Homework IV (due November 18), Math 602, Fall 2002. (GJSZ)

B I(a). Let P(Xiy,...,X,) = X? + -+ X2 First, we prove that P(Xy,...,X,) €
C[Xy,...,X,] is irreducible for all n > 3. The intuition is geometric: The hypersurface
defined by P(Xi,...,X,) = 0 is nonsingular, except at the origin, which means that the

normal vector N = (Px,,..., Px,) is nonzero except at the origin, where Py, denotes the
partial derivative 0P/0X;. Indeed, we have N = (2X4,...,2X,).

If P factors, it can be written as the product P = [;l5 of two linear forms, [1,l. But, we
have

NXi = (lllQ)Xi = (ll)X1l2 + l1<12)Xi'

Furthermore, the equations [; = 0 and [, = 0 define two hyperplanes through the origin;
if > 3, the intersection of these hyperplanes has dimension at least n — 2, and so, for all
i=1,...,n,we would have Nx, = (I;l2)x, = 0 on a subspace of dimension at least n—2 > 1,
contradicting the fact that IV is zero only at the origin. Therefore, P is irreducible.

We can now apply theorem 1.1 from B I(f), and this shows that
C[Xy,...,Xu]/(X} + -+ X2) is a UFD whenever n > 5.

B I(b) Let Q(X1,...,X,) = X +---+ X3. Asin B I(a) we prove that Q(X1,...,X,,) €
C[Xy,...,X,] is irreducible for all n > 3. Again, the hypersurface, Q(Xy,...,X,) =0, is
nonsingular, except at the origin, which means that the normal vector N = (Qx,,...,Qx,)

is nonzero, except at the origin, where @)y, denotes the partial derivative 0Q/0X;. Indeed,
we have N = (3X%,...,3X2).

If @ factors, then @) = LR, where L is a linear form and R is (homogeneous) of degree 2.
We claim that the intersection of the hyperplane, L = 0, with the quadric, R = 0, in C", is
infinite, provided that n > 3. (Actually, this is also true for any hypersurface R = 0 in C").

A hyperplane, H, in C" is determined by n affinely independent points, p',...,p", and
any point, X = (Xi,...,X,) in H can be written as an affine combination,

X=Mp '+ -+ \p", where M\ +---+ )\, =1.
If we write p' = (pi,...,p"), we see that
Xi=Mp; + -+ Aapf,

fori=1,...,n. We find the intersection of L = 0 and R = 0 by plugging the X;’s in R, and
we find a polynomial of degree 2 in \q,..., \,. Further, we can eliminate \,, and we find a
polynomial, 7', of degree 2, in Ay, ..., \,_1. Since n > 3, we have n — 1 > 2. If any of the \;
is missing from 7', then T' = 0 has infinitely many solutions over C"~!. If not, give arbitrary
values to Ag, ..., \,_1, which is possible, since n — 1 > 2. The resulting polynomial T'(\;)
is a polynomial of degree 2, and over C, its has some zero. Therefore, T' = 0 has infinitely
many solutions.



As in B I(a), we have
Nx, = (LR)y, = Ly, R + LRy,

and by the above fact, for all i = 1,...,n, we would have Ny, = (LR)x, = 0 on an infinite
set, a contradiction. Therefore, () is irreducible.

Again, we apply theorem 1.1 from B I(f), and this shows that
ClXy,.... X,/ (X7 + X3+ X5 +---+ X?) is a UFD whenever n > 5.

B I(c). We have X7 + X2 = (X +iX5)(X; — iXy). Thus, B = C[Xy, Xo/(X? + X3) is
not a domain, since (X 4+ iX3)(X; —iX3) =0 in B.

Since X7 4+ X7 + X2 = (X +1X5)(X; —iXy) — (1X3)?, the ring
B = C[Xy, Xy, X3]/(X? + X7 + X2) is not a UFD, since

(X1 +1X5)(X) —iX5) = (iX3)?

in B (but it is a domain).

Since X12 + X22 + Xg = (Xl + ’ZXQ)(Xl — ZXQ) — (ZXg + X4)<ZX3 — X4), the I'il’lg
B = C[X1, Xy, X3, X4]/(X? + X2 + X2+ X?) is not a UFD, since

(X1 +iX) (X — iXa) = (iX3 + X4)(iX5 — Xy)

in B (but it is a domain).

We have X3 + X35 = (X; + Xo)(X? — X1 X5 + X?). Thus,
B = C[Xy, X,)/(X} + X3) is not a domain, since

(X1 + X)) (X2 - X1 X0+ X3 =0

in B.

Since X? + X5 + X3 = (X; + Xo)(X? — X1 Xy + X?) — (—X3)3, the ring
B = C[X1, X2, X3]/(X} + X3 4+ X3) is not a UFD, since

(X1 + Xo) (X7 — X1 X + X?) = (—X3)°

in B (but it is a domain).

Since X?+X§’+X§’+Xs = (X1 +X2)(X12—X1X2+X2) - (—Xl _XQ)(X%_XlXQ +X2)
the ring
B = C[Xy, Xo, X3, X4]/(X} + X3 + X3 + X}) is not a UFD, since

(Xl -+ XQ)(Xlz - XlXQ + X2) == (_Xl - )(2)()(12 - XlXQ + X2)

in B (but it is a domain).

B I(d).

B I(e). We will prove the following main theorem:
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Theorem 1.1 If A is a noetherian UFD, for any irreducible fo € A and any polynomial
9(X) € A[X], if we let f(X,Y) = XY + fo+ Xg(X), then B = AX,Y]/(f(X,Y)) is a
UFD.

We can apply Theorem 1.1 to B I(a) and B I (b) using the following simple fact:

Lemma 1.2 For any polynomial h(X3, ..., X,,) € C[X3, ..., X,], we have the isomorphism
C[X1, Xo, X5, ., Xp] /(X + X5+ h) ZC[U,V, X3,..., X,]/(UV + h).

Proof. We have X7 + X2 = (X; +iX5)(X; —iX5). Use the isomorphisms induced by
U (X1+1iXy), V= (X]—iXs),and X3 — (U+V)/2, Xo — (U—-V)/2i. O

We can apply Theorem 1.1 to B I(a) by letting:
A=C[X3,...,X,], g(X) =0, and fo = (X2 +---+ X?), for n > 5, because in this case, f;
is irreducible.

We can apply Theorem 1.1 to B I(b) by letting:
A=C[X3,...,X,], 9(X) =0, and fo = (X3 + -+ X3), for n > 5, because in this case, fy
is also irreducible.

The proof of Theorem 1.1 proceeds in several steps. We denote the image of a polynomial

f(X,Y) € AX,Y] by f.

Unfortunately, we could not figure out how to use the criterion of AI(b), but we could
manage by using the following lemma apparently due to Nagata, from Matsumura (Commu-
tative Ring Theory, Chapter 7, Section 20, Theorem 20.2. (see also, Bourbaki (Commutative
Algebra, Chapter VII, Section 4, Proposition 3 (b)):

Lemma 1.3 (Nagata) Let A be a noetherian domain and let S C A be a multiplicative
subset of A with 1 € S; if S is generated by elements p € S (which means that every x # 1
in S is the product of some of these elements) so that the principal ideal, (p), is prime, and
S~1A is a UFD, then A itself is a UFD.

The proof of the above lemma uses the a characterization of noetherian UFD’s given
below and a version of Krull’s “principal ideal theorem.”

Recall the notion of height of a prime ideal in a noetherian ring. Given a prime ideal,
p C A, the height of p is the supremum of the lengths, r, of all strictly decreasing chains of
prime ideals
P=Po>p1> " >pr

Note: If A is a domain, then p, = (0).

Theorem 1.4 Let A be a noetherian domain. Then A is a UFD iff every height 1 prime is
a principal ideal.



The proof of Theorem 1.4 requires a version of Krull’s “principal ideal theorem” stating:

Theorem 1.5 (Krull) Let A be a noetherian ring. For any nonunit, x € A, every minimal
prime ideal, p, containing x has height at most 1.

Lemma 1.6 If Ais a UFD and f(X,Y) is a polynomial as in Theorem 1.1, then the image,
X, of X in B=A[X,Y]/(f(X.,Y)), is prime.

Proof. In the factor ring B/(X), we have X = 0, and so, we have the isomorphism
B/(X) = AX,Y](fo)-

However, since A is a UFD, so is A[X, Y], and since fy € A is irreducible, it is also irreducible
in A[X,Y]. As in a UFD, every irreducible element is prime, the ideal (fy) is prime, and
thus, A[X,Y](f,) is an integral domain. This shows that B/(X) is an integral domain, which
implies that (X) is a prime ideal. [

Lemma 1.7 If A is a UFD and f(X,Y) is a polynomial as in Theorem 1.1, then B =
AX,Y]/(f(X,Y)) is an integral domain.

Proof. Since A is a UFD, the ring A[X, Y] is also a UFD. Since every irreducible element in
a UFD is prime, and since the quotient of a ring by a prime ideal is an integral domain, it
is enough to prove that f(X,Y) = XY + fy + Xg(X) is irreducible in A[X,Y]. If f(X,Y)
factored in A[X,Y], it would also factor viewed as a polynomial in A[X][Y]. But over
A[X][Y], the polynomial XY + fo+ X ¢g(X) is of the form aY + b, with a,b € A[X], and such
a polynomial is clearly irreducible. Thus, f(X,Y) = XY + fo + X¢(X) is irreducible. O

Lemma 1.8 If A is a UFD and f(X,Y) is a polynomial as in Theorem 1.1, if we let S be
the multiplicative subset of B = A[X,Y]/(f(X,Y)) generated by X, then S~'B is a UFD.

Proof. Since X is invertible in S™'B and
XY + fo+ X g(X) =0,
we can express Y in terms of X, and we see that
S'B =~ (A[X))x,

the localization of A[X] at X. However, since A is a UFD, so is A[X], and the localization
of a UFD is a UFD. O

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 1.7, the ring A[X,Y]/(f(X,Y)) is an integral domain.
Since A is noetherian, by Hilbert’s basis theorem, the ring A[X, Y] is noetherian. Now, a
factor of a noetherian ring is noetherian. Therefore, B = A[X,Y]/(f(X,Y)) is a noetherian
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domain. By Lemma 1.6, the element X is prime in B. If we let S be the multiplicative subset
of B generated by X, by Lemma 1.8, S~!B is a UFD. Thus, the hypotheses of Lemma 1.3
are fulfilled, and B is a UFD. O

BIV (a). Let A be any commutative ring (with unity), and let

f(X)=acX"+a; X" 1+ +a,, and g(X) = 0o X" +b; X" '+ -+, be two polynomials
in A[X]. We wish to prove that if g(X) # 0 and g(X)f(X) = 0, then there is some o € A
with a # 0, so that af(X) = 0.

This is trivial if n = deg(g) = 0; just let &« = g. Now, assume n > 1. There must be some
polynomial g(X) # 0 of minimal degree, so that g(X)f(X) = 0; let g(X) be such a minimal
polynomial, and so, we may assume that by # 0. The term of highest degree in g(X)f(X) is
aghp X" and since n > 1 and f(X)g(X) = 0, we have

aobo = 0.

We claim that
apg(X) = 0.

Indeed, if apg(X) # 0, since apby = 0, we have deg(apg(X)) < deg(g(X)), and yet,
(apg(X))f(X) = apg(X) f(X) = 0, contradicting the minimality of g(X). Now, we prove by
induction on ¢ that

a;g(X) =0, fori=0,...,m.

The base case, i = 0, has already been established. Assume that a;g(X) =0, for j =0,...,1,
with 0 < ¢ < m — 1. Consider f(X) — (agX™ + a; X™ ! + -+ + a;X™ ). The hypothesis
g(X)f(X) = 0 and the induction hypothesis implies that

9(X)(f(X) = (aX™ +a; X"+ 0, X)) = 0.

Now, the term of highest degree in the above product is a;;1boX™ =1 and since i < m—1
and n > 1, we have a;11byp = 0. Then, the same reasoning as above shows that a;,;19(X) =0
(otherwise, a;119(X) would be a polynomial of strictly smaller degree that g(X) so that
g(X)f(X) =0). This concludes the induction step, and therefore,

a;g(X)=0, fori=0,...,m.
As a consequence, bya; = 0, for © = 0,...,m. Since by # 0, letting o = by, we have found
a#0in A so that af(X) =0

(b) Assume that K is a field (actually, it is enough for our proof to assume that K is an
integral domain), and consider A = K[X;;, 1 <4,j < n| and the n x n matrix M = (X};).
We want to prove that D = det(M) is an irreducible polynomial of A. We proceed by
induction on n. The base case n = 1 is trivial, since Xj; is irreducible in A = K[Xy,]. If
n > 2, we can expand the determinant, D, with respect to its first row, and we have

D:XllDl+"'+X1ka+"'+X1nDn,
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where Dy, the cofactor of Xy, is an (n — 1) X (n — 1) determinant, a polynomial in

K[X;;, 2 < i,j < n,j # k]. Thus, we can view D as a polynomial in the variables
Xi1, ..., Xin, with coefficients in the ring B = K[X;;, 2 < ¢ < n,1 < j < n], which is
an integral domain, since K is. If D can be factored as D = PQ), then, over the ring, B, we
can write

P=FP+PFP and Q=Qy+ @1,

where Py, Qo € B, and P;,Q; € B[Xi1,...,X1,) are polynomials consisting only of mono-
mials ¢X¥ ... X with ky +--- 4+ k, > 1. Since each cofactor Dy, is an (n — 1) x (n — 1)

1n>
determinant over {X;;, 2 < 4,5 < n,j # k}, by the induction hypothesis, each Dy is
irreducible in K[X;;, 2 <1i,j <n, j # k|, and a fortiori, in B. Now, since D = PQ), i.e.,

XiuDi+ -+ XDy = (P + P1)(Qo + Q1) = PoQo + FoQ1 + PiQo + P14

and B is an integral domain, the assumptions on Py, P;, Qo, )1 imply that either P, = 0
and Qg = 0 or Q1 = 0 and Fy = 0. Assume that P, = 0 and @y = 0, the other case being
similar. From

XDy + -+ XDy = By

and the fact that Dy,..., D,, Py € B, we must have
Qr=XuRi+- -+ X1, Ry,

where R; € B, for ¢« = 1,...,n; thus Dy = FPyRy for k = 1,...,n, and since each Dy is
irreducible in B, we see that Fy belongs to K, which shows that D is irreducible.

BV. Let A be a commutative noetherian ring and let B be a finitely generated A-algebra. If
G C Autgpa(B) is a finite subgroup of automorphisms of B, we write

BY ={bec B|a(b)=b, for all ¢ € G}.
It is trivial that B¢ is an A-algebra. First, we prove the following lemma:
Lemma 1.9 The A-algebra, B, is integral over BC.

Proof. Pick any b € B. We need to show that b is a zero of some monic polynomial with
coefficients in BY. Since G is finite, the orbit of b is finite, say {b;,...,by,}. Obviously, b
is a zero of the monic polynomial Py(X) = [[~,(X — b;). We just have to show that the

coefficients of P,(X) are in BY. But the coefficient of X™ % in P,(X) is (—1)*o}, where oy,
is the kth elementary symmetric function,

o = Z Hb’"

IC{1,..,m} i€l
[I|=k

Since every ¢ € GG induces a permutation on {by,...,b,} and oy is invariant under permu-
tations, the coefficients of P,(X) are invariant under G, and so, they belong to B¢.

We will need the following fact:



Lemma 1.10 If B is an A-algebra and by,...,b, € B are integral over A, then the A-
subalgebra, Alby, ... b,], of B generated by by, ..., by,, is a finitely generated A-module.

Proof. We proceed by induction on n. Let ¢: A — B be the ring homomorphism that makes
B into an A-algebra. For n = 1, since b, is integral over A, this means that there is some
monic polynomial P(X) = X"+ a; X™ '+ - 4+ a, 1 X + a,, in A[X], so that

b + (a4 - p(am_1)b1 + @(an,) = 0.

(From now on, we will omit the homomorphism ¢, for simplicity of notation). As a conse-
quence, we see that 1,1, 0%, ..., b7 ! generate A[b)], as A-module. Now, assume by induction
that C' = Alby,...,b,_1] is a finitely generated A-module. Since b, is integral over A, it is
integral over C, and so, by the above argument, B = C|[b,] is a finitely generated C-module.
Thus, B is a finitely generated C-module and C' is a finitely generated A-module. However,
this immediately implies that B is a finitely generated A-module. O

Next, we prove

Lemma 1.11 If A is a (commutative) noetherian ring, B is a finitely generated A-algebra,
and C' is an A-subalgebra of B so that B in integral over C, then C' is finitely generated as
A-algebra.

Proof. Let by,...,b, be a set of generators for B. Since B is integral over C, for every
b;, there is some monic polynomial, P;(X) € C[X], so that P(b;) = 0. Let C" be the
A-subalgebra of C' generated by the coefficients of Pi(X),..., P,(X). Obviously, C is a
(’-module, and each b; is integral over C’ (since C” contains the coefficients of P;(X) and
P;(b;) = 0). Moreover, the A-algebra, C'[by,...,b,|, generated by C’ and the b;’s, is just
B, because B is already finitely generated over A (which means that every b € B is of the
form Q(by,...,b,), where Q(Xq,...,X,) is some polynomial in A[Xy,...,X,].) Now, since
B = C'[by,...,b,], we see that B is a C’-algebra, and by Lemma 1.10, the C’-algebra, B,
is a finitely generated C’-module. Also, since A is noetherian and C” is a finitely generated
A-algebra, by a corollary of the Hilbert basis theorem proved in class, C’ is a noetherian
ring. By another proposition proved in class, since B is a finitely generated C’-module and
C" is noetherian, B is a noetherian C’-module. However, it has also been proved in class
that the noetherian property is inherited by submodules; so, we see that C' C B is a finitely
generated C’-submodule. As C’ is a finitely generated A-algebra, this implies that C is a
finitely generated A-algebra. [J

Applying Lemma 1.9 and Lemma 1.11 to C = B%, we conclude that B® is a finitely
generated A-algebra.



