Summer 1, 2013 CIS 610

Advanced Geometric Methods in Computer Science Jean Gallier \& Dan Guralnik
 Homework 4

June 21; Due June 28, 2013

Do the Exercises on pages 4-6 (some properties of $\mathbf{G L}(n, K)$) from the handouts on the web, and the problems below.

Problem B1 (10). (a) Find two symmetric matrices, A and B, such that $A B$ is not symmetric.
(b) Find two matrices, A and B, such that

$$
e^{A} e^{B} \neq e^{A+B}
$$

Try

$$
A=\frac{\pi}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad B=\frac{\pi}{2}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

Problem B2 (60). (a) Consider the map, $f: \mathbf{G L}(n) \rightarrow \mathbb{R}$, given by

$$
f(A)=\operatorname{det}(A)
$$

Prove that $d f(I)(B)=\operatorname{tr}(B)$, the trace of B, for any matrix B (here, I is the identity matrix). Then, prove that

$$
d f(A)(B)=\operatorname{det}(A) \operatorname{tr}\left(A^{-1} B\right)
$$

where $A \in \mathbf{G L}(n)$.
(b) Use the map $A \mapsto \operatorname{det}(A)-1$ to prove that $\mathbf{S L}(n)$ is a manifold of dimension $n^{2}-1$.
(c) Let J be the $(n+1) \times(n+1)$ diagonal matrix

$$
J=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -1
\end{array}\right) .
$$

We denote by $\mathbf{S O}(n, 1)$ the group of real $(n+1) \times(n+1)$ matrices

$$
\mathbf{S O}(n, 1)=\left\{A \in \mathbf{G} \mathbf{L}(n+1) \mid A^{\top} J A=J \quad \text { and } \quad \operatorname{det}(A)=1\right\} .
$$

Check that $\mathbf{S O}(n, 1)$ is indeed a group with the inverse of A given by $A^{-1}=J A^{\top} J$ (this is the special Lorentz group.) Consider the function $f: \mathbf{G L}^{+}(n+1) \rightarrow \mathbf{S}(n+1)$, given by

$$
f(A)=A^{\top} J A-J,
$$

where $\mathbf{S}(n+1)$ denotes the space of $(n+1) \times(n+1)$ symmetric matrices. Prove that

$$
d f(A)(H)=A^{\top} J H+H^{\top} J A
$$

for any matrix, H. Prove that $d f(A)$ is surjective for all $A \in \mathbf{S O}(n, 1)$ and that $\mathbf{S O}(n, 1)$ is a manifold of dimension $\frac{n(n+1)}{2}$.
Problem B3 (30 +30 pts). (a) Given any matrix

$$
B=\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) \in \mathfrak{s l}(2, \mathbb{C}) \text {, }
$$

if $\omega^{2}=a^{2}+b c$ and ω is any of the two complex roots of $a^{2}+b c$, prove that if $\omega \neq 0$, then

$$
e^{B}=\cosh \omega I+\frac{\sinh \omega}{\omega} B
$$

and $e^{B}=I+B$, if $a^{2}+b c=0$. Observe that $\operatorname{tr}\left(e^{B}\right)=2 \cosh \omega$.
Prove that the exponential map, $\exp : \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathbf{S L}(2, \mathbb{C})$, is not surjective. For instance, prove that

$$
\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)
$$

is not the exponential of any matrix in $\mathfrak{s l}(2, \mathbb{C})$.
(b) (Extra Credit 30 pts.) Recall that a matrix, N, is nilpotent iff there is some $m \geq 0$ so that $N^{m}=0$. Let A be any $n \times n$ matrix of the form $A=I-N$, where N is nilpotent. Why is A invertible? prove that there is some B so that $e^{B}=I-N$ as follows: Recall that for any $y \in \mathbb{R}$ so that $|y-1|$ is small enough, we have

$$
\log (y)=-(1-y)-\frac{(1-y)^{2}}{2}-\cdots-\frac{(1-y)^{k}}{k}-\cdots
$$

As N is nilpotent, we have $N^{m}=0$, where m is the smallest integer with this propery. Then, the expression

$$
B=\log (I-N)=-N-\frac{N^{2}}{2}-\cdots-\frac{N^{m-1}}{m-1}
$$

is well defined. Use a formal power series argument to show that

$$
e^{B}=A
$$

We denote B by $\log (A)$.

Problem B4 (120 pts). Recall from Homework 3, Problem B7, the Cayley parametrization of rotation matrices in $\mathbf{S O}(n)$ given by

$$
C(B)=(I-B)(I+B)^{-1},
$$

where B is any $n \times n$ skew symmetric matrix.
(a) Now, consider $n=3$, i.e., $\mathbf{S O}(3)$. Let E_{1}, E_{2} and E_{3} be the rotations about the x-axis, y-axis, and z-axis, respectively, by the angle π, i.e.,

$$
E_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad E_{3}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Prove that the four maps

$$
\begin{aligned}
B & \mapsto
\end{aligned} C(B)=\left[\begin{array}{ll}
B & \mapsto(B) \\
B & \mapsto \\
E_{1} C(B) \\
B & \mapsto
\end{array} E_{2} C(B)\right.
$$

where B is skew symmetric, are parametrizations of $\mathbf{S O}(3)$ and that the union of the images of $C, E_{1} C, E_{2} C$ and $E_{3} C$ covers $\mathbf{S O}(3)$, so that $\mathbf{S O}(3)$ is a manifold.
(b) Let A be any matrix (not necessarily invertible). Prove that there is some diagonal matrix, E, with entries +1 or -1 , so that $E A+I$ is invertible.
(c) Prove that every rotation matrix, $A \in \mathbf{S O}(n)$, is of the form

$$
A=E(I-B)(I+B)^{-1}
$$

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and -1 , and where the number of -1 is even. Moreover, prove that every orthogonal matrix $A \in \mathbf{O}(n)$ is of the form

$$
A=E(I-B)(I+B)^{-1},
$$

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and -1 . The above provide parametrizations for $\mathbf{S O}(n)$ (resp. $\mathbf{O}(n)$) that show that $\mathbf{S O}(n)$ and $\mathbf{O}(n)$ are manifolds. However, observe that the number of these charts grows exponentially with n.

Problem B5 $(100+200$ pts $)$. Consider the affine maps $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined such that

$$
\rho\binom{x}{y}=\alpha\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}+\binom{w_{1}}{w_{2}}
$$

where $\theta, w_{1}, w_{2}, \alpha \in \mathbb{R}$, with $\alpha>0$. These maps are called (direct) affine similitudes (for short, similitudes). The number $\alpha>0$ is the scale factor of the similitude. These affine maps are the composition of a rotation of angle θ, a rescaling by $\alpha>0$, and a translation.
(a) Prove that these maps form a group that we denote by $\mathbf{S I M}(2)$.

Given any map ρ as above, if we let

$$
R=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \quad X=\binom{x}{y}, \quad \text { and } \quad W=\binom{w_{1}}{w_{2}}
$$

then ρ can be represented by the 3×3 matrix

$$
A=\left(\begin{array}{cc}
\alpha R & W \\
0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\alpha \cos \theta & -\alpha \sin \theta & w_{1} \\
\alpha \sin \theta & \alpha \cos \theta & w_{2} \\
0 & 0 & 1
\end{array}\right)
$$

in the sense that

$$
\binom{\rho(X)}{1}=\left(\begin{array}{cc}
\alpha R & W \\
0 & 1
\end{array}\right)\binom{X}{1}
$$

iff

$$
\rho(X)=\alpha R X+W
$$

(b) Consider the set of matrices of the form

$$
\left(\begin{array}{ccc}
\lambda & -\theta & u \\
\theta & \lambda & v \\
0 & 0 & 0
\end{array}\right)
$$

where $\theta, \lambda, u, v \in \mathbb{R}$. Verify that this set of matrices is a vector space isomorphic to $\left(\mathbb{R}^{4},+\right)$. This vector space is denoted by $\mathfrak{s i m}(2)$.
(c) Given a matrix

$$
\Omega=\left(\begin{array}{cc}
\lambda & -\theta \\
\theta & \lambda
\end{array}\right)
$$

prove that

$$
e^{\Omega}=e^{\lambda}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Hint. Write

$$
\Omega=\lambda I+\theta J
$$

with

$$
J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Observe that $J^{2}=-I$, and prove by induction on k that

$$
\Omega^{k}=\frac{1}{2}\left((\lambda+i \theta)^{k}+(\lambda-i \theta)^{k}\right) I+\frac{1}{2 i}\left((\lambda+i \theta)^{k}-(\lambda-i \theta)^{k}\right) J .
$$

(d) As in (c), write

$$
\Omega=\left(\begin{array}{cc}
\lambda & -\theta \\
\theta & \lambda
\end{array}\right)
$$

let

$$
U=\binom{u}{v}
$$

and let

$$
B=\left(\begin{array}{cc}
\Omega & U \\
0 & 0
\end{array}\right)
$$

Prove that

$$
B^{n}=\left(\begin{array}{cc}
\Omega^{n} & \Omega^{n-1} U \\
0 & 0
\end{array}\right)
$$

where $\Omega^{0}=I_{2}$.
Prove that

$$
e^{B}=\left(\begin{array}{cc}
e^{\Omega} & V U \\
0 & 1
\end{array}\right)
$$

where

$$
V=I_{2}+\sum_{k \geq 1} \frac{\Omega^{k}}{(k+1)!}
$$

(e) Use the formula

$$
V=I_{2}+\sum_{k \geq 1} \frac{\Omega^{k}}{(k+1)!}=\int_{0}^{1} e^{\Omega t} d t
$$

to prove that if $\lambda=\theta=0$, then

$$
V=I_{2},
$$

else

$$
V=\frac{1}{\lambda^{2}+\theta^{2}}\left(\begin{array}{cc}
\lambda\left(e^{\lambda} \cos \theta-1\right)+e^{\lambda} \theta \sin \theta & -\theta\left(1-e^{\lambda} \cos \theta\right)-e^{\lambda} \lambda \sin \theta \\
\theta\left(1-e^{\lambda} \cos \theta\right)+e^{\lambda} \lambda \sin \theta & \lambda\left(e^{\lambda} \cos \theta-1\right)+e^{\lambda} \theta \sin \theta
\end{array}\right)
$$

Conclude that if $\lambda=\theta=0$, then

$$
e^{B}=\left(\begin{array}{cc}
I & U \\
0 & 1
\end{array}\right)
$$

else

$$
e^{B}=\left(\begin{array}{cc}
e^{\Omega} & V U \\
0 & 1
\end{array}\right)
$$

with

$$
e^{\Omega}=e^{\lambda}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

and

$$
V=\frac{1}{\lambda^{2}+\theta^{2}}\left(\begin{array}{cc}
\lambda\left(e^{\lambda} \cos \theta-1\right)+e^{\lambda} \theta \sin \theta & -\theta\left(1-e^{\lambda} \cos \theta\right)-e^{\lambda} \lambda \sin \theta \\
\theta\left(1-e^{\lambda} \cos \theta\right)+e^{\lambda} \lambda \sin \theta & \lambda\left(e^{\lambda} \cos \theta-1\right)+e^{\lambda} \theta \sin \theta
\end{array}\right),
$$

and that $e^{B} \in \mathbf{S I M}(2)$, with scale factor e^{λ}.
(f) Prove that the exponential map exp: $\mathfrak{s i m}(2) \rightarrow \mathbf{S I M}(2)$ is surjective.
(g) Similitudes can be used to describe certain deformations (or flows) of a deformable body \mathcal{B}_{t} in the plane. Given some initial shape \mathcal{B} in the plane (for example, a circle), a deformation of \mathcal{B} is given by a piecewise differentiable curve

$$
\mathcal{D}:[0, T] \rightarrow \mathbf{S I M}(2)
$$

where each $\mathcal{D}(t)$ is a similitude (for some $T>0$). The deformed body \mathcal{B}_{t} at time t is given by

$$
\mathcal{B}_{t}=\mathcal{D}(t)(\mathcal{B}) .
$$

The surjectivity of the exponential map exp: $\mathfrak{s i m}(2) \rightarrow \mathbf{S I M}(2)$ implies that there is a map $\log : \operatorname{SIM}(2) \rightarrow \mathfrak{s i m}(2)$, although it is multivalued. The exponential map and the log "function" allows us to work in the simpler (noncurved) Euclidean space $\mathfrak{s i m}(2)$.

For instance, given two similitudes $A_{1}, A_{2} \in \mathbf{S I M}(2)$ specifying the shape of \mathcal{B} at two different times, we can compute $\log \left(A_{1}\right)$ and $\log \left(A_{2}\right)$, which are just elements of the Euclidean space $\mathfrak{s i m}(2)$, form the linear interpolant $(1-t) \log \left(A_{1}\right)+t \log \left(A_{2}\right)$, and then apply the exponential map to get an interpolating deformation

$$
t \mapsto e^{(1-t) \log \left(A_{1}\right)+t \log \left(A_{2}\right)}, \quad t \in[0,1] .
$$

Also, given a sequence of "snapshots" of the deformable body \mathcal{B}, say $A_{0}, A_{1}, \ldots, A_{m}$, where each is A_{i} is a similitude, we can try to find an interpolating deformation (a curve in $\mathbf{S I M}(2)$) by finding a simpler curve $t \mapsto C(t)$ in $\mathfrak{s i m}(2)$ (say, a B-spline) interpolating $\log A_{1}, \log A_{1}, \ldots, \log A_{m}$. Then, the curve $t \mapsto e^{C(t)}$ yields a deformation in $\mathbf{S I M}(2)$ interpolating $A_{0}, A_{1}, \ldots, A_{m}$.
(1) (75 pts). Write a program interpolating between two deformations.
(2) Extra credit (125 pts). If you konw about cubic spline interpolation, write a program to interpolate a sequence of deformations given by similitudes $A_{0}, A_{1}, \ldots, A_{m}$ by a C^{2}-curve.

Problem B6 (100 pts). (a) For any matrix

$$
A=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

if we let $\theta=\sqrt{a^{2}+b^{2}+c^{2}}$ and

$$
B=\left(\begin{array}{lll}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right),
$$

prove that

$$
\begin{aligned}
A^{2} & =-\theta^{2} I+B \\
A B & =B A=0
\end{aligned}
$$

From the above, deduce that

$$
A^{3}=-\theta^{2} A
$$

(b) Prove that the exponential map exp: $\mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is given by

$$
\exp A=e^{A}=\cos \theta I_{3}+\frac{\sin \theta}{\theta} A+\frac{(1-\cos \theta)}{\theta^{2}} B
$$

or, equivalently, by

$$
e^{A}=I_{3}+\frac{\sin \theta}{\theta} A+\frac{(1-\cos \theta)}{\theta^{2}} A^{2},
$$

if $\theta \neq 0$, with $\exp \left(0_{3}\right)=I_{3}$.
(c) Prove that e^{A} is an orthogonal matrix of determinant +1 , i.e., a rotation matrix.
(d) Prove that the exponential map exp: $\mathfrak{s o}(3) \rightarrow \mathbf{S O}(3)$ is surjective. For this, proceed as follows: Pick any rotation matrix $R \in \mathbf{S O}(3)$;
(1) The case $R=I$ is trivial.
(2) If $R \neq I$ and $\operatorname{tr}(R) \neq-1$, then

$$
\exp ^{-1}(R)=\left\{\left.\frac{\theta}{2 \sin \theta}\left(R-R^{T}\right) \right\rvert\, 1+2 \cos \theta=\operatorname{tr}(R)\right\}
$$

(Recall that $\operatorname{tr}(R)=r_{11}+r_{22}+r_{33}$, the trace of the matrix R). Note that both θ and $2 \pi-\theta$ yield the same matrix $\exp (R)$.
(3) If $R \neq I$ and $\operatorname{tr}(R)=-1$, then prove that the eigenvalues of R are $1,-1,-1$, that $R=R^{\top}$, and that $R^{2}=I$. Prove that the matrix

$$
S=\frac{1}{2}(R-I)
$$

is a symmetric matrix whose eigenvalues are $-1,-1,0$. Thus, S can be diagonalized with respect to an orthogonal matrix Q as

$$
S=Q\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) Q^{\top} .
$$

Prove that there exists a skew symmetric matrix

$$
U=\left(\begin{array}{ccc}
0 & -d & c \\
d & 0 & -b \\
-c & b & 0
\end{array}\right)
$$

so that

$$
U^{2}=S=\frac{1}{2}(R-I)
$$

Observe that

$$
U^{2}=\left(\begin{array}{ccc}
-\left(c^{2}+d^{2}\right) & b c & b d \\
b c & -\left(b^{2}+d^{2}\right) & c d \\
b d & c d & -\left(b^{2}+c^{2}\right)
\end{array}\right)
$$

and use this to conclude that if $U^{2}=S$, then $b^{2}+c^{2}+d^{2}=1$. Then, show that

$$
\exp ^{-1}(R)=\left\{(2 k+1) \pi\left(\begin{array}{ccc}
0 & -d & c \\
d & 0 & -b \\
-c & b & 0
\end{array}\right), k \in \mathbb{Z}\right\}
$$

where (b, c, d) is any unit vector such that for the corresponding skew symmetric matrix U, we have $U^{2}=S$.
(e) To find a skew symmetric matrix U so that $U^{2}=S=\frac{1}{2}(R-I)$ as in (d), we can solve the system

$$
\left(\begin{array}{ccc}
b^{2}-1 & b c & b d \\
b c & c^{2}-1 & c d \\
b d & c d & d^{2}-1
\end{array}\right)=S
$$

We immediately get b^{2}, c^{2}, d^{2}, and then, since one of b, c, d is nonzero, say b, if we choose the positive square root of b^{2}, we can determine c and d from $b c$ and $b d$.

Implement a computer program to solve the above system.
Problem B7 (60 pts). (1) Implement the Gram-Schmidt orthonormalization procedure and the modified Gram-Schmidt procedure. You may use the pseudo-code showed in (2).
(2) Implement the method to compute the QR decomposition of an invertible matrix. You may use the following pseudo-code:
function $\operatorname{qr}(A$: matrix): $[Q, R]$ pair of matrices
begin
$n=\operatorname{dim}(A)$;
$R=0$; (the zero matrix)
$Q 1(:, 1)=A(:, 1)$;

```
    \(R(1,1)=\operatorname{sqrt}\left(Q 1(:, 1)^{\top} \cdot Q 1(:, 1)\right) ;\)
    \(Q(:, 1)=Q 1(:, 1) / R(1,1)\);
    for \(k:=1\) to \(n-1\) do
        \(w=A(:, k+1) ;\)
        for \(i:=1\) to \(k\) do
            \(R(i, k+1)=A(:, k+1)^{\top} \cdot Q(:, i) ;\)
            \(w=w-R(i, k+1) Q(:, i) ;\)
        endfor;
    \(Q 1(:, k+1)=w\);
    \(R(k+1, k+1)=\operatorname{sqrt}\left(Q 1(:, k+1)^{\top} \cdot Q 1(:, k+1)\right) ;\)
    \(Q(:, k+1)=Q 1(:, k+1) / R(k+1, k+1) ;\)
    endfor;
end
```

Test it on various matrices, including those involved in Project 1.
(3) Given any invertible matrix A, define the sequences A_{k}, Q_{k}, R_{k} as follows:

$$
\begin{aligned}
A_{1} & =A \\
Q_{k} R_{k} & =A_{k} \\
A_{k+1} & =R_{k} Q_{k}
\end{aligned}
$$

for all $k \geq 1$, where in the second equation, $Q_{k} R_{k}$ is the QR decomposition of A_{k} given by part (2).

Run the above procedure for various values of $k(50,100, \ldots)$ and various real matrices A, in particular some symmetric matrices; also run the Matlab command eig on A_{k}, and compare the diagonal entries of A_{k} with the eigenvalues given by eig $\left(A_{k}\right)$.

What do you observe? How do you explain this behavior?
Problem B8 (Extra Credit 100 pts). (a) Consider the set of affine maps ρ of \mathbb{R}^{3} defined such that

$$
\rho(X)=R X+W
$$

where R is a rotation matrix (an orthogonal matrix of determinant +1) and W is some vector in \mathbb{R}^{3}. Every such a map can be represented by the 4×4 matrix

$$
\left(\begin{array}{cc}
R & W \\
0 & 1
\end{array}\right)
$$

in the sense that

$$
\binom{\rho(X)}{1}=\left(\begin{array}{cc}
R & W \\
0 & 1
\end{array}\right)\binom{X}{1}
$$

iff

$$
\rho(X)=R X+W
$$

Prove that these maps are affine bijections and that they form a group, denoted by $\mathbf{S E}(3)$ (the direct affine isometries, or rigid motions, of \mathbb{R}^{3}).
(b) Let us now consider the set of 4×4 matrices of the form

$$
B=\left(\begin{array}{cc}
\Omega & W \\
0 & 0
\end{array}\right),
$$

where Ω is a skew-symmetric matrix

$$
\Omega=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

and W is a vector in \mathbb{R}^{3}.
Verify that this set of matrices is a vector space isomorphic to $\left(\mathbb{R}^{6},+\right)$. This vector space is denoted by $\mathfrak{s e}(3)$. Show that in general, $B C \neq C B$.
(c) Given a matrix

$$
B=\left(\begin{array}{cc}
\Omega & W \\
0 & 0
\end{array}\right)
$$

as in (b), prove that

$$
B^{n}=\left(\begin{array}{cc}
\Omega^{n} & \Omega^{n-1} W \\
0 & 0
\end{array}\right)
$$

where $\Omega^{0}=I_{3}$. Given

$$
\Omega=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

let $\theta=\sqrt{a^{2}+b^{2}+c^{2}}$. Prove that if $\theta=0$, then

$$
e^{B}=\left(\begin{array}{cc}
I_{3} & W \\
0 & 1
\end{array}\right)
$$

and that if $\theta \neq 0$, then

$$
e^{B}=\left(\begin{array}{cc}
e^{\Omega} & V W \\
0 & 1
\end{array}\right)
$$

where

$$
V=I_{3}+\sum_{k \geq 1} \frac{\Omega^{k}}{(k+1)!}
$$

(d) Prove that

$$
e^{\Omega}=I_{3}+\frac{\sin \theta}{\theta} \Omega+\frac{(1-\cos \theta)}{\theta^{2}} \Omega^{2}
$$

and

$$
V=I_{3}+\frac{(1-\cos \theta)}{\theta^{2}} \Omega+\frac{(\theta-\sin \theta)}{\theta^{3}} \Omega^{2}
$$

Hint. Use the fact that $\Omega^{3}=-\theta^{2} \Omega$.
(e) Prove that e^{B} is a direct affine isometry in $\mathbf{S E}(3)$. Prove that V is invertible and that

$$
V^{-1}=I-\frac{1}{2} \Omega+\frac{1}{\theta^{2}}\left(1-\frac{\theta \sin \theta}{2(1-\cos \theta)}\right) \Omega^{2}
$$

for $\theta \neq 0$.
Hint. Assume that the inverse of V is of the form

$$
Z=I_{3}+a \Omega+b \Omega^{2}
$$

and show that a, b, are given by a system of linear equations that always has a unique solution.

Prove that the exponential map exp: $\mathfrak{s e}(3) \rightarrow \mathbf{S E}(3)$ is surjective.

Remark: As in the case of the plane, rigid motions in $\mathbf{S E}(3)$ can be used to describe certain deformations of bodies in \mathbb{R}^{3}.

