Homework III (due October 28), Math 602, Fall 2002. (GJSZ)

BIV (a). Assume that R is a local ring and view R as a module over itself. As such, R is
generated by 1, and so, the endomorphism ring of linear maps, Endg(R, R), is isomorphic
to R. Indeed, every R-linear map, f: R — R, is completely determined by f(1) € R.

The crucial property of a local ring, R, is that its unique maximal ideal, 91, consists of
the nonunits of R (equivalently, R — 91 is the set of units of R). This is because if a € R
is not a unit and a ¢ 9, then the principal ideal, (a), generated by a is a proper ideal of
R. But every ideal is contained in some maximal ideal (by an application of Zorn’s lemma),
and since R has a unique maximal ideal, 9, the ideal, (@), must be contained in 9, and so,
a € M, a contradiction. Obviously, 9 can’t contain any units (otherwise, we would have
M = R, contradicting the fact that maximal ideals are proper), and so, 9 consists exactly
of the nonunits of R.

If R = M, ][] M,, where My, My # R, then the natural projections pri: R — M; and
pro: R — M, are nontrivial idempotents, which means that pr{ = pry, pr3 = pry, and
pr1 and pro are neither the constant map 0 nor the identity. In view of the isomorphism
Endg(R, R) = R, the projections pry and prq correspond to nontrivial idempotents in R, say
p1 and po. We claim that this is impossible.

Indeed, assume that a* = a for any element, a, of a local ring, R. Then a(a — 1) = 0. If
a or a — 1 is a unit, we conclude that either a = 1 or a = 0. We now consider the case where
a and a — 1 are nonunits. But, in a local ring, R, the unique maximal ideal, 901, is the set of
nonunits in R. So, both @ and @ — 1 must belong to 91, and then, 1 € 9. This implies that
I = R, a contradiction. Therefore, any idempotent in a local ring is trivial. From this we
conclude that either M; = R or My = R, and R is indecomposable.

BIV (b) If R is any ring with unity, there is a unique homomorphism, Z — R, given by
n — n - 1. The kernel of this homomorphism is a principal ideal, nZ, of Z, for some n > 0
called the characteristic of R. Observe that n is the smallest integer so that n-a = 0 for all
a € R. From now on, to simplify the notation, we write n for n - 1.

Now, assume that R is a local ring, with unique maximal ideal, 9t. The case n = 0 may
arise. For example, every field is a local ring. Next, consider the case n > 0. We can factor
n into its prime factors as n = pi"'py” - - - p,*, where the p;’s are distinct primes. If k = 1,
we are done. Thus, assume that & > 2. By hypothesis,

PPyt = 0.

[I»" =0
J#1
contradicting the fact that n = p"'py™?---p™ is the smallest integer so that n = 0 in R.

Thus, pi™, py?,..., p,* are all nonunits, and since R is a local ring, they all belong to 1.
Now, a maximal ideal is a prime ideal, and since p;-nj € M for every j, we have p; € M for

If any p;™ is a unit, we get

k
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all j. However, the p; are distinct primes, and so, they are relatively prime. By the Bezout
identity, there are integers hy, ..., hx so that

hipy + hopo + - -+ + hipr, = 1,

which implies that 1 € 9, a contradiction. Therefore, k = 1 and the characteristic of a local
ring is either 0 or a prime power, p™.

Consider the ring R = Z/p™Z, where p is a prime. We claim that this is a local ring,
and obviously, its characteristic is p™. Indeed, we argue that 9t = pZ/p™Z is the unique
maximal ideal of R. Since pZ is an ideal in Z, it is clear that pZ/p™Z is an ideal in R. Let
us show that any n € R — 91 is a unit. We may assume that 1 < n < p™ — 1, and the fact
that n ¢ 9t means that n is not a multiple of p, and so, (n,p™) = 1. Again, by Bezout,
there are integers, u, v, so that un + vp™ = 1, and when we reduce modulo p, we find that
n is invertible in Z/p™Z.

BIV (c) We first consider holomorphic functions defined in some open set, 2, containing
0. Let us denote the germ of a holomorphic function, f, defined near 0, by [f]. The set of
germs of holomorphic functions defined near 0 can be made into a ring by defining addition
and multiplication of germs as follows:

[f1+1gl = [f+d]
[fllgl = [fdl,

where (f + ¢g)(2) = f(2) + g(2) and (fg)(z) = f(2)g(z), near 0. T will not check that this
gives a ring! Let us denote this ring O.

Define 9 by
M = {[f] € Oo | f(0) = 0}.

This is clearly an ideal. Note that [f] € Oy — M iff g(0) # 0 for every g € [f] (i.e., f ~ g,
where ~ is the equivalence relation defining germs). Now, it is known from complex analysis
that if a holomorphic function, f, is nonzero at some point z = zy, then, it is nonzero in
some open set containing zg, and 1/f is holomorphic in some open set containing z,. This
shows that every [f] € Oy — M is a unit in Oy, and thus, M is the unique maximal ideal of
Oy, and Oy is a local ring.

In order to show that Oy is a good local ring, first we are going to show that Mt = ([z]),
the principal ideal generated by the germ of z, and that the ideals of Oy are exactly the
ideals 9* = ([2*]), thereby proving that Oy is a principal ring.

From complex analysis, we know that if f is a homomorphic function defined on an open

) C C and f is not the zero function, then for every p € €, there is a uniquely defined
natural number, n = ord,(f), so that, near p,

f(z) = (z=p)"f(2),



where fis a holomorphic function so that ]7(2) # 0 in an open subset around p. Observe
that ord,(f) is the same for all the holomorphic functions in the germ of f at p, and so,
ord,([f]) is well-defined.

Let us prove that Oy is an integral domain. Let [f], [g] € Oy, with [f], [g] # 0. Then,
near 0, we can write

f(z) = 2" f(2) and g(2) = 2"g(2),

where fand ¢ are holomorphic and nonzero in some open subset around 0. Then, for all z
near 0, we have

(f9)(z) = 2" (fg)(2)

where (f§)(z) # 0 for all z in some open around 0. Thus, [fg] # 0, and Oy is an integral
domain.

Let J C Oq be any ideal in Oy. Let

N = min {ordo([f]) | [f] € 3 — {0}}.

There is some holomorphic function, f, so that [f] € 3 — {0} and ordy(f) = N, and we have

where f is holomorphic and nonzero in some open subset around 0. Furthermore, 1/ fv is
holomorphic near 0. This implies that

N = f(2)/f(2)

near 0, and since J is an ideal and [f] € J, we get [2V] € J. For any [g] € J, as for [f], we
have

g9(z) = 2"g(2),
where ¢ is holomorphic and nonzero near 0, and since by hypothesis, N < n,, we can write
g(z) = 2N 2" NG(2).
Since J is an ideal, we get g € ([2"]), the principal ideal generated by [2V]. Thus, J C ([zV]),
and since 2] € J, we have J = [2"].

Therefore, we proved that the maximal ideal of Oy is the principal ideal 9t = [z], and
that every ideal of Oy is also principal and of the form 9* = [2*]. Putting together what
we did, we obtain the fact that Oy is a local ring which is a PID.

Now, for any [f] € Oy with [f] # 0, if we let n = ordy([f]), we showed that [f] € IN",
but [f] & 9", and this implies that

[ = (0).

k>0



Thus, Oy is a good local ring.

We now turn to the case of real, C*-functions, defined near 0. The situation is quite
different. As in the holomorphic case, we obtain a ring, OF, and we let

m = {[f] € O | f(0) =0}.

It is an ideal, in fact, the unique maximal ideal of OF. This time, to show that every
[f] € OF — M is a unit, we use the fact that if f(0) # 0, by continuity, f(x) # 0 in some
open containing 0, and so, 1/f is C* in this open subset.

However, OF is not a good local ring, nor a domain. To show this, consider the function,

f, defined by
eV ifr>0
f(x)_{o if 2 < 0.

Observe that f(z) # 0 for all z > 0, and yet, f(z)f(—z) = 0. So, if we show that f is in
C*, it will also be the case that f(—z) € C*°, and so, [f] is a zero-divisor in OF°, and thus,
also in OF (for k finite).

Consider the case k = oco. If we let f,(x) = f(nz), we see that f, € C* and f,(0) =
f(0) =0, so that f,, € M. Moreover, since

Y

(e—l/nx)n _ e—l/z
we have f' = f for all n > 0. But then, [f] € 9" for all n > 0, and so, [f] € ;5o P, and

[ # (0).

k>0
Thus, O is not a good local ring. Now, since f € C*, it also belongs to every C*, and so,
OF is not a good local ring for any finite k.

It remains to prove that f is in C'*°, which is done by computing derivatives by induction.
We claim that £ is differentiable and is a linear combination of functions of the form

6—1/33 ‘
0 if z <0,

where k£ > 0. The base case is trivial. For the induction step, observe that

_k,e—l/x e—l/x

/ .
g'(z) = rk+1 rk+27 if 2> 0

and ¢'(z) = 0 if x < 0. We still need to show that ¢’(0) = 0. Since g(z) = 0 for x < 0, it
suffices to show that
glx) . et

lim =% = lim
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=0.
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However, (setting ¢t = 1/z) this is equivalent to proving that
thrl
lim — =0,
t——+oo et

a well-known property of the exponential.



