
Spring 2018 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 3

March 20; Due April 5, 2018

Problem B1 (80). This problem is from Knapp, Lie Groups Beyond an Introduction,
Introduction, page 21. Recall that the group SU(2) consists of all complex matrices of the
form

A =

(
α β

−β α

)
α, β ∈ C, αα + ββ = 1,

and the action · : SU(2)× (C ∪ {∞})→ C ∪ {∞} is given by

A · w =
αw + β

−βw + α
, w ∈ C ∪ {∞}.

This is a transitive action. Using the stereographic projection σN from S2 onto C∪{∞}
and its inverse σ−1N , we can define an action of SU(2) on S2 by

A · (x, y, z) = σ−1N (A · σN(x, y, z)), (x, y, z) ∈ S2,

and we denote by ρ(A) the corresponding map from S2 to S2.

(1) If we write α = a+ ib and β = c+ id, prove that ρ(A) is given by the matrix

ρ(A) =

a2 − b2 − c2 + d2 −2ab− 2cd −2ac+ 2bd
2ab− 2cd a2 − b2 + c2 − d2 −2ad− 2bc
2ac+ 2bd 2ad− 2bc a2 + b2 − c2 − d2

 .

Prove that ρ(A) is indeed a rotation matrix which represents the rotation whose axis is
the line determined by the vector (d,−c, b) and whose angle θ ∈ [−π, π] is determined by

cos
θ

2
= |a|.

Hint . Recall that the axis of a rotation matrix R ∈ SO(3) is specified by any eigenvector of
1 for R, and that the angle of rotation θ satisfies the equation

tr(R) = 2 cos θ + 1.
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(2) We can compute the derivative dρI : su(2) → so(3) of ρ at I as follows. Recall that
su(2) consists of all complex matrices of the form(

ib c+ id
−c+ id −ib

)
, b, c, d ∈ R,

so pick the following basis for su(2),

X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)
,

and define the curves in SU(2) through I given by

c1(t) =

(
eit 0
0 e−it

)
, c2(t) =

(
cos t sin t
− sin t cos t

)
, c3(t) =

(
cos t i sin t
i sin t cos t

)
.

Prove that c′i(0) = Xi for i = 1, 2, 3, and that

dρI(X1) = 2

0 −1 0
1 0 0
0 0 0

 , dρI(X2) = 2

0 0 −1
0 0 0
1 0 0

 , dρI(X3) = 2

0 0 0
0 0 −1
0 1 0

 .

Thus, we have
dρI(X1) = 2E3, dρI(X2) = −2E2, dρI(X3) = 2E1,

where (E1, E2, E3) is the basis of so(3) given in Section 2.5. Conclude that dρI is an isomor-
phism between the Lie algebras su(2) and so(3).

(3) Recall from Proposition 2.37 that we have the commutative diagram

SU(2)
ρ // SO(3)

su(2)
dρI

//

exp

OO

so(3) .

exp

OO

Since dρI is surjective and the exponential map exp: so(3)→ SO(3) is surjective, conclude
that ρ is surjective. Prove that Ker ρ = {I,−I}.

Problem B2 (20). (a) Let A be any invertible (real) n × n matrix. Prove that for every
SVD, A = V DU>, of A, the product V U> is the same (i.e., if V1DU

>
1 = V2DU

>
2 , then

V1U
>
1 = V2U

>
2 ). What does V U> have to do with the polar form of A?

(b) Given any invertible (real) n× n matrix, A, prove that there is a unique orthogonal
matrix, Q ∈ O(n), such that ‖A−Q‖F is minimal (under the Frobenius norm). In fact,
prove that Q = V U>, where A = V DU> is an SVD of A. Moreover, if det(A) > 0, show
that Q ∈ SO(n).
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What can you say if A is singular (i.e., non-invertible)?

Problem B3 (40 pts). Consider the action of the group SL(2,R) on the upper half-plane,
H = {z = x+ iy ∈ C | y > 0}, given by(

a b
c d

)
· z =

az + b

cz + d
.

(a) Check that for any g ∈ SL(2,R),

=(g · z) =
=(z)

|cz + d|2
,

and conclude that if z ∈ H, then g · z ∈ H, so that the action of SL(2,R) on H is indeed
well-defined (Recall, <(z) = x and =(z) = y, where z = x+ iy.)

(b) Check that if c 6= 0, then

az + b

cz + d
=

−1

c2z + cd
+
a

c
.

Prove that the group of Möbius transformations induced by SL(2,R) is generated by Möbius
transformations of the form

1. z 7→ z + b,

2. z 7→ kz,

3. z 7→ −1/z,

where b ∈ R and k ∈ R, with k > 0. Deduce from the above that the action of SL(2,R) on
H is transitive and that transformations of type (1) and (2) suffice for transitivity.

(c) Now, consider the action of the discrete group SL(2,Z) on H, where SL(2,Z) consists
of all matrices (

a b
c d

)
, ad− bc = 1, a, b, c, d ∈ Z.

Why is this action not transitive? Consider the two transformations

S : z 7→ −1/z

associated with

(
0 −1
1 0

)
and

T : z 7→ z + 1

associated with

(
1 1
0 1

)
.
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Define the subset, D, of H, as the set of points, z = x+ iy, such that −1/2 ≤ x ≤ −1/2
and x2 + y2 ≥ 1. Observe that D contains the three special points, i, ρ = e2πi/3 and
−ρ = eπi/3.

Draw a picture of this set, known as a fundamental domain of the action of G = SL(2,Z)
on H.

Remark: Gauss proved that the group G = SL(2,Z) is generated by S and T .

Problem B4 (30 pts). Let J be the 2× 2 matrix

J =

(
1 0
0 −1

)
and let SU(1, 1) be the set of 2× 2 complex matrices

SU(1, 1) = {A | A∗JA = J, det(A) = 1},

where A∗ is the conjugate transpose of A.

(a) Prove that SU(1, 1) is the group of matrices of the form

A =

(
a b

b a

)
, with aa− bb = 1.

If

g =

(
1 −i
1 i

)
prove that the map from SL(2,R) to SU(1, 1) given by

A 7→ gAg−1

is a group isomorphism.

(b) Prove that the Möbius transformation associated with g,

z 7→ z − i
z + i

is a bijection between the upper half-plane, H, and the unit open disk, D = {z ∈ C | |z| < 1}.
Prove that the map from SU(1, 1) to S1 ×D given by(

a b

b a

)
7→ (a/|a|, b/a)

is a continuous bijection (in fact, a homeomorphism). Conclude that SU(1, 1) is topologically
an open solid torus.
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(c) Check that SU(1, 1) acts transitively on D by(
a b

b a

)
· z =

az + b

bz + a
.

Find the stabilizer of z = 0 and conclude that

SU(1, 1)/SO(2) ∼= D.

Problem B5 (80 pts). Given a finite dimensional Lie algebra g (as a vector space over R),
we define the function B : g× g→ C by

B(X, Y ) = tr(ad(X) ◦ ad(Y )), X, Y ∈ g.

(1) Check that B is R-bilinear and symmetric.

(2) Let g = gl(2,R) = M2(R). Given any matrix A ∈ M2(R) with

A =

(
a b
c d

)
,

show that in the basis (E12, E11, E22, E21), the matrix of ad(A) is given by
a− d −b b 0
−c 0 0 b
c 0 0 −b
0 c −c d− a

 .

Show that
det(xI − ad(A)) = x2(x2 − ((a− d)2 + 4bc)).

(3) Given A,A′ ∈ M2(R) with

A =

(
a b
c d

)
, A′ =

(
a′ b′

c′ d′

)
,

prove that

B(A,A′) = 2(d− a)(d′ − a′) + 4bc′ + 4cb′ = 4tr(AA′)− 2tr(A)tr(A′).

(4) Next, let g = sl(2,R). Check that the following three matrices form a basis of sl(2,R):

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.
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Prove that in the basis (H,X, Y ), for any

A =

(
a b
c −a

)
∈ sl(2,R),

the matrix of ad(A) is  0 −c b
−2b 2a 0
2c 0 −2a

 .

Prove that
det(xI − ad(A)) = x(x2 − 4(a2 + bc)).

(5) Given A,A′ ∈ sl(2,R) with

A =

(
a b
c −a

)
, A′ =

(
a′ b′

c′ −a′′
)
,

prove that
B(A,A′) = 8aa′ + 4bc′ + 4cb′ = 4tr(AA′).

(6) Let g = so(3). For any A ∈ so(3), with

A =

 0 −c b
c 0 −a
−b a 0

 ,

we know from Proposition 2.39 that in the basis (E1, E2, E3), the matrix of ad(A) is A itself.
Prove that

B(A,A′) = −2(aa′ + bb′ + cc′) = tr(AA′).

(7) Recall that a symmetric bilinear form B is nondegenerate if for every X, if B(X, Y ) =
0 for all Y , then X = 0.

Prove that B on gl(2,R) = M2(R) is degenerate; B on sl(2,R) is nondegenerate but
neither positive definite nor negative definite; B on so(3) is nondegenerate negative definite.

(8) Extra Credit (45) points. Recall that a subspace h of a Lie algebra g is a subalgebra
of g if [x, y] ∈ h for all x, y ∈ h, and an ideal if [h, x] ∈ h for all h ∈ h and all x ∈ g. Check
that sl(n,R) is an ideal in gl(n,R), and that so(n) is a subalgebra of sl(n,R), but not an
ideal. Prove that if h is an ideal in g, then the bilinear form B on h is equal to the restriction
of the bilinear form B on g to h.

Prove the following facts: for all n ≥ 2:

gl(n,R) : B(X, Y ) = 2ntr(XY )− 2tr(X)tr(Y )

sl(n,R) : B(X, Y ) = 2ntr(XY )

so(n) : B(X, Y ) = (n− 2)tr(XY ).
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Problem B6 (100 pts). As in Problem B5, consider a finite dimensional Lie algebra g,
but this time a vector space over C, and define the function B : g× g→ C by

B(x, y) = tr(ad(x) ◦ ad(y)), x, y ∈ g.

The bilinear form B is called the Killing form of g. Recall that a homomorphism ϕ : g→ g
is a linear map such that ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ g, or equivalently such that

ϕ ◦ ad(x) = ad(ϕ(x)) ◦ ϕ, for all x ∈ g,

and that an automorphism of g is a homomorphism of g that has an inverse which is also a
homomorphism of g.

(1) Prove that for every automorphism ϕ : g→ g, we have

B(ϕ(x), ϕ(y)) = B(x, y), for all x, y ∈ g.

Prove that for all x, y, z ∈ g, we have

B(ad(x)(y), z) = −B(y, ad(x)(z)),

or equivalently
B([y, x], z) = B(y, [x, z]).

(2) Review the primary decomposition theorem, Section 16.3 of my notes Fundamentals
of Linear Algebra and Optimization (linalg.pdf), especially Theorem 16.16. For any x ∈ g,
we can apply the primary decomposition theorem to the linear map ad(x). Write

m(X) = (X − λ1)r1 · · · (X − λk)rk

for the minimal polynomial of ad(x), where λ1, . . . , λk are the distinct eigenvalues of ad(x),
and let

gλix = Ker (λiI − ad(x))ri , i = 1, . . . , k.

We know that 0 is an eigenvalue of ad(x), and we agree that λ0 = 0. Then, we have a direct
sum

g =
⊕
λi

gλix .

It is convenient to define gλx when λ is not an eigenvalue of ad(x) as

gλx = (0).

Prove that
[gλx, g

µ
x] ⊆ gλ+µx , for all λ, µ ∈ C.
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Hint . First, show that

((λ+ µ)I − ad(x))[y, z] = [(λI − ad(x))(y), z] + [y, (µI − ad(x))(z)],

for all x, y, z ∈ g, and then that

((λ+ µ)I − ad(x))n[y, z] =
n∑
p=0

(
n

p

)
[(λI − ad(x))p(y), (µI − ad(x))n−p(z)],

by induction on n.

Prove that g0x is a Lie subalgebra of g.

(3) Prove that if λ + µ 6= 0, then gλx and gµx are orthogonal with respect to B (which
means that B(X, Y ) = 0 for all X ∈ gλx and all Y ∈ gµx).

Hint . For any X ∈ gλx and any Y ∈ gµx, prove that ad(X) ◦ ad(Y ) is nilpotent. Note that for
any ν and any Z ∈ gνx,

(ad(X) ◦ ad(Y ))(Z) = [X, [Y, Z]],

so by (2),
[gλx, [g

µ
x, g

ν
x]] ⊆ gλ+µ+νx .

Conclude that we have an orthogonal direct sum decomposition

g = g0x ⊕
⊕
λ 6=0

(gλx ⊕ g−λx ).

Prove that if B is nondegenerate, then B is nondegenerate on each of the summands.

Problem B7 (60 pts). We can let the group SO(3) act on itself by conjugation, so that

R · S = RSR−1 = RSR>.

The orbits of this action are the conjugacy classes of SO(3).

(1) Prove that the conjugacy classes of SO(3) are in bijection with the following sets:

1. C0 = {(0, 0, 0)}, the sphere of radius 0.

2. Cθ, with 0 < θ < π and
Cθ = {u ∈ R3 | ‖u‖ = θ},

the sphere of radius θ.

3. Cπ = RP2, viewed as the quotient of the sphere of radius π by the equivalence relation
of being antipodal.
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(2) Give M3(R) the Euclidean structure where

〈A,B〉 =
1

2
tr(A>B).

Consider the following three curves in SO(3):

c(t) =

cos t − sin t 0
sin t cos t 0

0 0 1

 ,

for 0 ≤ t ≤ 2π,

α(θ) =

− cos 2θ 0 sin 2θ
0 −1 0

sin 2θ 0 cos 2θ

 ,

for −π/2 ≤ θ ≤ π/2, and

β(θ) =

−1 0 0
0 − cos 2θ sin 2θ
0 sin 2θ cos 2θ

 ,

for −π/2 ≤ θ ≤ π/2.

Check that c(t) is a rotation of angle t and axis (0, 0, 1), that α(θ) is a rotation of angle
π whose axis is in the (x, z)-plane, and that β(θ) is a rotation of angle π whose axis is in the
(y, z)-plane. Show that a log of α(θ) is

Bα = π

 0 − cos θ 0
cos θ 0 − sin θ

0 sin θ 0

 ,

and that a log of β(θ) is

Bβ = π

 0 − cos θ sin θ
cos θ 0 0
− sin θ 0 0

 .

(3) The curve c(t) is a closed curve starting and ending at I that intersects Cπ for t = π,
and α, β are contained in Cπ and coincide with c(π) for θ = 0. Compute the derivative
c′(π) of c(t) at t = π, and the derivatives α′(0) and β′(0), and prove that they are pairwise
orthogonal (under the inner product 〈−,−〉).

Conclude that c(t) intersects Cπ transversally in SO(3), which means that

Tc(π) c+ Tc(π) Cπ = Tc(π) SO(3).
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This fact can be used to prove that all closed curves smoothly homotopic to c(t) must
intersect Cπ transversally, and consequently c(t) is not (smoothly) homotopic to a point.
This implies that SO(3) is not simply connected, but this will have to wait for another
homework!

TOTAL: 410 + 45 points.
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