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Problem B1 (180). The “right way” (meaning convenient and rigorous) to define the unit
quaternions is to define them as the elements of the unitary group SU(2), namely the group
of 2× 2 complex matrices of the form(

α β

−β α

)
α, β ∈ C, αα + ββ = 1.

Then, the quaternions are the elements of the real vector space H = RSU(2). Let 1, i, j,k
be the matrices

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
,

then H is the set of all matrices of the form

X = a1 + bi + cj + dk, a, b, c, d ∈ R.

Indeed, every matrix in H is of the form

X =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R.

(1) Prove that the quaternions 1, i, j,k satisfy the famous identities discovered by Hamil-
ton:

i2 = j2 = k2 = ijk = −1,
ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

Prove that H is a skew field (a noncommutative field) called the quaternions , and a real
vector space of dimension 4 with basis (1, i, j,k); thus as a vector space, H is isomorphic to
R4.
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A concise notation for the quaternion X defined by α = a+ ib and β = c+ id is

X = [a, (b, c, d)].

We call a the scalar part of X and (b, c, d) the vector part of X. With this notation,
X∗ = [a,−(b, c, d)], which is often denoted by X. The quaternion X is called the conjugate
of q. If q is a unit quaternion, then q is the multiplicative inverse of q. A pure quaternion is
a quaternion whose scalar part is equal to zero.

(2) Given a unit quaternion

q =

(
α β

−β α

)
∈ SU(2),

the usual way to define the rotation ρq (of R3) induced by q is to embed R3 into H as the
pure quaternions, by

ψ(x, y, z) =

(
ix y + iz

−y + iz −ix

)
, (x, y, z) ∈ R3.

Observe that the above matrix is skew-Hermitian (ψ(x, y, z)∗ = −ψ(x, y, z)). But, the space
of skew-Hermitian matrices is the Lie algebra su(2) of SU(2), so ψ(x, y, z) ∈ su(2). Then, q
defines the map ρq (on R3) given by

ρq(x, y, z) = ψ−1(qψ(x, y, z)q∗),

where q∗ is the inverse of q (since SU(2) is a unitary group) and is given by

q∗ =

(
α −β
β α

)
.

Actually, the adjoint representation of the group SU(2) is the group homomorphism
Ad: SU(2)→ GL(su(2)) defined such that for every q ∈ SU(2),

Adq(A) = qAq∗, A ∈ su(2).

Therefore, modulo the isomorphism ψ, the linear map ρq is the linear isomorphism Adq. In
fact, ρq is a rotation (and so is Adq), which you will prove shortly.

Since the matrix ψ(x, y, z) is skew-Hermitian, the matrix −iψ(x, y, z) is Hermitian, and
we have

−iψ(x, y, z) =

(
x z − iy

z + iy −x

)
= xσ3 + yσ2 + zσ1,

where σ1, σ2, σ3 are the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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Check that i = iσ3, j = iσ2, k = iσ1. Prove that matrices of the form xσ3 + yσ2 + zσ1
(with x, y, x ∈ R) are exactly the 2× 2 Hermitian matrix with zero trace.

(3) Prove that for every q ∈ SU(2), if A is any 2 × 2 Hermitian matrix with zero trace
as above, then qAq∗ is also a Hermitian matrix with zero trace.

Prove that
det(xσ3 + yσ2 + zσ1) = det(qAq∗) = −(x2 + y2 + z2).

We can embed R3 into the space of Hermitian matrices with zero trace by

ϕ(x, y, z) = xσ3 + yσ2 + zσ1.

Check that
ϕ = −iψ

and
ϕ−1 = iψ−1.

Prove that every quaternion q induces a map rq on R3 by

rq(x, y, z) = ϕ−1(qϕ(x, y, z)q∗) = ϕ−1(q(xσ3 + yσ2 + zσ1)q
∗)

which is clearly linear, and an isometry. Thus, rq ∈ O(3).

(4) Find the fixed points of rq, where q = (a, (b, c, d)). If (b, c, d) 6= (0, 0, 0), then show
that the fixed points (x, y, z) of rq are solutions of the equations

−dy + cz = 0

cx− by = 0

dx− bz = 0.

This linear system has the nontrivial solution (b, c, d) and the matrix of this system is0 −d c
c −b 0
d 0 −b

 .

Prove that the above matrix has rank 2, so the fixed points of rq form the one-dimensional
space spanned by (b, c, d). Deduce from this that rq must be a rotation.

Prove that r : SU(2)→ SO(3) given by r(q) = rq is a group homomorphism whose kernel
is {I,−I}.

(5) Find the matrix Rq representing rq explicitly by computing

q(xσ3 + yσ2 + zσ1)q
∗ =

(
α β

−β α

)(
x z − iy

z + iy −x

)(
α −β
β α

)
.
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You should find

Rq =

a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
2bc+ 2ad a2 − b2 + c2 − d2 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2

 .

Since a2 + b2 + c2 + d2 = 1, this matrix can also be written as

Rq =

2a2 + 2b2 − 1 2bc− 2ad 2ac+ 2bd
2bc+ 2ad 2a2 + 2c2 − 1 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd 2a2 + 2d2 − 1

 .

Prove that rq = ρq.

(6) To prove the surjectivity of r algorithmically, proceed as follows.

First, prove that tr(Rq) = 4a2 − 1, so

a2 =
tr(Rq) + 1

4
.

If R ∈ SO(3) is any rotation matrix and if we write

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33,


we are looking for a unit quaternion q ∈ SU(2) such that rq = R. Therefore, we must have

a2 =
tr(R) + 1

4
.

We also know that
tr(R) = 1 + 2 cos θ,

where θ ∈ [0, π] is the angle of the rotation R. Deduce that

|a| = cos

(
θ

2

)
(0 ≤ θ ≤ π).

There are two cases.

Case 1 . tr(R) 6= −1, or equivalently θ 6= π. In this case a 6= 0. Pick

a =

√
tr(R) + 1

2
.

Then, show that

b =
r32 − r23

4a
, c =

r13 − r31
4a

, d =
r21 − r12

4a
.
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Case 2 . tr(R) = −1, or equivalently θ = π. In this case a = 0. Prove that

4bc = r21 + r12

4bd = r13 + r31

4cd = r32 + r23

and

b2 =
1 + r11

2

c2 =
1 + r22

2

d2 =
1 + r33

2
.

Since q 6= 0 and a = 0, at least one of b, c, d is nonzero.

If b 6= 0, let

b =

√
1 + r11√

2
,

and determine c, d using

4bc = r21 + r12

4bd = r13 + r31.

If c 6= 0, let

c =

√
1 + r22√

2
,

and determine b, d using

4bc = r21 + r12

4cd = r32 + r23.

If d 6= 0, let

d =

√
1 + r33√

2
,

and determine b, c using

4bd = r13 + r31

4cd = r32 + r23.

(7) Given any matrix A ∈ su(2), with

A =

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
,
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write θ =
√
u21 + u22 + u23 and prove that

eA = cos θI +
sin θ

θ
A, θ 6= 0,

with e0 = I. Therefore, eA is a unit quaternion representing the rotation of angle 2θ and
axis (u1, u2, u3) (or I when θ = kπ, k ∈ Z). The above formula shows that we may assume
that 0 ≤ θ ≤ π.

An equivalent but often more convenient formula is obtained by assuming that u =
(u1, u2, u3) is a unit vector, equivalently det(A) = −1, in which case A2 = −I, so we have

eθA = cos θI + sin θA.

Using the quaternion notation, this read as

eθA = [cos θ, sin θ u].

Prove that the logarithm A ∈ su(2) of a unit quaternion

q =

(
α β

−β α

)
with α = a+ bi and β = c+ id can be determined as follows:

If q = I (i.e. a = 1) then A = 0. If q = −I (i.e. a = −1), then

A = ±π
(
i 0
0 −i

)
.

Otherwise, a 6= ±1 and (b, c, d) 6= (0, 0, 0), and we are seeking some A = θB ∈ su(2) with
det(B) = 1 and 0 < θ < π, such that

q = eθB = cos θI + sin θB.

Then,

cos θ = a (0 < θ < π)

(u1, u2, u3) =
1

sin θ
(b, c, d).

Since a2+b2+c2+d2 = 1 and a = cos θ, the vector (b, c, d)/ sin θ is a unit vector. Furthermore
if the quaternion q is of the form q = [cos θ, sin θu] where u = (u1, u2, u3) is a unit vector
(with 0 < θ < π), then

A = θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
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is a logarithm of q.

Show that the exponential map exp: su(2) → SU(2) is surjective, and injective on the
open ball

{θB ∈ su(2) | det(B) = 1, 0 ≤ θ < π}.

(8) You are now going to derive a formula for interpolating between two quaternions.
This formula is due to Ken Shoemake, once a Penn student and my TA! Since rotations in
SO(3) can be defined by quaternions, this has applications to computer graphics, robotics,
and computer vision.

First, we observe that multiplication of quaternions can be expressed in terms of the
inner product and the cross-product in R3. Indeed, if q1 = [a, u1] and q2 = [a2, u2], then
check that

q1q2 = [a1, u1][a2, u2] = [a1a2 − u1 · u2, a1u2 + a2u1 + u1 × u2].

We will also need the identity

u× (u× v) = (u · v)u− (u · u)v.

Given a quaternion q expressed as q = [cos θ, sin θ u], where u is a unit vector, we can
interpolate between I and q by finding the logs of I and q, interpolating in su(2), and then
exponentiating. We have

A = log(I) =

(
0 0
0 0

)
, B = log(q) = θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
.

Since SU(2) is a compact Lie group and since the inner product on su(2) given by

〈X, Y 〉 = tr(X>Y )

is Ad(SU(2))-invariant, it induces a biinvariant Riemannian metric on SU(2), and the curve

λ 7→ eλB, λ ∈ [0, 1]

is a geodesic from I to q in SU(2). We write qλ = eλB. Given two quaternions q1 and q2,
because the metric is left invariant, the curve

λ 7→ Z(λ) = q1(q
−1
1 q2)

λ, λ ∈ [0, 1]

is a geodesic from q1 to q2. Remarkably, there is a closed-form formula for the interpolant
Z(λ). Say q1 = [cos θ, sin θ u] and q2 = [cosϕ, sinϕv], and assume that q1 6= q2 and q1 6= −q2.

Define Ω by
cos Ω = cos θ cosϕ+ sin θ sinϕ(u · v).
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Since q1 6= q2 and q1 6= −q2, we have 0 < Ω < π. Prove that

Z(λ) = q1(q
−1
1 q2)

λ =
sin(1− λ)Ω

sin Ω
q1 +

sinλΩ

sin Ω
q2.

(9) We conclude by discussing the problem of a consistent choice of sign for the quaternion
q representing a rotation R = ρq ∈ SO(3). We are looking for a “nice” section s : SO(3)→
SU(2), that is, a function s satisfying the condition

ρ ◦ s = id,

where ρ is the surjective homomorphism ρ : SU(2)→ SO(3).

I claim that any section s : SO(3)→ SU(2) of ρ is neither a homomorphism nor contin-
uous. Intuitively, this means that there is no “nice and simple ” way to pick the sign of the
quaternion representing a rotation.

To prove the above claims, let Γ be the subgroup of SU(2) consisting of all quaternions of
the form q = [a, (b, 0, 0)]. Then, using the formula for the rotation matrix Rq corresponding
to q (and the fact that a2 + b2 = 1), show that

Rq =

1 0 0
0 2a2 − 1 −2ab
0 2ab 2a2 − 1

 .

Since a2 + b2 = 1, we may write a = cos θ, b = sin θ, and we see that

Rq =

1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ

 ,

a rotation of angle 2θ around the x-axis. Thus, both Γ and its image are isomorphic to
SO(2), which is also isomorphic to U(1) = {w ∈ C | |w| = 1}. By identifying i and i
and identifying Γ and its image to U(1), if we write w = cos θ + i sin θ ∈ Γ, show that the
restriction of the map ρ to Γ is given by ρ(w) = w2.

Prove that any section s of ρ is not a homomorphism. (Consider the restriction of s to
the image ρ(Γ)).

Prove that any section s of ρ is not continuous.

Problem B2 (120). (1) All Lie algebras in this problem are finite-dimensional. Let g be
a Lie algebra (over R or C). Given two subsets a and b of g, we let [a, b] be the subspace
of g consisting of all linear combinations of elements of the form [a, b] with a ∈ a and b ∈ b.
Check that if a and b are ideals, then [a, b] is an ideal.
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(2) The lower central series (Ckg) of g is defined as follows:

C0g = g

Ck+1g = [g, Ckg], k ≥ 0.

We have a decreasing sequence

g = C0g ⊇ C1g ⊇ C2g ⊇ · · · .

We say that g is nilpotent iff Ckg = (0) for some k ≥ 1.

Prove that the following statements are equivalent:

1. The algebra g is nilpotent.

2. There is some n ≥ 1 such that

[x1, [x2, [x3, · · · , [xn, xn+1] · · · ]]] = 0

for all x1, . . . , xn+1 ∈ g.

3. There is a chain of ideals

g = a0 ⊇ a1 ⊇ · · · ⊇ an = (0)

such that [g, ai] ⊆ ai+1 for i = 0, . . . , n− 1 (n ≥ 1).

(3) Given a vector space E of dimension n, a flag in E is a sequence F = (Vi) of subspaces
of E such that

(0) = V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn = E,

such that dim(Vi) = i. Define n(F ) by

n(F ) = {f ∈ End(E) | f(Vi) ⊆ Vi−1, i = 1, . . . , n}.

If we pick a basis (e1, . . . , en) of E such that ei ∈ Vi, then check that every f ∈ n(F ) is
represented by a strictly upper triangular matrix (the diagonal entries are 0).

Prove that n(F ) is a Lie subalgebra of End(E) and that it is nilpotent.

If g is a nilpotent Lie algebra, then prove that adx is nilpotent for every x ∈ g.

(4) The derived series (or commutator series) (Dkg) of g is defined as follows:

D0g = g

Dk+1g = [Dkg, Dkg], k ≥ 0.
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We have a decreasing sequence

g = D0g ⊇ D1g ⊇ D2g ⊇ · · · .

We say that g is solvable iff Dkg = (0) for some k ≥ 1.

Recall that a Lie algebra g is abelian if [X, Y ] = 0 for all X, Y ∈ g. Check that If g is
abelian, then g is solvable.

Prove that a nonzero solvable Lie algebra has a nonzero abelian ideal.

Prove that the following statements are equivalent:

1. The algebra g is solvable.

2. There is a chain of ideals

g = a0 ⊇ a1 ⊇ · · · ⊇ an = (0)

such that [ai, ai] ⊆ ai+1 for i = 0, . . . , n− 1 (n ≥ 1).

Given any flag F = (Vi) in E (where E is a vector space of dimension n), define b(F ) by

b(F ) = {f ∈ End(E) | f(Vi) ⊆ Vi, i = 0, . . . , n}.

If we pick a basis (e1, . . . , en) of E such that ei ∈ Vi, then check that every f ∈ b(F ) is
represented by an upper triangular matrix.

Prove that b(F ) is a Lie subalgebra of End(E) and that it is solvable (observe that
D1(b(F )) ⊆ n(F )).

(5) Prove that
Dkg ⊆ Ckg k ≥ 0.

Deduce that every nilpotent Lie algebra is solvable.

(6) If g is a solvable Lie algebra, then prove that every Lie subalgebra of g is solvable,
and for every ideal a of g, the quotient Lie algebra g/a is solvable.

Given a Lie algebra g, if a is a solvable ideal and if g/a is also solvable, then g is solvable.

Given any two ideals a and b of a Lie algebra g, prove that (a + b)/a and b/(a ∩ b) are
isomorphic Lie algebras.

Given any two solvable ideals a and b of a Lie algebra g, prove that a + b is solvable.
Conclude from this that there is a largest solvable ideal r in g (called the radical of g).

Problem B3 (120). Recall that a nonempty k-dimensional affine subspace A of Rn is
determined by a pair (a0, U), where a0 ∈ Rn is any point in A and U is a k-dimensional
subspace of Rn called the direction of A, with

A = a0 + U = {a0 + u | u ∈ U}.
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Two pairs (a0, U) and (b0, U) define the same affine subspace A iff b0 − a0 ∈ U (in fact,
U consists of all vectors of the form b− a, with a, b ∈ A).

The subspace U can be represented by any basis (u1, . . . , uk) of vectors ui ∈ U , and so
A is represented by the affine frame (a0, (u1, . . . , uk)).

Two affine frames (a0, (u1, . . . , uk)) and (b0, (v1, . . . , vk)) represent the same affine sub-
space A iff there is an invertible k × k matrix Λ = (λij) such that

vj =
k∑
i=1

λijui, 1 ≤ j ≤ k,

and if there is some vector c ∈ Rk such that

b0 = a0 +
k∑
i=1

ciui.

Note that (Λ, c) defines an invertible affine map of Rk.

A basis (u1, . . . , uk) of U is represented by a n× k matrix of rank k, say A, so the affine
subspace A is represented by the pair (a0, A), where a0 ∈ Rn and A is a n×k matrix of rank
k. The equivalence relation on pairs (a0, A) is given by

(a0, A) ≡ (b0, B)

iff there exists a pair (Λ, c), where Λ is an invertible k × k matrix (Λ ∈ GL(k,R)) and c is
some vector in Rk, such that

B = AΛ and b0 = a0 + Ac.

Using Gram-Schmidt, we may assume that (u1, . . . , uk) is an orthonormal basis, which
means that the columns of the matrix A are orthonormal; that is,

A>A = Ik.

Then, in the equivalence relation defined above, the matrix Λ is an orthogonal k× k matrix
(Λ ∈ O(k)).

The (real) affine Grassmannian AG(k, n) consists of all k-dimensional affine subspaces
of Rn (1 ≤ k ≤ n).

Recall that the Euclidean group E(n) consists of all invertible affine maps (Q, u), with
Q ∈ O(n) and u ∈ Rn, and that the special Euclidean group SE(n) consists of all invertible
affine maps (Q, u), with Q ∈ SO(n) and u ∈ Rn. As usual, we represent an element (Q, u)
of E(n) (or SE(n)) by the (n+ 1)× (n+ 1) matrix(

Q u
0 1

)
,
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with Rn embedded in Rn+1 by adding 1 as (n+ 1)th coordinate.

Define an action of the group SE(n) on AG(k, n) as follows: if A ∈ AG(k, n), for any
affine frame (a0, A) representing A (where A>A = Ik), for any (Q, u) ∈ SE(n), then

(Q, u) · A = (Qa0 + u,QA).

(1) Check that the above action does not depend on the affine frame (a0, A) chosen for
A.

(2) Prove the above action is transitive.

(3) Next, we determine the stabilizer of the affine subspace defined by the affine frame
(0, (e1, . . . , ek)), where e1, . . . , ek are the first k canonical basis vectors of Rn. This affine
subspace is also represented by (0, Pn,k), where Pn,k is the n×k matrix consisting of the first
k columns of the identity matrix In; namely

Pn,k =

(
Ik

0n−k,k

)
.

Prove that the stabilizer of the affine subspace defined by (0, Pn,k) is the group H =
S(E(k)×O(n− k)) given by the set of matrices

H =


Q 0 u

0 R 0
0 0 1

 ∣∣∣∣∣∣ Q ∈ O(k), R ∈ O(n− k), det(Q) det(R) = 1, u ∈ Rk

 .

(4) For any k and n such that 1 ≤ k ≤ n, let Ik,n−k be the matrix

Ik,n−k =

(
Ik 0
0 −In−k

)
.

Note that I2k,n−k = In.

Let σ : SE(n)→ SE(n) be the map given by

σ

(
Q z
0 1

)
=

(
Ik,n−k 0

0 1

)(
Q z
0 1

)(
Ik,n−k 0

0 1

)
,

(
Q z
0 1

)
∈ SE(n).

Prove that σ2 = id, and that σ is a group homomorphism (that is, σ((Q, u)(R, v)) =
σ(Q, u)σ(R, v), for all (Q, u), (R, v) ∈ SE(n)).

(5) The subgroup SE(n)σ fixed by σ is defined by

SE(n)σ = {P ∈ SE(n) | σ(P ) = P}.

12



Prove that

SE(n)σ =


Q 0 u

0 R 0
0 0 1

 ∣∣∣∣∣∣ Q ∈ O(k), R ∈ O(n− k), det(Q) det(R) = 1, u ∈ Rk

 .

(6) Let se(n) be the following vector space

se(n) =


S −A> u
A T v
0 0 0

 ∣∣∣∣∣∣ S ∈ so(k), T ∈ so(n− k), A ∈ Mn−k,k, u ∈ Rk, v ∈ Rn−k

 .

Are the matrices in se(n) skew-symmetric? If not, give a necessary and sufficient condition
for such matrices to be skew-symmetric.

Check that the map θ : se(n)→ se(n) given by

θ(X) =

(
Ik,n−k 0

0 1

)
X

(
Ik,n−k 0

0 1

)
, X ∈ se(n)

is the derivative dσI .

Prove that θ is a linear involution of se(n). Prove that the subspaces

h = {X ∈ se(n) | θ(X) = X}
m = {X ∈ se(n) | θ(X) = −X}

are given by

h =


S 0 u

0 T 0
0 0 0

 ∣∣∣∣∣∣ S ∈ so(k), T ∈ so(n− k), u ∈ Rk


and

m =


0 −A> 0
A 0 v
0 0 0

 ∣∣∣∣∣∣ A ∈ Mn−k,k, v ∈ Rn−k

 .

(7) Prove (very quickly) that
se(n) = h⊕m,

and that dim(m) = (k + 1)(n− k).

Problem B4 (60). Consider the Lie group SO(n) with the bi-invariant metric induced by
the inner product on so(n) given by

〈B1, B2〉 =
1

2
tr(B>1 B2).
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For any two matrices B1, B2 ∈ so(n), let γ be the curve given by

γ(t) = e(1−t)B1+tB2 , 0 ≤ t ≤ 1.

This is a curve “interpolating” between the two rotations R1 = eB1 and R2 = eB2 .

(1) Prove that the length L(γ) of the curve γ is given by

L(γ) =

(
−1

2
tr((B2 −B1)

2)

) 1
2

.

(2) We know that the geodesic from R1 to R2 is given by

γg(t) = R1e
tB, 0 ≤ t ≤ 1,

where B ∈ so(n) is the principal log of R>1 R2 (if we assume that R>1 R2 is not a rotation by
π, i.e, does not admit −1 as an eigenvalue).

Conduct numerical experiments to verify that in general, γ(1/2) 6= γg(1/2).

TOTAL: 480 points.
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