then

$$\varphi_1(u_i) = u_i^*, \quad i = 1, \dots, n,$$

where (u_1^*, \ldots, u_n^*) is the dual basis in E^* of (u_1, \ldots, u_n) (recall that $u_i^*(u_j) = \delta_{ij}$).

Prove that for any basis (u_1, \ldots, u_n) in E and its dual basis (u_1^*, \ldots, u_n^*) in E^* , the matrix A_k representing φ_k (k = 1, 2) is given by

$$(A_k)_{ij} = \varphi_k(u_j)(u_i) = \langle u_j, u_i \rangle_k, \quad 1 \le i, j, \le n$$

Conclude that A_k is symmetric positive definite (k = 1, 2).

(2) Consider the linear map $f: E \to E$ defined by

$$f = \varphi_1^{-1} \circ \varphi_2.$$

Check that

$$\langle u, v \rangle_2 = \langle f(u), v \rangle_1, \text{ for all } u, v \in E,$$

and deduce from the above that f is self-adjoint with respect to $\langle -, - \rangle_1$.

(3) Prove that there is some orthonormal basis (u_1, \ldots, u_n) for $(E, \langle -, -\rangle_1)$ which is also an orthogonal basis for $(E, \langle -, -\rangle_2)$. Prove that this result still holds if $\langle -, -\rangle_1$ is an inner product and $\langle -, -\rangle_2$ is any symmetric bilinear form. We say that $\langle -, -\rangle_2$ is *diagonalized* by $\langle -, -\rangle_1$.

Hint. Use Theorem 12.7 from my notes linalg.pdf; see the notes for CIS515.

Assume that $\langle -, - \rangle_1$ is a symmetric, nondegenerate, bilinear form and that $\langle -, - \rangle_2$ is any symmetric bilinear form. Prove that for any basis (e_1, \ldots, e_n) of E, if (e_1, \ldots, e_n) is orthogonal for $\langle -, - \rangle_1$ implies that it is also orthogonal for $\langle -, - \rangle_2$, which means that

if $\langle e_j, e_j \rangle_1 = 0$ then $\langle e_j, e_j \rangle_2 = 0$, for all $i \neq j$,

then $f = \varphi_1^{-1} \circ \varphi_2$ has (e_1, \ldots, e_n) as a basis of eigenvectors.

Find an example of two symmetric, nondegenerate bilinear forms that do not admit a common orthogonal basis.

(4) Given a group G and a real finite dimensional vector space E, a representation of G is any homomorphism $\rho: G \to \mathbf{GL}(E)$. A subspace $U \subseteq E$ is *invariant* under ρ if for every $g \in G$, we have $\rho(g)(u) \in U$ for all $u \in U$. A representation is said to be *irreducible* if its only invariant subspaces are (0) and E.

For any two inner products $\langle -, - \rangle_1$ and $\langle -, - \rangle_2$ on E, if $\rho(g)$ is an isometry for both $\langle -, - \rangle_1$ and $\langle -, - \rangle_2$ for all $g \in G$ (which means that $\langle \rho(g)(u), \rho(g)(v) \rangle_k = \langle u, v \rangle_k$ for all $u, v \in E, k = 1, 2$) and if ρ is irreducible, then prove that $\langle -, - \rangle_2 = \lambda \langle -, - \rangle_1$, for some nonzero $\lambda \in \mathbb{R}$.

Hint. Compare $\rho(g) \circ f$ and $f \circ \rho(g)$ and show that the eigenspaces of f (as defined in (2)) are invariant under each $\rho(g)$.

In the situation of Proposition 18.16, where we have a homogeneous reductive space G/Hwith reductive decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$, prove that if the representation $\mathrm{Ad}^{\mathrm{G}} \colon H \to \mathbf{GL}(\mathfrak{m})$ is irreducible (where Ad_h is restricted to \mathfrak{m} for all $h \in H$), then any two $\mathrm{Ad}(H)$ -invariant inner products on \mathfrak{m} are proportional to each other.

TOTAL: 360 + 50 points.