
Homework III (due October 28), Math 602, Fall 2002. (GJSZ)

BIV (a). Assume that R is a local ring and view R as a module over itself. As such, R is
generated by 1, and so, the endomorphism ring of linear maps, EndR(R,R), is isomorphic
to R. Indeed, every R-linear map, f : R → R, is completely determined by f(1) ∈ R.

The crucial property of a local ring, R, is that its unique maximal ideal, M, consists of
the nonunits of R (equivalently, R −M is the set of units of R). This is because if a ∈ R
is not a unit and a /∈ M, then the principal ideal, (a), generated by a is a proper ideal of
R. But every ideal is contained in some maximal ideal (by an application of Zorn’s lemma),
and since R has a unique maximal ideal, M, the ideal, (a), must be contained in M, and so,
a ∈ M, a contradiction. Obviously, M can’t contain any units (otherwise, we would have
M = R, contradicting the fact that maximal ideals are proper), and so, M consists exactly
of the nonunits of R.

If R ∼= M1

∐
M2, where M1, M2 6= R, then the natural projections pr1: R → M1 and

pr2: R → M2 are nontrivial idempotents, which means that pr2
1 = pr1, pr2

2 = pr2, and
pr1 and pr2 are neither the constant map 0 nor the identity. In view of the isomorphism
EndR(R,R) ∼= R, the projections pr1 and pr2 correspond to nontrivial idempotents in R, say
p1 and p2. We claim that this is impossible.

Indeed, assume that a2 = a for any element, a, of a local ring, R. Then a(a− 1) = 0. If
a or a− 1 is a unit, we conclude that either a = 1 or a = 0. We now consider the case where
a and a− 1 are nonunits. But, in a local ring, R, the unique maximal ideal, M, is the set of
nonunits in R. So, both a and a− 1 must belong to M, and then, 1 ∈ M. This implies that
M = R, a contradiction. Therefore, any idempotent in a local ring is trivial. From this we
conclude that either M1 = R or M2 = R, and R is indecomposable.

BIV (b) If R is any ring with unity, there is a unique homomorphism, Z −→ R, given by
n 7→ n · 1. The kernel of this homomorphism is a principal ideal, nZ, of Z, for some n ≥ 0
called the characteristic of R. Observe that n is the smallest integer so that n · a = 0 for all
a ∈ R. From now on, to simplify the notation, we write n for n · 1.

Now, assume that R is a local ring, with unique maximal ideal, M. The case n = 0 may
arise. For example, every field is a local ring. Next, consider the case n > 0. We can factor
n into its prime factors as n = pm1

1 pm2
2 · · · pmk

k , where the pj’s are distinct primes. If k = 1,
we are done. Thus, assume that k ≥ 2. By hypothesis,

pm1
1 pm2

2 · · · pmk
k = 0.

If any pmi
i is a unit, we get ∏

j 6=i

p
mj

j = 0,

contradicting the fact that n = pm1
1 pm2

2 · · · pmk
k is the smallest integer so that n = 0 in R.

Thus, pm1
1 , pm2

2 , . . ., pmk
k are all nonunits, and since R is a local ring, they all belong to M.

Now, a maximal ideal is a prime ideal, and since p
mj

j ∈ M for every j, we have pj ∈ M for
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all j. However, the pj are distinct primes, and so, they are relatively prime. By the Bezout
identity, there are integers h1, . . . , hk so that

h1p1 + h2p2 + · · ·+ hkpk = 1,

which implies that 1 ∈ M, a contradiction. Therefore, k = 1 and the characteristic of a local
ring is either 0 or a prime power, pm.

Consider the ring R = Z/pmZ, where p is a prime. We claim that this is a local ring,
and obviously, its characteristic is pm. Indeed, we argue that M = pZ/pmZ is the unique
maximal ideal of R. Since pZ is an ideal in Z, it is clear that pZ/pmZ is an ideal in R. Let
us show that any n ∈ R −M is a unit. We may assume that 1 ≤ n ≤ pm − 1, and the fact
that n /∈ M means that n is not a multiple of p, and so, (n, pm) = 1. Again, by Bezout,
there are integers, u, v, so that un + vpm = 1, and when we reduce modulo pm, we find that
n is invertible in Z/pmZ.

BIV (c) We first consider holomorphic functions defined in some open set, Ω, containing
0. Let us denote the germ of a holomorphic function, f , defined near 0, by [f ]. The set of
germs of holomorphic functions defined near 0 can be made into a ring by defining addition
and multiplication of germs as follows:

[f ] + [g] = [f + g]

[f ][g] = [fg],

where (f + g)(z) = f(z) + g(z) and (fg)(z) = f(z)g(z), near 0. I will not check that this
gives a ring! Let us denote this ring O0.

Define M by
M = {[f ] ∈ O0 | f(0) = 0}.

This is clearly an ideal. Note that [f ] ∈ O0 −M iff g(0) 6= 0 for every g ∈ [f ] (i.e., f ∼ g,
where ∼ is the equivalence relation defining germs). Now, it is known from complex analysis
that if a holomorphic function, f , is nonzero at some point z = z0, then, it is nonzero in
some open set containing z0, and 1/f is holomorphic in some open set containing z0. This
shows that every [f ] ∈ O0 −M is a unit in O0, and thus, M is the unique maximal ideal of
O0, and O0 is a local ring.

In order to show that O0 is a good local ring, first we are going to show that M = ([z]),
the principal ideal generated by the germ of z, and that the ideals of O0 are exactly the
ideals Mk = ([zk]), thereby proving that O0 is a principal ring.

From complex analysis, we know that if f is a homomorphic function defined on an open
Ω ⊆ C and f is not the zero function, then for every p ∈ Ω, there is a uniquely defined
natural number, n = ordp(f), so that, near p,

f(z) = (z − p)nf̃(z),
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where f̃ is a holomorphic function so that f̃(z) 6= 0 in an open subset around p. Observe
that ordp(f) is the same for all the holomorphic functions in the germ of f at p, and so,
ordp([f ]) is well-defined.

Let us prove that O0 is an integral domain. Let [f ], [g] ∈ O0, with [f ], [g] 6= 0. Then,
near 0, we can write

f(z) = znf f̃(z) and g(z) = zng g̃(z),

where f̃ and g̃ are holomorphic and nonzero in some open subset around 0. Then, for all z
near 0, we have

(fg)(z) = znf+ng(f̃ g̃)(z)

where (f̃ g̃)(z) 6= 0 for all z in some open around 0. Thus, [fg] 6= 0, and O0 is an integral
domain.

Let I ⊆ O0 be any ideal in O0. Let

N = min {ord0([f ]) | [f ] ∈ I− {0}} .

There is some holomorphic function, f , so that [f ] ∈ I−{0} and ord0(f) = N , and we have

f(z) = zN f̃(z),

where f̃ is holomorphic and nonzero in some open subset around 0. Furthermore, 1/f̃ is
holomorphic near 0. This implies that

zN = f(z)/f̃(z)

near 0, and since I is an ideal and [f ] ∈ I, we get [zN ] ∈ I. For any [g] ∈ I, as for [f ], we
have

g(z) = zng g̃(z),

where g̃ is holomorphic and nonzero near 0, and since by hypothesis, N ≤ ng, we can write

g(z) = zNzng−N g̃(z).

Since I is an ideal, we get g ∈ ([zN ]), the principal ideal generated by [zN ]. Thus, I ⊆ ([zN ]),
and since [zN ] ∈ I, we have I = [zN ].

Therefore, we proved that the maximal ideal of O0 is the principal ideal M = [z], and
that every ideal of O0 is also principal and of the form Mk = [zk]. Putting together what
we did, we obtain the fact that O0 is a local ring which is a PID.

Now, for any [f ] ∈ O0 with [f ] 6= 0, if we let n = ord0([f ]), we showed that [f ] ∈ Mn,
but [f ] /∈ Mn+1, and this implies that ⋂

k≥0

Mk = (0).
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Thus, O0 is a good local ring.

We now turn to the case of real, Ck-functions, defined near 0. The situation is quite
different. As in the holomorphic case, we obtain a ring, Ok

0 , and we let

M = {[f ] ∈ Ok
0 | f(0) = 0}.

It is an ideal, in fact, the unique maximal ideal of Ok
0 . This time, to show that every

[f ] ∈ Ok
0 −M is a unit, we use the fact that if f(0) 6= 0, by continuity, f(x) 6= 0 in some

open containing 0, and so, 1/f is Ck in this open subset.

However, Ok
0 is not a good local ring, nor a domain. To show this, consider the function,

f , defined by

f(x) =

{
e−1/x if x > 0
0 if x ≤ 0.

Observe that f(x) 6= 0 for all x > 0, and yet, f(x)f(−x) ≡ 0. So, if we show that f is in
C∞, it will also be the case that f(−x) ∈ C∞, and so, [f ] is a zero-divisor in O∞0 , and thus,
also in Ok

0 (for k finite).

Consider the case k = ∞. If we let fn(x) = f(nx), we see that fn ∈ C∞ and fn(0) =
f(0) = 0, so that fn ∈ M. Moreover, since(

e−1/nx
)n

= e−1/x,

we have fn
n = f for all n ≥ 0. But then, [f ] ∈ Mn for all n ≥ 0, and so, [f ] ∈

⋂
k≥0 Mk, and⋂

k≥0

Mk 6= (0).

Thus, O∞0 is not a good local ring. Now, since f ∈ C∞, it also belongs to every Ck, and so,
Ok

0 is not a good local ring for any finite k.

It remains to prove that f is in C∞, which is done by computing derivatives by induction.
We claim that f (n) is differentiable and is a linear combination of functions of the form

h(x) =

 e−1/x

xk
if x > 0

0 if x ≤ 0,

where k ≥ 0. The base case is trivial. For the induction step, observe that

g′(x) =
−ke−1/x

xk+1
+

e−1/x

xk+2
, if x > 0

and g′(x) = 0 if x < 0. We still need to show that g′(0) = 0. Since g(x) = 0 for x ≤ 0, it
suffices to show that

lim
x→0+

g(x)

x
= lim

x→0+

e−1/x

xk+1
= 0.
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However, (setting t = 1/x) this is equivalent to proving that

lim
t→+∞

tk+1

et
= 0,

a well-known property of the exponential.
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