
Summer 1, 2013 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier & Dan Guralnik

Homework 4

June 21; Due June 28, 2013

Do the Exercises on pages 4-6 (some properties of GL(n,K)) from the handouts on the web,
and the problems below.

Problem B1 (10). (a) Find two symmetric matrices, A and B, such that AB is not
symmetric.

(b) Find two matrices, A and B, such that

eAeB 6= eA+B.

Try

A =
π

2

0 0 0
0 0 −1
0 1 0

 and B =
π

2

 0 0 1
0 0 0
−1 0 0

 .

Problem B2 (60). (a) Consider the map, f : GL(n)→ R, given by

f(A) = det(A).

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity
matrix). Then, prove that

df(A)(B) = det(A)tr(A−1B),

where A ∈ GL(n).

(b) Use the map A 7→ det(A)− 1 to prove that SL(n) is a manifold of dimension n2− 1.

(c) Let J be the (n+ 1)× (n+ 1) diagonal matrix

J =

(
In 0
0 −1

)
.

We denote by SO(n, 1) the group of real (n+ 1)× (n+ 1) matrices

SO(n, 1) = {A ∈ GL(n+ 1) | A>JA = J and det(A) = 1}.
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Check that SO(n, 1) is indeed a group with the inverse of A given by A−1 = JA>J (this is
the special Lorentz group.) Consider the function f : GL+(n+ 1)→ S(n+ 1), given by

f(A) = A>JA− J,

where S(n+ 1) denotes the space of (n+ 1)× (n+ 1) symmetric matrices. Prove that

df(A)(H) = A>JH +H>JA

for any matrix, H. Prove that df(A) is surjective for all A ∈ SO(n, 1) and that SO(n, 1) is

a manifold of dimension n(n+1)
2

.

Problem B3 (30 + 30 pts). (a) Given any matrix

B =

(
a b
c −a

)
∈ sl(2,C),

if ω2 = a2 + bc and ω is any of the two complex roots of a2 + bc, prove that if ω 6= 0, then

eB = coshω I +
sinh ω

ω
B,

and eB = I +B, if a2 + bc = 0. Observe that tr(eB) = 2 cosh ω.

Prove that the exponential map, exp: sl(2,C)→ SL(2,C), is not surjective. For instance,
prove that (

−1 1
0 −1

)
is not the exponential of any matrix in sl(2,C).

(b) (Extra Credit 30 pts.) Recall that a matrix, N , is nilpotent iff there is some m ≥ 0
so that Nm = 0. Let A be any n× n matrix of the form A = I −N , where N is nilpotent.
Why is A invertible? prove that there is some B so that eB = I −N as follows: Recall that
for any y ∈ R so that |y − 1| is small enough, we have

log(y) = −(1− y)− (1− y)2

2
− · · · − (1− y)k

k
− · · · .

As N is nilpotent, we have Nm = 0, where m is the smallest integer with this propery. Then,
the expression

B = log(I −N) = −N − N2

2
− · · · − Nm−1

m− 1

is well defined. Use a formal power series argument to show that

eB = A.

We denote B by log(A).
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Problem B4 (120 pts). Recall from Homework 3, Problem B7, the Cayley parametrization
of rotation matrices in SO(n) given by

C(B) = (I −B)(I +B)−1,

where B is any n× n skew symmetric matrix.

(a) Now, consider n = 3, i.e., SO(3). Let E1, E2 and E3 be the rotations about the
x-axis, y-axis, and z-axis, respectively, by the angle π, i.e.,

E1 =

1 0 0
0 −1 0
0 0 −1

 , E2 =

−1 0 0
0 1 0
0 0 −1

 , E3 =

−1 0 0
0 −1 0
0 0 1

 .

Prove that the four maps

B 7→ C(B)

B 7→ E1C(B)

B 7→ E2C(B)

B 7→ E3C(B)

where B is skew symmetric, are parametrizations of SO(3) and that the union of the images
of C, E1C, E2C and E3C covers SO(3), so that SO(3) is a manifold.

(b) Let A be any matrix (not necessarily invertible). Prove that there is some diagonal
matrix, E, with entries +1 or −1, so that EA+ I is invertible.

(c) Prove that every rotation matrix, A ∈ SO(n), is of the form

A = E(I −B)(I +B)−1,

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1, and where the number of −1 is even. Moreover, prove that every orthogonal matrix
A ∈ O(n) is of the form

A = E(I −B)(I +B)−1,

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1. The above provide parametrizations for SO(n) (resp. O(n)) that show that SO(n) and
O(n) are manifolds. However, observe that the number of these charts grows exponentially
with n.

Problem B5 (100 + 200 pts). Consider the affine maps ρ : R2 → R2 defined such that

ρ

(
x
y

)
= α

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
w1

w2

)
,

where θ, w1, w2, α ∈ R, with α > 0. These maps are called (direct) affine similitudes (for
short, similitudes). The number α > 0 is the scale factor of the similitude. These affine
maps are the composition of a rotation of angle θ, a rescaling by α > 0, and a translation.
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(a) Prove that these maps form a group that we denote by SIM(2).

Given any map ρ as above, if we let

R =

(
cos θ − sin θ
sin θ cos θ

)
, X =

(
x
y

)
, and W =

(
w1

w2

)
,

then ρ can be represented by the 3× 3 matrix

A =

(
αR W
0 1

)
=

α cos θ −α sin θ w1

α sin θ α cos θ w2

0 0 1


in the sense that (

ρ(X)
1

)
=

(
αR W
0 1

)(
X
1

)
iff

ρ(X) = αRX +W.

(b) Consider the set of matrices of the formλ −θ u
θ λ v
0 0 0


where θ, λ, u, v ∈ R. Verify that this set of matrices is a vector space isomorphic to (R4,+).
This vector space is denoted by sim(2).

(c) Given a matrix

Ω =

(
λ −θ
θ λ

)
,

prove that

eΩ = eλ
(

cos θ − sin θ
sin θ cos θ

)
.

Hint . Write
Ω = λI + θJ,

with

J =

(
0 −1
1 0

)
.

Observe that J2 = −I, and prove by induction on k that

Ωk =
1

2

(
(λ+ iθ)k + (λ− iθ)k

)
I +

1

2i

(
(λ+ iθ)k − (λ− iθ)k

)
J.
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(d) As in (c), write

Ω =

(
λ −θ
θ λ

)
,

let

U =

(
u
v

)
,

and let

B =

(
Ω U
0 0

)
.

Prove that

Bn =

(
Ωn Ωn−1U
0 0

)
where Ω0 = I2.

Prove that

eB =

(
eΩ V U
0 1

)
,

where

V = I2 +
∑
k≥1

Ωk

(k + 1)!
.

(e) Use the formula

V = I2 +
∑
k≥1

Ωk

(k + 1)!
=

∫ 1

0

eΩtdt

to prove that if λ = θ = 0, then
V = I2,

else

V =
1

λ2 + θ2

(
λ(eλ cos θ − 1) + eλθ sin θ −θ(1− eλ cos θ)− eλλ sin θ
θ(1− eλ cos θ) + eλλ sin θ λ(eλ cos θ − 1) + eλθ sin θ

)
.

Conclude that if λ = θ = 0, then

eB =

(
I U
0 1

)
,

else

eB =

(
eΩ V U
0 1

)
,

with

eΩ = eλ
(

cos θ − sin θ
sin θ cos θ

)
,
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and

V =
1

λ2 + θ2

(
λ(eλ cos θ − 1) + eλθ sin θ −θ(1− eλ cos θ)− eλλ sin θ
θ(1− eλ cos θ) + eλλ sin θ λ(eλ cos θ − 1) + eλθ sin θ

)
,

and that eB ∈ SIM(2), with scale factor eλ.

(f) Prove that the exponential map exp: sim(2)→ SIM(2) is surjective.

(g) Similitudes can be used to describe certain deformations (or flows) of a deformable
body Bt in the plane. Given some initial shape B in the plane (for example, a circle), a
deformation of B is given by a piecewise differentiable curve

D : [0, T ]→ SIM(2),

where each D(t) is a similitude (for some T > 0). The deformed body Bt at time t is given
by

Bt = D(t)(B).

The surjectivity of the exponential map exp: sim(2) → SIM(2) implies that there is a
map log : SIM(2) → sim(2), although it is multivalued. The exponential map and the log
“function” allows us to work in the simpler (noncurved) Euclidean space sim(2).

For instance, given two similitudes A1, A2 ∈ SIM(2) specifying the shape of B at two
different times, we can compute log(A1) and log(A2), which are just elements of the Euclidean
space sim(2), form the linear interpolant (1 − t) log(A1) + t log(A2), and then apply the
exponential map to get an interpolating deformation

t 7→ e(1−t) log(A1)+t log(A2), t ∈ [0, 1].

Also, given a sequence of “snapshots” of the deformable body B, say A0, A1, . . . , Am, where
each is Ai is a similitude, we can try to find an interpolating deformation (a curve in
SIM(2)) by finding a simpler curve t 7→ C(t) in sim(2) (say, a B-spline) interpolating
logA1, logA1, . . . , logAm. Then, the curve t 7→ eC(t) yields a deformation in SIM(2) inter-
polating A0, A1, . . . , Am.

(1) (75 pts). Write a program interpolating between two deformations.

(2) Extra credit (125 pts). If you konw about cubic spline interpolation, write a
program to interpolate a sequence of deformations given by similitudes A0, A1, . . . , Am by a
C2-curve.

Problem B6 (100 pts). (a) For any matrix

A =

 0 −c b
c 0 −a
−b a 0

 ,
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if we let θ =
√
a2 + b2 + c2 and

B =

a2 ab ac
ab b2 bc
ac bc c2

 ,

prove that

A2 = −θ2I +B,

AB = BA = 0.

From the above, deduce that
A3 = −θ2A.

(b) Prove that the exponential map exp: so(3)→ SO(3) is given by

expA = eA = cos θ I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2,

if θ 6= 0, with exp(03) = I3.

(c) Prove that eA is an orthogonal matrix of determinant +1, i.e., a rotation matrix.

(d) Prove that the exponential map exp: so(3)→ SO(3) is surjective. For this, proceed
as follows: Pick any rotation matrix R ∈ SO(3);

(1) The case R = I is trivial.

(2) If R 6= I and tr(R) 6= −1, then

exp−1(R) =

{
θ

2 sin θ
(R−RT )

∣∣∣∣ 1 + 2 cos θ = tr(R)

}
.

(Recall that tr(R) = r1 1 + r2 2 + r3 3, the trace of the matrix R). Note that both θ and
2π − θ yield the same matrix exp(R).

(3) If R 6= I and tr(R) = −1, then prove that the eigenvalues of R are 1,−1,−1, that
R = R>, and that R2 = I. Prove that the matrix

S =
1

2
(R− I)

is a symmetric matrix whose eigenvalues are −1,−1, 0. Thus, S can be diagonalized
with respect to an orthogonal matrix Q as

S = Q

−1 0 0
0 −1 0
0 0 0

Q>.
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Prove that there exists a skew symmetric matrix

U =

 0 −d c
d 0 −b
−c b 0


so that

U2 = S =
1

2
(R− I).

Observe that

U2 =

−(c2 + d2) bc bd
bc −(b2 + d2) cd
bd cd −(b2 + c2)

 .

and use this to conclude that if U2 = S, then b2 + c2 + d2 = 1. Then, show that

exp−1(R) =

(2k + 1)π

 0 −d c
d 0 −b
−c b 0

 , k ∈ Z

 ,

where (b, c, d) is any unit vector such that for the corresponding skew symmetric matrix
U , we have U2 = S.

(e) To find a skew symmetric matrix U so that U2 = S = 1
2
(R − I) as in (d), we can

solve the system b2 − 1 bc bd
bc c2 − 1 cd
bd cd d2 − 1

 = S.

We immediately get b2, c2, d2, and then, since one of b, c, d is nonzero, say b, if we choose the
positive square root of b2, we can determine c and d from bc and bd.

Implement a computer program to solve the above system.

Problem B7 (60 pts). (1) Implement the Gram-Schmidt orthonormalization procedure
and the modified Gram-Schmidt procedure. You may use the pseudo-code showed in (2).

(2) Implement the method to compute the QR decomposition of an invertible matrix.
You may use the following pseudo-code:

function qr(A: matrix): [Q,R] pair of matrices
begin
n = dim(A);
R = 0; (the zero matrix)
Q1(:, 1) = A(:, 1);
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R(1, 1) = sqrt(Q1(:, 1)> ·Q1(:, 1));
Q(:, 1) = Q1(:, 1)/R(1, 1);
for k := 1 to n− 1 do
w = A(:, k + 1);
for i := 1 to k do
R(i, k + 1) = A(:, k + 1)> ·Q(:, i);
w = w −R(i, k + 1)Q(:, i);

endfor;
Q1(:, k + 1) = w;
R(k + 1, k + 1) = sqrt(Q1(:, k + 1)> ·Q1(:, k + 1));
Q(:, k + 1) = Q1(:, k + 1)/R(k + 1, k + 1);
endfor;

end

Test it on various matrices, including those involved in Project 1.

(3) Given any invertible matrix A, define the sequences Ak, Qk, Rk as follows:

A1 = A

QkRk = Ak

Ak+1 = RkQk

for all k ≥ 1, where in the second equation, QkRk is the QR decomposition of Ak given by
part (2).

Run the above procedure for various values of k (50, 100, ...) and various real matrices
A, in particular some symmetric matrices; also run the Matlab command eig on Ak, and
compare the diagonal entries of Ak with the eigenvalues given by eig(Ak).

What do you observe? How do you explain this behavior?

Problem B8 (Extra Credit 100 pts). (a) Consider the set of affine maps ρ of R3 defined
such that

ρ(X) = RX +W,

where R is a rotation matrix (an orthogonal matrix of determinant +1) and W is some
vector in R3. Every such a map can be represented by the 4× 4 matrix(

R W
0 1

)
in the sense that (

ρ(X)
1

)
=

(
R W
0 1

)(
X
1

)
iff

ρ(X) = RX +W.
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Prove that these maps are affine bijections and that they form a group, denoted by SE(3)
(the direct affine isometries, or rigid motions , of R3).

(b) Let us now consider the set of 4× 4 matrices of the form

B =

(
Ω W
0 0

)
,

where Ω is a skew-symmetric matrix

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

and W is a vector in R3.

Verify that this set of matrices is a vector space isomorphic to (R6,+). This vector space
is denoted by se(3). Show that in general, BC 6= CB.

(c) Given a matrix

B =

(
Ω W
0 0

)
as in (b), prove that

Bn =

(
Ωn Ωn−1W
0 0

)
where Ω0 = I3. Given

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

let θ =
√
a2 + b2 + c2. Prove that if θ = 0, then

eB =

(
I3 W
0 1

)
,

and that if θ 6= 0, then

eB =

(
eΩ VW
0 1

)
,

where

V = I3 +
∑
k≥1

Ωk

(k + 1)!
.

(d) Prove that

eΩ = I3 +
sin θ

θ
Ω +

(1− cos θ)

θ2
Ω2
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and

V = I3 +
(1− cos θ)

θ2
Ω +

(θ − sin θ)

θ3
Ω2.

Hint . Use the fact that Ω3 = −θ2Ω.

(e) Prove that eB is a direct affine isometry in SE(3). Prove that V is invertible and that

V −1 = I − 1

2
Ω +

1

θ2

(
1− θ sin θ

2(1− cos θ)

)
Ω2,

for θ 6= 0.

Hint . Assume that the inverse of V is of the form

Z = I3 + aΩ + bΩ2,

and show that a, b, are given by a system of linear equations that always has a unique
solution.

Prove that the exponential map exp: se(3)→ SE(3) is surjective.

Remark: As in the case of the plane, rigid motions in SE(3) can be used to describe certain
deformations of bodies in R3.

11


