
Spring 2015 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 5

April 28; Due May 7, 2015

Problem B1 (160). Recall that a nonempty k-dimensional affine subspace A of Rn is
determined by a pair (a0, U), where a0 ∈ Rn is any point in A and U is a k-dimensional
subspace of Rn called the direction of A. Two pairs (a0, U) and (b0, U) define the same affine
subspace A iff b0−a0 ∈ U (in fact, U consists of all vectors of the form b−a, with a, b ∈ A).

The subspace U can be represented by any basis (u1, . . . , uk) of vectors ui ∈ U , and so
A is represented by the affine frame (a0, (u1, . . . , uk)).

Two affine frames (a0, (u1, . . . , uk)) and (b0, (v1, . . . , vk)) represent the same affine sub-
space A iff there is an invertible k × k matrix Λ = (λij) such that

vj =
k∑
i=1

λijui, 1 ≤ j ≤ k,

and if there is some vector c ∈ Rk such that

b0 = a0 +
k∑
i=1

ciui.

Note that (Λ, c) defines an invertible affine map of Rk.

A basis (u1, . . . , uk) of U is represented by a n× k matrix of rank k, say A, so the affine
subspace A is represented by the pair (a0, A), where a0 ∈ Rn and A is a n×k matrix of rank
k. The equivalence relation on pairs (a0, A) is given by

(a0, A) ≡ (b0, B)

iff there exists a pair (Λ, c), where Λ is an invertible k × k matrix (Λ ∈ GL(k,R)) and c is
some vector in Rk, such that

B = AΛ and b0 = a0 + Ac.

Using Gram-Schmidt, we may assume that (u1, . . . , uk) is an orthonormal basis, which
means that the columns of the matrix A are orthonormal; that is,

A>A = Ik.

1



Then, in the equivalence relation defined above, the matrix Λ is an orthogonal k× k matrix
(Λ ∈ O(k)).

The (real) affine Grassmannian AG(k, n) consists of all k-dimensional affine subspaces
of Rn (1 ≤ k ≤ n).

Recall that the Euclidean group E(n) consists of all invertible affine maps (Q, u), with
Q ∈ O(n) and u ∈ Rn, and that the special Euclidean group SE(n) consists of all invertible
affine maps (Q, u), with Q ∈ SO(n) and u ∈ Rn. As usual, we represent an element (Q, u)
of E(n) (or SE(n)) by the (n+ 1)× (n+ 1) matrix(

Q u
0 1

)
,

with Rn embedded in Rn+1 by adding 1 as (n+ 1)th coordinate.

Define an action of the group SE(n) on AG(k, n) as follows: if A ∈ AG(k, n), for any
affine frame (a0, A) representing A (where A>A = Ik), for any (Q, u) ∈ SE(n), then

(Q, u) · A = (Qa0 + u,QA).

(1) Check that the above action does not depend on the affine frame (a0, A) chosen for
A.

(2) Prove the above action is transitive.

(3) Next, we determine the stabilizer of the affine subspace defined by the affine frame
(0, (e1, . . . , ek)), where e1, . . . , ek are the first k canonical basis vectors of Rn. This affine
subspace is also represented by (0, Pn,k), where Pn,k is the n×k matrix consisting of the first
k columns of the identity matrix In; namely

Pn,k =

(
Ik

0n−k,k

)
.

Prove that the stabilizer of the affine subspace defined by (0, Pn,k) is the group H =
S(E(k)×O(n− k)) given by the set of matrices

H =


Q 0 u

0 R 0
0 0 1

 ∣∣∣∣∣∣ Q ∈ O(k), R ∈ O(n− k), det(Q) det(R) = 1, u ∈ Rk

 .

(4) For any k and n such that 1 ≤ k ≤ n, let Ik,n−k be the matrix

Ik,n−k =

(
Ik 0
0 −In−k

)
.

Note that I2k,n−k = In.
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Let σ : SE(n)→ SE(n) be the map given by

σ

(
Q z
0 1

)
=

(
Ik,n−k 0

0 1

)(
Q z
0 1

)(
Ik,n−k 0

0 1

)
,

(
Q z
0 1

)
∈ SE(n).

Prove that σ2 = id, and that σ is a group homomorphism (that is, σ((Q, u)(R, v)) =
σ(Q, u)σ(R, v), for all (Q, u), (R, v) ∈ SE(n)).

(5) The subgroup SE(n)σ fixed by σ is defined by

SE(n)σ = {P ∈ SE(n) | σ(P ) = P}.

Prove that

SE(n)σ =


Q 0 u

0 R 0
0 0 1

 ∣∣∣∣∣∣ Q ∈ O(k), R ∈ O(n− k), det(Q) det(R) = 1, u ∈ Rk

 .

(6) Let se(n) be the following vector space

se(n) =


S −A> u
A T v
0 0 0

 ∣∣∣∣∣∣ S ∈ so(k), T ∈ so(n− k), A ∈ Mn−k,k, u ∈ Rk, v ∈ Rn−k

 .

Are the matrices in se(n) skew-symmetric? If not, give a necessary and sufficient condition
for such matrices to be skew-symmetric.

Check that the map θ : se(n)→ se(n) given by

θ(X) =

(
Ik,n−k 0

0 1

)
X

(
Ik,n−k 0

0 1

)
, X ∈ se(n)

is the derivative dσI .

Prove that θ is a linear involution of se(n). Prove that the subspaces

h = {X ∈ se(n) | θ(X) = X}
m = {X ∈ se(n) | θ(X) = −X}

are given by

h =


S 0 u

0 T 0
0 0 0

 ∣∣∣∣∣∣ S ∈ so(k), T ∈ so(n− k), u ∈ Rk


and

m =


0 −A> 0
A 0 v
0 0 0

 ∣∣∣∣∣∣ A ∈ Mn−k,k, v ∈ Rn−k

 .
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(7) Prove (very quickly) that
se(n) = h⊕m,

and that dim(m) = (k + 1)(n− k).

Apply Proposition 18.22 to conclude that the affine Grassmannian AG(k, n) is a reductive
homogeneous space with a simple reductive decomposition se(n) = h ⊕ m. In fact, except
for the fact that there is no Ad(H)-invariant metric on m (because H is not compact), all
the other properties of a symmetric space are satisfied.

Problem B2 (60). Consider the Lie group SO(n) with the bi-invariant metric induced by
the inner product on so(n) given by

〈B1, B2〉 =
1

2
tr(B>1 B2).

For any two matrices B1, B2 ∈ so(n), let γ be the curve given by

γ(t) = e(1−t)B1+tB2 , 0 ≤ t ≤ 1.

This is a curve “interpolating” between the two rotations R1 = eB1 and R2 = eB2 .

(1) Prove that the length L(γ) of the curve γ is given by

L(γ) =

(
−1

2
tr((B2 −B1)

2)

) 1
2

.

(2) We know that the geodesic from R1 to R2 is given by

γg(t) = R1e
tB, 0 ≤ t ≤ 1,

where B ∈ so(n) is the principal log of R>1 R2 (if we assume that R>1 R2 is not a rotation by
π, i.e, does not admit −1 as an eigenvalue).

Conduct numerical experiments to verify that in general, γ(1/2) 6= γg(1/2).

Problem B3 (40). Prove that for any matrix

X =

(
0 −u>
u 0

)
,

where u ∈ Rn (a column vector), we have

etX =

 cos(‖u‖ t) − sin(‖u‖ t) u>‖u‖
sin(‖u‖ t) u

‖u‖ I + (cos(‖u‖ t)− 1) uu
>

‖u‖2

 .
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Problem B4 ( (Extra Credit) (50). Review Gauss’ Lemma (Proposition 13.7) and its
proof. Do Carmo states Gauss’ lemma in the following form:

Let (M, 〈−,−〉) be a Riemannian manifold. For any p ∈M and for any v ∈ TpM such that
‖v‖ < i(p) (so that expp(v) is defined), for every w ∈ TpM ≈ Tv(TpM), we have

〈(d expp)v(v), (d expp)v(w)〉 = 〈v, w〉.

Do Carmo begins his proof by saying, let

w = wT + wN ,

where wT is the projection of w on the subspace spanned by v and wN is the projection of w
onto the orthogonal complement of that subspace (in TpM). He then says “since (d expp)v
is linear and by definition of expp, we have

〈(d expp)v(v), (d expp)v(wT )〉 = 〈v, wT 〉,

it suffices to prove that

〈(d expp)v(v), (d expp)v(wN)〉 = 〈v, wN〉,

and we can assume that wN 6= 0.”

Explain why what Do carmo says is correct, and why his version of Gauss Lemma reduces
to the version in Proposition 13.7.

Problem B5 (100). Let E be a real vector space of dimension n ≥ 1, and let 〈−,−〉1 and
〈−,−〉2 be two inner products on E. Let ϕk : E → E∗ be the linear map given by

ϕk(u)(v) = 〈u, v〉k, u, v ∈ E, k = 1, 2.

(1) Prove that if (u1, . . . , un) is an orthonormal basis for (E, 〈−,−〉1), then

ϕ1(ui) = u∗i , i = 1, . . . , n,

where (u∗1, . . . , u
∗
n) is the dual basis in E∗ of (u1, . . . , un) (recall that u∗i (uj) = δij).

Prove that for any basis (u1, . . . , un) in E and its dual basis (u∗1, . . . , u
∗
n) in E∗, the matrix

Ak representing ϕk (k = 1, 2) is given by

(Ak)ij = ϕk(uj)(ui) = 〈uj, ui〉k, 1 ≤ i, j,≤ n

Conclude that Ak is symmetric positive definite (k = 1, 2).

(2) Consider the linear map f : E → E defined by

f = ϕ−11 ◦ ϕ2.
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Check that
〈u, v〉2 = 〈f(u), v〉1, for all u, v ∈ E,

and deduce from the above that f is self-adjoint with respect to 〈−,−〉1.

(3) Prove that there is some orthonormal basis (u1, . . . , un) for (E, 〈−,−〉1) which is also
an orthogonal basis for (E, 〈−,−〉2). Prove that this result still holds if 〈−,−〉1 is an inner
product and 〈−,−〉2 is any symmetric bilinear form. We say that 〈−,−〉2 is diagonalized by
〈−,−〉1.

Hint. Use Theorem 12.7 from my notes linalg.pdf; see the notes for CIS515.

Assume that 〈−,−〉1 is a symmetric, nondegenerate, bilinear form and that 〈−,−〉2 is
any symmetric bilinear form. Prove that for any basis (e1, . . . , en) of E, if (e1, . . . , en) is
orthogonal for 〈−,−〉1 implies that it is also orthogonal for 〈−,−〉2, which means that

if 〈ej, ej〉1 = 0 then 〈ej, ej〉2 = 0, for all i 6= j,

then f = ϕ−11 ◦ ϕ2 has (e1, . . . , en) as a basis of eigenvectors.

Find an example of two symmetric, nondegenerate bilinear forms that do not admit a
common orthogonal basis.

(4) Given a group G and a real finite dimensional vector space E, a representation of G
is any homomorphism ρ : G→ GL(E). A subspace U ⊆ E is invariant under ρ if for every
g ∈ G, we have ρ(g)(u) ∈ U for all u ∈ U . A representation is said to be irreducible if its
only invariant subspaces are (0) and E.

For any two inner products 〈−,−〉1 and 〈−,−〉2 on E, if ρ(g) is an isometry for both
〈−,−〉1 and 〈−,−〉2 for all g ∈ G (which means that 〈ρ(g)(u), ρ(g)(v)〉k = 〈u, v〉k for all
u, v ∈ E, k = 1, 2) and if ρ is irreducible, then prove that 〈−,−〉2 = λ〈−,−〉1, for some
nonzero λ ∈ R.

Hint. Compare ρ(g) ◦ f and f ◦ ρ(g) and show that the eigenspaces of f (as defined in (2))
are invariant under each ρ(g).

In the situation of Proposition 18.16, where we have a homogeneous reductive space G/H
with reductive decomposition g = h⊕m, prove that if the representation AdG : H → GL(m)
is irreducible (where Adh is restricted to m for all h ∈ H), then any two Ad(H)-invariant
inner products on m are proportional to each other.

TOTAL: 360 + 50 points.
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