Summer 1, 2013 CIS 610

Advanced Geometric Methods in Computer Science Jean Gallier \& Dan Guralnik
 Homework 3

June 14; Due June 21, 2013

Do Exercise 2.IV.1, 2.IV.4, 3.III.1, and 3.IV.1, from the handouts on the web, and the problems below.

Problem B1 (20 pts). Let $\varphi: E \times E \rightarrow \mathbb{R}$ be a bilinear form on a real vector space E of finite dimension n. Given any basis $\left(e_{1}, \ldots, e_{n}\right)$ of E, let $A=\left(a_{i j}\right)$ be the matrix defined such that

$$
a_{i j}=\varphi\left(e_{i}, e_{j}\right),
$$

$1 \leq i, j \leq n$. We call A the matrix of φ w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$.
(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of x and y w.r.t. the basis $\left(e_{1}, \ldots, e_{n}\right)$, prove that

$$
\varphi(x, y)=X^{\top} A Y
$$

(b) Recall that A is a symmetric matrix if $A=A^{\top}$. Prove that φ is symmetric if A is a symmetric matrix.
(c) If $\left(f_{1}, \ldots, f_{n}\right)$ is another basis of E and P is the change of basis matrix from $\left(e_{1}, \ldots, e_{n}\right)$ to $\left(f_{1}, \ldots, f_{n}\right)$, prove that the matrix of φ w.r.t. the basis $\left(f_{1}, \ldots, f_{n}\right)$ is

$$
P^{\top} A P
$$

The common rank of all matrices representing φ is called the rank of φ.
Problem B2 (40 pts). Let $\varphi: E \times E \rightarrow \mathbb{R}$ be a symmetric bilinear form on a real vector space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal w.r.t. φ if $\varphi(x, y)=0$. The main purpose of this problem is to prove that there is a basis of vectors that are pairwise conjugate w.r.t. φ.
(a) Prove that if $\varphi(x, x)=0$ for all $x \in E$, then φ is identically null on E.

Otherwise, we can assume that there is some vector $x \in E$ such that $\varphi(x, x) \neq 0$. Use induction to prove that there is a basis of vectors that are pairwise conjugate w.r.t. φ.

For the induction step, proceed as follows. Let $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be a basis of E, with $\varphi\left(e_{1}, e_{1}\right) \neq 0$. Prove that there are scalars $\lambda_{2}, \ldots, \lambda_{n}$ such that each of the vectors

$$
v_{i}=e_{i}+\lambda_{i} e_{1}
$$

is conjugate to e_{1} w.r.t. φ, where $2 \leq i \leq n$, and that $\left(e_{1}, v_{2}, \ldots, v_{n}\right)$ is a basis.
(b) Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of vectors that are pairwise conjugate w.r.t. φ, and assume that they are ordered such that

$$
\varphi\left(e_{i}, e_{i}\right)= \begin{cases}\theta_{i} \neq 0 & \text { if } 1 \leq i \leq r \\ 0 & \text { if } r+1 \leq i \leq n\end{cases}
$$

where r is the rank of φ. Show that the matrix of φ w.r.t. $\left(e_{1}, \ldots, e_{n}\right)$ is a diagonal matrix, and that

$$
\varphi(x, y)=\sum_{i=1}^{r} \theta_{i} x_{i} y_{i}
$$

where $x=\sum_{i=1}^{n} x_{i} e_{i}$ and $y=\sum_{i=1}^{n} y_{i} e_{i}$.
Prove that for every symmetric matrix A, there is an invertible matrix P such that

$$
P^{\top} A P=D,
$$

where D is a diagonal matrix.
(c) Prove that there is an integer $p, 0 \leq p \leq r$ (where r is the rank of φ), such that $\varphi\left(u_{i}, u_{i}\right)>0$ for exactly p vectors of every basis $\left(u_{1}, \ldots, u_{n}\right)$ of vectors that are pairwise conjugate w.r.t. φ (Sylvester's inertia theorem).

Proceed as follows. Assume that in the basis $\left(u_{1}, \ldots, u_{n}\right)$, for any $x \in E$, we have

$$
\varphi(x, x)=\alpha_{1} x_{1}^{2}+\cdots+\alpha_{p} x_{p}^{2}-\alpha_{p+1} x_{p+1}^{2}-\cdots-\alpha_{r} x_{r}^{2}
$$

where $x=\sum_{i=1}^{n} x_{i} u_{i}$, and that in the basis $\left(v_{1}, \ldots, v_{n}\right)$, for any $x \in E$, we have

$$
\varphi(x, x)=\beta_{1} y_{1}^{2}+\cdots+\beta_{q} y_{q}^{2}-\beta_{q+1} y_{q+1}^{2}-\cdots-\beta_{r} y_{r}^{2}
$$

where $x=\sum_{i=1}^{n} y_{i} v_{i}$, with $\alpha_{i}>0, \beta_{i}>0,1 \leq i \leq r$.
Assume that $p>q$ and derive a contradiction. First, consider x in the subspace F spanned by

$$
\left(u_{1}, \ldots, u_{p}, u_{r+1}, \ldots, u_{n}\right),
$$

and observe that $\varphi(x, x) \geq 0$ if $x \neq 0$. Next, consider x in the subspace G spanned by

$$
\left(v_{q+1}, \ldots, v_{r}\right)
$$

and observe that $\varphi(x, x)<0$ if $x \neq 0$. Prove that $F \cap G$ is nontrivial (i.e., contains some nonnull vector), and derive a contradiction. This implies that $p \leq q$. Finish the proof.

The pair $(p, r-p)$ is called the signature of φ.
(d) A symmetric bilinear form φ is definite if for every $x \in E$, if $\varphi(x, x)=0$, then $x=0$.

Prove that a symmetric bilinear form is definite iff its signature is either $(n, 0)$ or $(0, n)$. In other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem B3 (30 pts). Let $\|\|$ be any matrix norm. Given an invertible $n \times n$ matrix A, if $c=1 /\left(2\left\|A^{-1}\right\|\right)$, then for every $n \times n$ matrix H, if $\|H\| \leq c$, then $A+H$ is invertible. Furthermore, if $\|\|$ is an operator norm and if $\| H \| \leq c$, then $\left\|(A+H)^{-1}\right\| \leq 1 / c$.

Problem B4 (20 pts). Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function given by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Compute the directional derivative $\mathrm{D}_{u} f(0,0)$ of f at $(0,0)$ for every vector $u=$ $\left(u_{1}, u_{2}\right) \neq 0$.
(b) Prove that the derivative $\mathrm{D} f(0,0)$ does not exist. What is the behavior of the function f on the parabola $y=x^{2}$ near the origin $(0,0)$?

Problem B5 (40 pts). (a) Let $f: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be the function defined on $n \times n$ matrices by

$$
f(A)=A^{2}
$$

Prove that

$$
\mathrm{D} f_{A}(H)=A H+H A
$$

for all $A, H \in \mathrm{M}_{n}(\mathbb{R})$.
(b) Let $f: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be the function defined on $n \times n$ matrices by

$$
f(A)=A^{3} .
$$

Prove that

$$
\mathrm{D} f_{A}(H)=A^{2} H+A H A+H A^{2}
$$

for all $A, H \in \mathrm{M}_{n}(\mathbb{R})$.
(c) Let $f: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be the function defined on invertible $n \times n$ matrices by

$$
f(A)=A^{-1}
$$

Prove that

$$
\mathrm{D} f_{A}(H)=-A^{-1} H A^{-1}
$$

for all $A \in \mathrm{GL}(n, \mathbb{R})$ and for all $H \in \mathrm{M}_{n}(\mathbb{R})$.

Problem B6 (60 pts). Let H be a symmetric positive definite matrix and let K be any symmetric matrix.
(1) Prove that $H K$ is diagonalizable, with real eigenvalues.
(2) If K is also positive definite, then prove that the eigenvalues of $H K$ are positive.
(3) If K is any symmetric matrix, prove that the number of positive (resp. negative) eigenvalues of $H K$ is equal to the number of positive (resp. negative) eigenvalues of K.

Problem B7 (80 pts). Recall that a matrix $B \in \mathrm{M}_{n}(\mathbb{R})$ is skew-symmetric if

$$
B^{\top}=-B
$$

Check that the set $\mathfrak{s o}(n)$ of skew-symmetric matrices is a vector space of dimension $n(n-1) / 2$, and thus is isomorphic to $\mathbb{R}^{n(n-1) / 2}$.
(a) Given a rotation matrix

$$
R=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right),
$$

where $0<\theta<\pi$, prove that there is a skew symmetric matrix B such that

$$
R=(I-B)(I+B)^{-1}
$$

(b) Prove that the eigenvalues of a skew-symmetric matrix are either 0 or pure imaginary (that is, of the form $i \mu$ for $\mu \in \mathbb{R}$.).

Let $C: \mathfrak{s o}(n) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be the function given by

$$
C(B)=(I-B)(I+B)^{-1} .
$$

Prove that if B is skew-symmetric, then $I-B$ and $I+B$ are invertible, and so C is welldefined. Prove that

$$
(I+B)(I-B)=(I-B)(I+B)
$$

and that

$$
(I+B)(I-B)^{-1}=(I-B)^{-1}(I+B)
$$

Prove that

$$
(C(B))^{\top} C(B)=I
$$

and that

$$
\operatorname{det} C(B)=+1,
$$

so that $C(B)$ is a rotation matrix. Furthermore, show that $C(B)$ does not admit -1 as an eigenvalue.
(c) Let $\mathbf{S O}(n)$ be the group of $n \times n$ rotation matrices. Prove that the map

$$
C: \mathfrak{s o}(n) \rightarrow \mathbf{S O}(n)
$$

is bijective onto the subset of rotation matrices that do not admit -1 as an eigenvalue. Show that the inverse of this map is given by

$$
B=(I+R)^{-1}(I-R)=(I-R)(I+R)^{-1}
$$

where $R \in \mathbf{S O}(n)$ does not admit -1 as an eigenvalue. Check that C is a homeomorphism between $\mathfrak{s o}(n)$ and $C(\mathfrak{s o}(n))$.
(d) If $f: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ and $g: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ are differentiable matrix functions, prove that

$$
d(f g)_{A}(B)=d f_{A}(B) g(A)+f(A) d g_{A}(B)
$$

for all $A, B \in \mathrm{M}_{n}(\mathbb{R})$.
(e) Prove that

$$
d C(B)(A)=-\left[I+(I-B)(I+B)^{-1}\right] A(I+B)^{-1}
$$

Prove that $d C(B)$ is injective, for every skew-symmetric matrix B. Prove that C a parametrization of $\mathbf{S O}(n)$.

