
Homework IV (due November 18), Math 602, Fall 2002. (GJSZ)

B I(a). Let P (X1, . . . , Xn) = X2
1 + · · · + X2

n. First, we prove that P (X1, . . . , Xn) ∈
C[X1, . . . , Xn] is irreducible for all n ≥ 3. The intuition is geometric: The hypersurface
defined by P (X1, . . . , Xn) = 0 is nonsingular, except at the origin, which means that the
normal vector N = (PX1 , . . . , PXn) is nonzero except at the origin, where PXi

denotes the
partial derivative ∂P/∂Xi. Indeed, we have N = (2X1, . . . , 2Xn).

If P factors, it can be written as the product P = l1l2 of two linear forms, l1, l2. But, we
have

NXi
= (l1l2)Xi

= (l1)X1l2 + l1(l2)Xi
.

Furthermore, the equations l1 = 0 and l2 = 0 define two hyperplanes through the origin;
if ≥ 3, the intersection of these hyperplanes has dimension at least n − 2, and so, for all
i = 1, . . . , n, we would have NXi

= (l1l2)Xi
= 0 on a subspace of dimension at least n−2 ≥ 1,

contradicting the fact that N is zero only at the origin. Therefore, P is irreducible.

We can now apply theorem 1.1 from B I(f), and this shows that
C[X1, . . . , Xn]/(X2

1 + · · ·+ X2
n) is a UFD whenever n ≥ 5.

B I(b) Let Q(X1, . . . , Xn) = X3
1 + · · ·+ X3

n. As in B I(a) we prove that Q(X1, . . . , Xn) ∈
C[X1, . . . , Xn] is irreducible for all n ≥ 3. Again, the hypersurface, Q(X1, . . . , Xn) = 0, is
nonsingular, except at the origin, which means that the normal vector N = (QX1 , . . . , QXn)
is nonzero, except at the origin, where QXi

denotes the partial derivative ∂Q/∂Xi. Indeed,
we have N = (3X2

1 , . . . , 3X
2
n).

If Q factors, then Q = LR, where L is a linear form and R is (homogeneous) of degree 2.
We claim that the intersection of the hyperplane, L = 0, with the quadric, R = 0, in Cn, is
infinite, provided that n ≥ 3. (Actually, this is also true for any hypersurface R = 0 in Cn).

A hyperplane, H, in Cn is determined by n affinely independent points, p1, . . . , pn, and
any point, X = (X1, . . . , Xn) in H can be written as an affine combination,

X = λ1p
1 + · · ·+ λnp

n, where λ1 + · · ·+ λn = 1.

If we write pi = (p1
1, . . . , p

i
n), we see that

Xi = λ1p
1
i + · · ·+ λnp

n
i ,

for i = 1, . . . , n. We find the intersection of L = 0 and R = 0 by plugging the Xi’s in R, and
we find a polynomial of degree 2 in λ1, . . . , λn. Further, we can eliminate λn, and we find a
polynomial, T , of degree 2, in λ1, . . . , λn−1. Since n ≥ 3, we have n− 1 ≥ 2. If any of the λi

is missing from T , then T = 0 has infinitely many solutions over Cn−1. If not, give arbitrary
values to λ2, . . . , λn−1, which is possible, since n − 1 ≥ 2. The resulting polynomial T (λ1)
is a polynomial of degree 2, and over C, its has some zero. Therefore, T = 0 has infinitely
many solutions.
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As in B I(a), we have
NXi

= (LR)Xi
= LX1R + LRXi

,

and by the above fact, for all i = 1, . . . , n, we would have NXi
= (LR)Xi

= 0 on an infinite
set, a contradiction. Therefore, Q is irreducible.

Again, we apply theorem 1.1 from B I(f), and this shows that
C[X1, . . . , Xn]/(X2

1 + X2
2 + X3

3 + · · ·+ X3
n) is a UFD whenever n ≥ 5.

B I(c). We have X2
1 + X2

2 = (X1 + iX2)(X1 − iX2). Thus, B = C[X1, X2]/(X
2
1 + X2

2 ) is
not a domain, since (X1 + iX2)(X1 − iX2) = 0 in B.

Since X2
1 + X2

2 + X2
3 = (X1 + iX2)(X1 − iX2)− (iX3)

2, the ring
B = C[X1, X2, X3]/(X

2
1 + X2

2 + X2
3 ) is not a UFD, since

(X1 + iX2)(X1 − iX2) = (iX3)
2

in B (but it is a domain).

Since X2
1 + X2

2 + X2
3 = (X1 + iX2)(X1 − iX2)− (iX3 + X4)(iX3 −X4), the ring

B = C[X1, X2, X3, X4]/(X
2
1 + X2

2 + X2
3 + X2

4 ) is not a UFD, since

(X1 + iX2)(X1 − iX2) = (iX3 + X4)(iX3 −X4)

in B (but it is a domain).

We have X3
1 + X3

2 = (X1 + X2)(X
2
1 −X1X2 + X2). Thus,

B = C[X1, X2]/(X
3
1 + X3

2 ) is not a domain, since

(X1 + X2)(X
2
1 −X1X2 + X2) = 0

in B.

Since X3
1 + X3

2 + X3
3 = (X1 + X2)(X

2
1 −X1X2 + X2)− (−X3)

3, the ring
B = C[X1, X2, X3]/(X

3
1 + X3

2 + X3
3 ) is not a UFD, since

(X1 + X2)(X
2
1 −X1X2 + X2) = (−X3)

3

in B (but it is a domain).
Since X3

1 +X3
2 +X3

3 +X3
4 = (X1 +X2)(X

2
1 −X1X2 +X2)− (−X1−X2)(X

2
1 −X1X2 +X2)

the ring
B = C[X1, X2, X3, X4]/(X

3
1 + X3

2 + X3
3 + X3

4 ) is not a UFD, since

(X1 + X2)(X
2
1 −X1X2 + X2) = (−X1 −X2)(X

2
1 −X1X2 + X2)

in B (but it is a domain).

B I(d).

B I(e). We will prove the following main theorem:
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Theorem 1.1 If A is a noetherian UFD, for any irreducible f0 ∈ A and any polynomial
g(X) ∈ A[X], if we let f(X, Y ) = XY + f0 + Xg(X), then B = A[X, Y ]/(f(X,Y )) is a
UFD.

We can apply Theorem 1.1 to B I(a) and B I (b) using the following simple fact:

Lemma 1.2 For any polynomial h(X3, . . . , Xn) ∈ C[X3, . . . , Xn], we have the isomorphism

C[X1, X2, X3, . . . , Xn]/(X2
1 + X2

2 + h) ∼= C[U, V,X3, . . . , Xn]/(UV + h).

Proof . We have X2
1 + X2

2 = (X1 + iX2)(X1 − iX2). Use the isomorphisms induced by
U 7→ (X1 + iX2), V 7→ (X1 − iX2), and X1 7→ (U + V )/2, X2 7→ (U − V )/2i.

We can apply Theorem 1.1 to B I(a) by letting:
A = C[X3, . . . , Xn], g(X) = 0, and f0 = (X2

3 + · · ·+ X2
n), for n ≥ 5, because in this case, f0

is irreducible.

We can apply Theorem 1.1 to B I(b) by letting:
A = C[X3, . . . , Xn], g(X) = 0, and f0 = (X3

3 + · · ·+ X3
n), for n ≥ 5, because in this case, f0

is also irreducible.

The proof of Theorem 1.1 proceeds in several steps. We denote the image of a polynomial
f(X, Y ) ∈ A[X, Y ] by f .

Unfortunately, we could not figure out how to use the criterion of AI(b), but we could
manage by using the following lemma apparently due to Nagata, from Matsumura (Commu-
tative Ring Theory , Chapter 7, Section 20, Theorem 20.2. (see also, Bourbaki (Commutative
Algebra, Chapter VII, Section 4, Proposition 3 (b)):

Lemma 1.3 (Nagata) Let A be a noetherian domain and let S ⊆ A be a multiplicative
subset of A with 1 ∈ S; if S is generated by elements p ∈ S (which means that every x 6= 1
in S is the product of some of these elements) so that the principal ideal, (p), is prime, and
S−1A is a UFD, then A itself is a UFD.

The proof of the above lemma uses the a characterization of noetherian UFD’s given
below and a version of Krull’s “principal ideal theorem.”

Recall the notion of height of a prime ideal in a noetherian ring. Given a prime ideal,
p ⊆ A, the height of p is the supremum of the lengths, r, of all strictly decreasing chains of
prime ideals

p = p0 > p1 > · · · > pr.

Note: If A is a domain, then pr = (0).

Theorem 1.4 Let A be a noetherian domain. Then A is a UFD iff every height 1 prime is
a principal ideal.
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The proof of Theorem 1.4 requires a version of Krull’s “principal ideal theorem” stating:

Theorem 1.5 (Krull) Let A be a noetherian ring. For any nonunit, x ∈ A, every minimal
prime ideal, p, containing x has height at most 1.

Lemma 1.6 If A is a UFD and f(X,Y ) is a polynomial as in Theorem 1.1, then the image,
X, of X in B = A[X, Y ]/(f(X, Y )), is prime.

Proof . In the factor ring B/(X), we have X = 0, and so, we have the isomorphism

B/(X) ∼= A[X, Y ](f0).

However, since A is a UFD, so is A[X, Y ], and since f0 ∈ A is irreducible, it is also irreducible
in A[X, Y ]. As in a UFD, every irreducible element is prime, the ideal (f0) is prime, and
thus, A[X, Y ](f0) is an integral domain. This shows that B/(X) is an integral domain, which
implies that (X) is a prime ideal.

Lemma 1.7 If A is a UFD and f(X, Y ) is a polynomial as in Theorem 1.1, then B =
A[X, Y ]/(f(X, Y )) is an integral domain.

Proof . Since A is a UFD, the ring A[X, Y ] is also a UFD. Since every irreducible element in
a UFD is prime, and since the quotient of a ring by a prime ideal is an integral domain, it
is enough to prove that f(X, Y ) = XY + f0 + Xg(X) is irreducible in A[X, Y ]. If f(X,Y )
factored in A[X, Y ], it would also factor viewed as a polynomial in A[X][Y ]. But over
A[X][Y ], the polynomial XY +f0 +Xg(X) is of the form aY + b, with a, b ∈ A[X], and such
a polynomial is clearly irreducible. Thus, f(X,Y ) = XY + f0 + Xg(X) is irreducible.

Lemma 1.8 If A is a UFD and f(X, Y ) is a polynomial as in Theorem 1.1, if we let S be
the multiplicative subset of B = A[X, Y ]/(f(X, Y )) generated by X, then S−1B is a UFD.

Proof . Since X is invertible in S−1B and

X Y + f0 + X g(X) = 0,

we can express Y in terms of X, and we see that

S−1B ∼= (A[X])X ,

the localization of A[X] at X. However, since A is a UFD, so is A[X], and the localization
of a UFD is a UFD.

Finally, we prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 1.7, the ring A[X, Y ]/(f(X, Y )) is an integral domain.
Since A is noetherian, by Hilbert’s basis theorem, the ring A[X, Y ] is noetherian. Now, a
factor of a noetherian ring is noetherian. Therefore, B = A[X,Y ]/(f(X, Y )) is a noetherian
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domain. By Lemma 1.6, the element X is prime in B. If we let S be the multiplicative subset
of B generated by X, by Lemma 1.8, S−1B is a UFD. Thus, the hypotheses of Lemma 1.3
are fulfilled, and B is a UFD.

BIV (a). Let A be any commutative ring (with unity), and let
f(X) = a0X

m +a1X
m−1 + · · ·+am and g(X) = b0X

n +b1X
n−1 + · · ·+bn be two polynomials

in A[X]. We wish to prove that if g(X) 6= 0 and g(X)f(X) = 0, then there is some α ∈ A
with α 6= 0, so that αf(X) = 0.

This is trivial if n = deg(g) = 0; just let α = g. Now, assume n ≥ 1. There must be some
polynomial g(X) 6= 0 of minimal degree, so that g(X)f(X) = 0; let g(X) be such a minimal
polynomial, and so, we may assume that b0 6= 0. The term of highest degree in g(X)f(X) is
a0b0X

m+n, and since n ≥ 1 and f(X)g(X) = 0, we have

a0b0 = 0.

We claim that
a0g(X) = 0.

Indeed, if a0g(X) 6= 0, since a0b0 = 0, we have deg(a0g(X)) < deg(g(X)), and yet,
(a0g(X))f(X) = a0g(X)f(X) = 0, contradicting the minimality of g(X). Now, we prove by
induction on i that

aig(X) = 0, for i = 0, . . . ,m.

The base case, i = 0, has already been established. Assume that ajg(X) = 0, for j = 0, . . . , i,
with 0 ≤ i ≤ m − 1. Consider f(X) − (a0X

m + a1X
m−1 + · · · + aiX

m−i). The hypothesis
g(X)f(X) = 0 and the induction hypothesis implies that

g(X)(f(X)− (a0X
m + a1X

m−1 + · · ·+ aiX
m−i)) = 0.

Now, the term of highest degree in the above product is ai+1b0X
m+n−i−1, and since i ≤ m−1

and n ≥ 1, we have ai+1b0 = 0. Then, the same reasoning as above shows that ai+1g(X) = 0
(otherwise, ai+1g(X) would be a polynomial of strictly smaller degree that g(X) so that
g(X)f(X) = 0). This concludes the induction step, and therefore,

aig(X) = 0, for i = 0, . . . ,m.

As a consequence, b0ai = 0, for i = 0, . . . ,m. Since b0 6= 0, letting α = b0, we have found
α 6= 0 in A so that αf(X) = 0

(b) Assume that K is a field (actually, it is enough for our proof to assume that K is an
integral domain), and consider A = K[Xij, 1 ≤ i, j ≤ n] and the n × n matrix M = (Xij).
We want to prove that D = det(M) is an irreducible polynomial of A. We proceed by
induction on n. The base case n = 1 is trivial, since X1,1 is irreducible in A = K[X11]. If
n ≥ 2, we can expand the determinant, D, with respect to its first row, and we have

D = X11D1 + · · ·+ X1kDk + · · ·+ X1nDn,
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where Dk, the cofactor of X1k, is an (n− 1)× (n− 1) determinant, a polynomial in
K[Xij, 2 ≤ i, j ≤ n, j 6= k]. Thus, we can view D as a polynomial in the variables
X11, . . . , X1n, with coefficients in the ring B = K[Xij, 2 ≤ i ≤ n, 1 ≤ j ≤ n], which is
an integral domain, since K is. If D can be factored as D = PQ, then, over the ring, B, we
can write

P = P0 + P1 and Q = Q0 + Q1,

where P0, Q0 ∈ B, and P1, Q1 ∈ B[X11, . . . , X1,n] are polynomials consisting only of mono-
mials cXk1

11 · · ·Xkn
1n , with k1 + · · · + kn ≥ 1. Since each cofactor Dk is an (n − 1) × (n − 1)

determinant over {Xij, 2 ≤ i, j ≤ n, j 6= k}, by the induction hypothesis, each Dk is
irreducible in K[Xij, 2 ≤ i, j ≤ n, j 6= k], and a fortiori, in B. Now, since D = PQ, i.e.,

X11D1 + · · ·+ X1nDn = (P0 + P1)(Q0 + Q1) = P0Q0 + P0Q1 + P1Q0 + P1Q1

and B is an integral domain, the assumptions on P0, P1, Q0, Q1 imply that either P1 = 0
and Q0 = 0 or Q1 = 0 and P0 = 0. Assume that P1 = 0 and Q0 = 0, the other case being
similar. From

X11D1 + · · ·+ X1nDn = P0Q1

and the fact that D1, . . . , Dn, P0 ∈ B, we must have

Q1 = X11R1 + · · ·+ X1nRn,

where Ri ∈ B, for i = 1, . . . , n; thus Dk = P0Rk for k = 1, . . . , n, and since each Dk is
irreducible in B, we see that P0 belongs to K, which shows that D is irreducible.

BV. Let A be a commutative noetherian ring and let B be a finitely generated A-algebra. If
G ⊆ AutCRA(B) is a finite subgroup of automorphisms of B, we write

BG = {b ∈ B | σ(b) = b, for all σ ∈ G}.

It is trivial that BG is an A-algebra. First, we prove the following lemma:

Lemma 1.9 The A-algebra, B, is integral over BG.

Proof . Pick any b ∈ B. We need to show that b is a zero of some monic polynomial with
coefficients in BG. Since G is finite, the orbit of b is finite, say {b1, . . . , bm}. Obviously, b
is a zero of the monic polynomial Pb(X) =

∏m
i=1(X − bi). We just have to show that the

coefficients of Pb(X) are in BG. But the coefficient of Xm−k in Pb(X) is (−1)kσk, where σk

is the kth elementary symmetric function,

σk =
∑

I⊆{1,...,m}
|I|=k

∏
i∈I

bi.

Since every σ ∈ G induces a permutation on {b1, . . . , bm} and σk is invariant under permu-
tations, the coefficients of Pb(X) are invariant under G, and so, they belong to BG.

We will need the following fact:
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Lemma 1.10 If B is an A-algebra and b1, . . . , bn ∈ B are integral over A, then the A-
subalgebra, A[b1, . . . , bn], of B generated by b1, . . . , bn, is a finitely generated A-module.

Proof . We proceed by induction on n. Let ϕ: A → B be the ring homomorphism that makes
B into an A-algebra. For n = 1, since b1 is integral over A, this means that there is some
monic polynomial P (X) = Xm + a1X

m−1 + · · ·+ am−1X + am in A[X], so that

bm
1 + ϕ(a1)b

m−1
1 + · · ·+ ϕ(am−1)b1 + ϕ(am) = 0.

(From now on, we will omit the homomorphism ϕ, for simplicity of notation). As a conse-
quence, we see that 1, b1, b

2
1, . . . , b

m−1
1 generate A[b1], as A-module. Now, assume by induction

that C = A[b1, . . . , bn−1] is a finitely generated A-module. Since bn is integral over A, it is
integral over C, and so, by the above argument, B = C[bn] is a finitely generated C-module.
Thus, B is a finitely generated C-module and C is a finitely generated A-module. However,
this immediately implies that B is a finitely generated A-module.

Next, we prove

Lemma 1.11 If A is a (commutative) noetherian ring, B is a finitely generated A-algebra,
and C is an A-subalgebra of B so that B in integral over C, then C is finitely generated as
A-algebra.

Proof . Let b1, . . . , bn be a set of generators for B. Since B is integral over C, for every
bi, there is some monic polynomial, Pi(X) ∈ C[X], so that Pi(bi) = 0. Let C ′ be the
A-subalgebra of C generated by the coefficients of P1(X), . . . , Pn(X). Obviously, C is a
C ′-module, and each bi is integral over C ′ (since C ′ contains the coefficients of Pi(X) and
Pi(bi) = 0). Moreover, the A-algebra, C ′[b1, . . . , bn], generated by C ′ and the bi’s, is just
B, because B is already finitely generated over A (which means that every b ∈ B is of the
form Q(b1, . . . , bn), where Q(X1, . . . , Xn) is some polynomial in A[X1, . . . , Xn].) Now, since
B = C ′[b1, . . . , bn], we see that B is a C ′-algebra, and by Lemma 1.10, the C ′-algebra, B,
is a finitely generated C ′-module. Also, since A is noetherian and C ′ is a finitely generated
A-algebra, by a corollary of the Hilbert basis theorem proved in class, C ′ is a noetherian
ring. By another proposition proved in class, since B is a finitely generated C ′-module and
C ′ is noetherian, B is a noetherian C ′-module. However, it has also been proved in class
that the noetherian property is inherited by submodules; so, we see that C ⊆ B is a finitely
generated C ′-submodule. As C ′ is a finitely generated A-algebra, this implies that C is a
finitely generated A-algebra.

Applying Lemma 1.9 and Lemma 1.11 to C = BG, we conclude that BG is a finitely
generated A-algebra.
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