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Homework 4

March 31; Due April 16, 2015

Problem B1 (180). The “right way” (meaning convenient and rigorous) to define the unit
quaternions is to define them are the elements of the unitary group SU(2), namely the group
of 2× 2 complex matrices of the form(

α β

−β α

)
α, β ∈ C, αα + ββ = 1.

Then, the quaternions are the elements of the real vector space H = RSU(2). Let 1, i, j,k
be the matrices

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
,

then H is the set of all matrices of the form

X = a1 + bi + cj + dk, a, b, c, d ∈ R.

Indeed, every matrix in H is of the form

X =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R.

(1) Prove that the quaternions 1, i, j,k satisfy the famous identities discovered by Hamil-
ton:

i2 = j2 = k2 = ijk = −1,
ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

Prove that H is a skew field (a noncommutative field) called the quaternions , and a real
vector space of dimension 4 with basis (1, i, j,k); thus as a vector space, H is isomorphic to
R4.
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A concise notation for the quaternion X defined by α = a+ ib and β = c+ id is

X = [a, (b, c, d)].

We call a the scalar part of X and (b, c, d) the vector part of X. With this notation,
X∗ = [a,−(b, c, d)], which is often denoted by X. The quaternion X is called the conjugate
of q. If q is a unit quaternion, then q is the multiplicative inverse of q. A pure quaternion is
a quaternion whose scalar part is equal to zero.

(2) Given a unit quaternion

q =

(
α β

−β α

)
∈ SU(2),

the usual way to define the rotation ρq (of R3) induced by q is to embed R3 into H as the
pure quaternions, by

ψ(x, y, z) =

(
ix y + iz

−y + iz −ix

)
, (x, y, z) ∈ R3.

Observe that the above matrix is skew-Hermitian (ψ(x, y, z)∗ = −ψ(x, y, z)). But, the space
of skew-Hermitian matrices is the Lie algebra su(2) of SU(2), so ψ(x, y, z) ∈ su(2). Then, q
defines the map ρq (on R3) given by

ρq(x, y, z) = ψ−1(qψ(x, y, z)q∗),

where q∗ is the inverse of q (since SU(2) is a unitary group) and is given by

q∗ =

(
α −β
β α

)
.

Actually, the adjoint representation of the group SU(2) is the group homomorphism
Ad: SU(2)→ GL(su(2)) defined such that for every q ∈ SU(2),

Adq(A) = qAq∗, A ∈ su(2).

Therefore, modulo the isomorphism ψ, the linear map ρq is the linear isomorphism Adq. In
fact, ρq is a rotation (and so is Adq), which you will prove shortly.

Since the matrix ψ(x, y, z) is skew-Hermitian, the matrix −iψ(x, y, z) is Hermitian, and
we have

−iψ(x, y, z) =

(
x z − iy

z + iy −x

)
= xσ3 + yσ2 + zσ1,

where σ1, σ2, σ3 are the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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Check that i = iσ3, j = iσ2, k = iσ1. Prove that matrices of the form xσ3 + yσ2 + zσ1
(with x, y, x ∈ R) are exactly the 2× 2 Hermitian matrix with zero trace.

(3) Prove that for every q ∈ SU(2), the map A 7→ qAq∗ preserves the Hermitian matrices
with zero trace.

Prove that
det(xσ3 + yσ2 + zσ1) = det(qAq∗) = −(x2 + y2 + z2).

We can embed R3 into the space of Hermitian matrices with zero trace by

ϕ(x, y, z) = xσ3 + yσ2 + zσ1.

Check that
ϕ = −iψ

and
ϕ−1 = iψ−1.

Prove that every quaternion q induces a map rq on R3 by

rq(x, y, z) = ϕ−1(qϕ(x, y, z)q∗) = ϕ−1(q(xσ3 + yσ2 + zσ1)q
∗)

which is clearly linear, and an isometry. Thus, rq ∈ O(3).

(4) Find the fixed points of rq, where q = (a, (b, c, d)). If (b, c, d) 6= (0, 0, 0), then show
that the fixed points (x, y, z) of rq are solutions of the equations

−dy + cz = 0

cx− by = 0

dx− bz = 0.

This linear system has the nontrivial solution (b, c, d) and the matrix of this system is0 −d c
c −b 0
d 0 −b

 .

Prove that the above matrix has rank 2, so the fixed points of rq form the one-dimensional
space spanned by (b, c, d). Deduce from this that rq must be a rotation.

Prove that r : SU(2)→ SO(3) given by r(q) = rq is a group homomorphism whose kernel
is {I,−I}.

(5) Find the matrix Rq representing rq explicitly by computing

q(xσ3 + yσ2 + zσ1)q
∗ =

(
α β

−β α

)(
x z − iy

z + iy −x

)(
α −β
β α

)
.
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You should find

Rq =

a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
2bc+ 2ad a2 − b2 + c2 − d2 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2

 .

Since a2 + b2 + c2 + d2 = 1, this matrix can also be written as

Rq =

2a2 + 2b2 − 1 2bc− 2ad 2ac+ 2bd
2bc+ 2ad 2a2 + 2c2 − 1 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd 2a2 + 2d2 − 1

 .

Prove that rq = ρq.

(6) To prove the surjectivity of r algorithmically, proceed as follows.

First, prove that tr(Rq) = 4a2 − 1, so

a2 =
tr(Rq) + 1

4
.

If R ∈ SO(3) is any rotation matrix and if we write

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33,


we are looking for a unit quaternion q ∈ SU(2) such that rq = R. Therefore, we must have

a2 =
tr(R) + 1

4
.

We also know that
tr(R) = 1 + 2 cos θ,

where θ ∈ [0, π] is the angle of the rotation R. Deduce that

|a| = cos

(
θ

2

)
(0 ≤ θ ≤ π).

There are two cases.

Case 1 . tr(R) 6= −1, or equivalently θ 6= π. In this case a 6= 0. Pick

a =

√
tr(R) + 1

2
.

Then, show that

b =
r32 − r23

4a
, c =

r13 − r31
4a

, d =
r21 − r12

4a
.

4



Case 2 . tr(R) = −1, or equivalently θ = π. In this case a = 0. Prove that

4bc = r21 + r12

4bd = r13 + r31

4cd = r32 + r23

and

b2 =
1 + r11

2

c2 =
1 + r22

2

d2 =
1 + r33

2
.

Since q 6= 0 and a = 0, at least one of b, c, d is nonzero.

If b 6= 0, let

b =

√
1 + r11√

2
,

and determine c, d using

4bc = r21 + r12

4bd = r13 + r31.

If c 6= 0, let

c =

√
1 + r22√

2
,

and determine b, d using

4bc = r21 + r12

4cd = r32 + r23.

If d 6= 0, let

d =

√
1 + r33√

2
,

and determine b, c using

4bd = r13 + r31

4cd = r32 + r23.

(7) Given any matrix A ∈ su(2), with

A =

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
,
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write θ =
√
u21 + u22 + u23 and prove that

eA = cos θI +
sin θ

θ
A, θ 6= 0,

with e0 = 0. Therefore, eA is a unit quaternion representing the rotation of angle 2θ and
axis (u1, u2, u3) (or I when θ = kπ, k ∈ Z). The above formula shows that we may assume
that 0 ≤ θ ≤ π.

An equivalent but often more convenient formula is obtained by assuming that u =
(u1, u2, u3) is a unit vector, equivalently det(A) = −1, in which case A2 = −I, so we have

eθA = cos θI + sin θA.

Using the quaternion notation, this read as

eθA = [cos θ, sin θ u].

Prove that the logarithm A ∈ su(2) of a unit quaternion

q =

(
α β

−β α

)
with α = a+ bi and β = c+ id can be determined as follows:

If q = I (i.e. a = 1) then A = 0. If q = −I (i.e. a = −1), then

A = ±π
(
i 0
0 −i

)
.

Otherwise, a 6= ±1 and (b, c, d) 6= (0, 0, 0), and we are seeking some A = θB ∈ su(2) with
det(B) = 1 and 0 < θ < π, such that

q = eθB = cos θI + sin θB.

Then,

cos θ = a (0 < θ < π)

(u1, u2, u3) =
1

sin θ
(b, c, d).

Since a2+b2+c2+d2 = 1 and a = cos θ, the vector (b, c, d)/ sin θ is a unit vector. Furthermore
if the quaternion q is of the form q = [cos θ, sin θu] where u = (u1, u2, u3) is a unit vector
(with 0 < θ < π), then

A = θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
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is a logarithm of q.

Show that the exponential map exp: su(2) → SU(2) is surjective, and injective on the
open ball

{θB ∈ su(2) | det(B) = 1, 0 ≤ θ < π}.

(8) You are now going to derive a formula for interpolating between two quaternions.
This formula is due to Ken Shoemake, once a Penn student and my TA! Since rotations in
SO(3) can be defined by quaternions, this has applications to computer graphics, robotics,
and computer vision.

First, we observe that multiplication of quaternions can be expressed in terms of the
inner product and the cross-product in R3. Indeed, if q1 = [a, u1] and q2 = [a2, u2], then
check that

q1q2 = [a1, u1][a2, u2] = [a1a2 − u1 · u2, a1u2 + a2u1 + u1 × u2].

We will also need the identity

u× (u× v) = (u · v)u− (u · u)v.

Given a quaternion q expressed as q = [cos θ, sin θ u], where u is a unit vector, we can
interpolate between I and q by finding the logs of I and q, interpolating in su(2), and then
exponentiating. We have

A = log(I) =

(
0 0
0 0

)
, B = log(q) = θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
.

Since SU(2) is a compact Lie group and since the inner product on su(2) given by

〈X, Y 〉 = tr(X>Y )

is Ad(SU(2))-invariant, it induces a biinvariant Riemannian metric on SU(2), and the curve

λ 7→ eλB, λ ∈ [0, 1]

is a geodesic from I to q in SU(2). We write qλ = eλB. Given two quaternions q1 and q2,
because the metric is left invariant, the curve

λ 7→ Z(λ) = q1(q
−1
1 q2)

λ, λ ∈ [0, 1]

is a geodesic from q1 to q2. Remarkably, there is a closed-form formula for the interpolant
Z(λ). Say q1 = [cos θ, sin θ u] and q2 = [cosϕ, sinϕv], and assume that q1 6= q2 and q1 6= −q2.

Define Ω by
cos Ω = cos θ cosϕ+ sin θ sinϕ(u · v).

7



Since q1 6= q2 and q1 6= −q2, we have 0 < Ω < π. Prove that

Z(λ) = q1(q
−1
1 q2)

λ =
sin(1− λ)Ω

sin Ω
q1 +

sinλΩ

sin Ω
q2.

(9) We conclude by discussing the problem of a consistent choice of sign for the quaternion
q representing a rotation R = ρq ∈ SO(3). We are looking for a “nice” section s : SO(3)→
SU(2), that is, a function s satisfying the condition

ρ ◦ s = id,

where ρ is the surjective homomorphism ρ : SU(2)→ SO(3).

I claim that any section s : SO(3)→ SU(2) of ρ is neither a homomorphism nor contin-
uous. Intuitively, this means that there is no “nice and simple ” way to pick the sign of the
quaternion representing a rotation.

To prove the above claims, let Γ be the subgroup of SU(2) consisting of all quaternions of
the form q = [a, (b, 0, 0)]. Then, using the formula for the rotation matrix Rq corresponding
to q (and the fact that a2 + b2 = 1), show that

Rq =

1 0 0
0 2a2 − 1 −2ab
0 2ab 2a2 − 1

 .

Since a2 + b2 = 1, we may write a = cos θ, b = sin θ, and we see that

Rq =

1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ

 ,

a rotation of angle 2θ around the x-axis. Thus, both Γ and its image are isomorphic to
SO(2), which is also isomorphic to U(1) = {w ∈ C | |w| = 1}. By identifying i and i
and identifying Γ and its image to U(1), if we write w = cos θ + i sin θ ∈ Γ, show that the
restriction of the map ρ to Γ is given by ρ(w) = w2.

Prove that any section s of ρ is not a homomorphism. (Consider the restriction of s to
the image ρ(Γ)).

Prove that any section s of ρ is not continuous.

Problem B2 (120 pts). (a) Let f : M → N be a map of smooth manifolds. A point,
p ∈ M , is called a critical point (of f) iff dfp is not surjective and a point q ∈ N is called a
critical value (of f) iff q = f(p), for some critical point, p ∈ M . A point p ∈ M is a regular
point (of f) iff p is not critical, i.e., dfp is surjective, and a point q ∈ N is a regular value
(of f) iff it is not a critical value. In particular, any q ∈ N − f(M) is a regular value and
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q ∈ f(M) is a regular value iff every p ∈ f−1(q) is a regular point (but, in contrast, q is a
critical value iff some p ∈ f−1(q) is critical).

Prove that for every regular value, q ∈ f(M), the preimage Z = f−1(q) is a manifold of
dimension dim(M)− dim(N).

Hint . Pick any p ∈ f−1(q) and some parametrizations ϕ at p and ψ at q, with ϕ(0) = p and
ψ(0) = q, and consider h = ψ−1 ◦ f ◦ ϕ. Prove that dh0 is surjective and then apply Lemma
2.29.

(b) Under the same assumptions as (a), prove that for every point p ∈ Z = f−1(q), the
tangent space, TpZ, is the kernel of dfp : TpM → TqN .

(c) If X,Z ⊆ RN are manifolds and Z ⊆ X, we say that Z is a submanifold of X. Assume
there is a smooth function, g : X → Rk, and that 0 ∈ Rk is a regular value of g. Then, by
(a), Z = g−1(0) is a submanifold of X of dimension dim(X)− k. Let g = (g1, . . . , gk), with
each gi a function, gi : X → R. Prove that for any p ∈ X, dgp is surjective iff the linear
forms, (dgi)p : TpX → R, are linearly independent. In this case, we say that g1, . . . , gk are
independent at p. We also say that Z is cut out by g1, . . . , gk when

Z = {p ∈ X | g1(p) = 0, . . . , gk(p) = 0}

with g1, . . . , gk independent for all p ∈ Z.

Let f : X → Y be a smooth maps of manifolds and let q ∈ f(X) be a regular value.
Prove that Z = f−1(q) is a submanifold of X cut out by k = dim(X)− dim(Y ) independent
functions.

Hint . Pick some parametrization, ψ, at q, so that ψ(0) = q and check that 0 is a regular
value of g = ψ−1 ◦ f , so that g1, . . . , gk work.

(d) Now, assume Z is a submanifold of X. Prove that locally, Z is cut out by independent
functions. This means that if k = dim(X) − dim(Z), the codimension of Z in X, then for
every z ∈ Z, there are k independent functions, g1, . . . , gk, defined on some open subset,
W ⊆ X, with z ∈ W , so that Z ∩W is the common zero set of the gi’s.

Hint . Apply Lemma 2.28 to the immersion Z −→ X.

(e) We would like to generalize our result in (a) to the more general situation where we
have a smooth map, f : X → Y , but this time, we have a submanifold, Z ⊆ Y and we are
investigating whether f−1(Z) is a submanifold of X. In particular, if X is also a submanifold
of Y and f is the inclusion of X into Y , then f−1(Z) = X ∩ Z.

Convince yourself that, in general, the intersection of two submanifolds is not a subman-
ifold. Try examples involving curves and surfaces and you will see how bad the situation can
be. What is needed is a notion generalizing that of a regular value, and this turns out to be
the notion of transversality.

We say that f is transversal to Z iff

dfp(TpX) + Tf(p)Z = Tf(p)Y,
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for all p ∈ f−1(Z). (Recall, if U and V are subspaces of a vector space, E, then U + V is
the subspace U + V = {u+ v ∈ E | u ∈ U, v ∈ V }). In particular, if f is the inclusion of X
into Y , the transversality condition is

TpX + TpZ = TpY,

for all p ∈ X ∩ Z.

Draw several examples of transversal intersections to understand better this concept.
Prove that if f is transversal to Z, then f−1(Z) is a submanifold of X of codimension equal
to dim(Y )− dim(Z).

Hint . The set f−1(Z) is a manifold iff for every p ∈ f−1(Z), there is some open subset,
U ⊆ X, with p ∈ U , and f−1(Z) ∩ U is a manifold. First, use (d) to assert that locally near
q = f(p), Z is cut out by k = dim(Y ) − dim(Z) independent functions, g1, . . . , gk, so that
locally near p, the preimage f−1(Z) is cut out by g1 ◦ f, . . . , gk ◦ f . If we let g = (g1, . . . , gk),
it is a submersion and the issue is to prove that 0 is a regular value of g ◦ f in order to apply
(a). Show that transversality is just what’s needed to show that 0 is a regular value of g ◦ f .

(f) With the same assumptions as in (g) (f is transversal to Z), if W = f−1(Z), prove
that for every p ∈ W ,

TpW = (dfp)
−1(Tf(p)Z),

the preimage of Tf(p)Z by dfp : TpX → Tf(p)Y . In particular, if f is the inclusion of X into
Y , then

Tp(X ∩ Z) = TpX ∩ TpZ.

(g) Let X,Z ⊆ Y be two submanifolds of Y , with X compact, Z closed, dim(X) +
dim(Z) = dim(Y ) and X transversal to Z. Prove that X ∩ Z consists of a finite set of
points.

Problem B3 (120). (1) All Lie algebras in this problem are finite-dimensional. Let g be
a Lie algebra (over R or C). Given two subsets a and b of g, we let [a, b] be the subspace
of g consisting of all linear combinations of elements of the form [a, b] with a ∈ a and b ∈ b.
Check that if a and b are ideals, then [a, b] is an ideal.

(2) The lower central series (Ckg) of g is defined as follows:

C0g = g

Ck+1g = [g, Ckg], k ≥ 0.

We have a decreasing sequence

g = C0g ⊇ C1g ⊇ C2g ⊇ · · · .

We say that g is nilpotent iff Ckg = (0) for some k ≥ 1.

Prove that the following statements are equivalent:
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1. The algebra g is nilpotent.

2. There is some n ≥ 1 such that

[x1, [x2, [x3, · · · , [xn, xn+1] · · · ]]] = 0

for all x1, . . . , xn+1 ∈ g.

3. There is a chain of ideals

g = a0 ⊇ a1 ⊇ · · · ⊇ an = (0)

such that [g, ai] ⊆ ai+1 for i = 0, . . . , n− 1 (n ≥ 1).

(3) Given a vector space E of dimension n, a flag in E is a sequence F = (Vi) of subspaces
of E such that

(0) = V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn = E,

such that dim(Vi) = i. Define n(F ) by

n(F ) = {f ∈ End(E) | f(Vi) ⊆ Vi−1, i = 1, . . . , n}.

If we pick a basis (e1, . . . , en) of E such that ei ∈ Vi, then check that every f ∈ n(F ) is
represented by a strictly upper triangular matrix (the diagonal entries are 0).

Prove that n(F ) is a Lie subalgebra of End(E) and that it is nilpotent.

If g is a nilpotent Lie algebra, then prove that adx is nilpotent for every x ∈ g.

(4) The derived series (or commutator series) (Dkg) of g is defined as follows:

D0g = g

Dk+1g = [Dkg, Dkg], k ≥ 0.

We have a decreasing sequence

g = D0g ⊇ D1g ⊇ D2g ⊇ · · · .

We say that g is solvable iff Dkg = (0) for some k ≥ 1.

Recall that a Lie algebra g is abelian if [X, Y ] = 0 for all X, Y ∈ g. Check that If g is
abelian, then g is solvable.

Prove that a nonzero solvable Lie algebra has a nonzero abelian ideal.

Prove that the following statements are equivalent:

1. The algebra g is solvable.
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2. There is a chain of ideals

g = a0 ⊇ a1 ⊇ · · · ⊇ an = (0)

such that [ai, ai] ⊆ ai+1 for i = 0, . . . , n− 1 (n ≥ 1).

Given any flag F = (Vi) in E (where E is a vector space of dimension n), define b(F ) by

b(F ) = {f ∈ End(E) | f(Vi) ⊆ Vi, i = 0, . . . , n}.

If we pick a basis (e1, . . . , en) of E such that ei ∈ Vi, then check that every f ∈ b(F ) is
represented by an upper triangular matrix.

Prove that b(F ) is a Lie subalgebra of End(E) and that it is solvable (observe that
D1(b(F )) ⊆ n(F )).

(5) Prove that
Dkg ⊆ Ckg k ≥ 0.

Deduce that every nilpotent Lie algebra is solvable.

(6) If g is a solvable Lie algebra, then prove that every Lie subalgebra of g is solvable,
and for every ideal a of g, the quotient Lie algebra g/a is solvable.

Given a Lie algebra g, if a is a solvable ideal and if g/a is also solvable, then g is solvable.

Given any two ideals a and b of a Lie algebra g, prove that (a + b)/a and b/(a ∩ b) are
isomorphic Lie algebras.

Given any two solvable ideals a and b of a Lie algebra g, prove that a + b is solvable.
Conclude from this that there is a largest solvable ideal r in g (called the radical of g).

TOTAL: 420 points.
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