
Summer 1, 2013 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier & Dan Guralnik

Homework 3

June 14; Due June 21, 2013

Do Exercise 2.IV.1, 2.IV.4, 3.III.1, and 3.IV.1, from the handouts on the web, and the
problems below.

Problem B1 (20 pts). Let ϕ : E × E → R be a bilinear form on a real vector space E of
finite dimension n. Given any basis (e1, . . . , en) of E, let A = (ai j) be the matrix defined
such that

ai j = ϕ(ei, ej),

1 ≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . , en).

(a) For any two vectors x and y, if X and Y denote the column vectors of coordinates of
x and y w.r.t. the basis (e1, . . . , en), prove that

ϕ(x, y) = X>AY.

(b) Recall that A is a symmetric matrix if A = A>. Prove that ϕ is symmetric if A is a
symmetric matrix.

(c) If (f1, . . . , fn) is another basis of E and P is the change of basis matrix from (e1, . . . , en)
to (f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis (f1, . . . , fn) is

P>AP.

The common rank of all matrices representing ϕ is called the rank of ϕ.

Problem B2 (40 pts). Let ϕ : E × E → R be a symmetric bilinear form on a real vector
space E of finite dimension n. Two vectors x and y are said to be conjugate or orthogonal
w.r.t. ϕ if ϕ(x, y) = 0. The main purpose of this problem is to prove that there is a basis of
vectors that are pairwise conjugate w.r.t. ϕ.

(a) Prove that if ϕ(x, x) = 0 for all x ∈ E, then ϕ is identically null on E.

Otherwise, we can assume that there is some vector x ∈ E such that ϕ(x, x) 6= 0. Use
induction to prove that there is a basis of vectors that are pairwise conjugate w.r.t. ϕ.
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For the induction step, proceed as follows. Let (e1, e2, . . . , en) be a basis of E, with
ϕ(e1, e1) 6= 0. Prove that there are scalars λ2, . . . , λn such that each of the vectors

vi = ei + λie1

is conjugate to e1 w.r.t. ϕ, where 2 ≤ i ≤ n, and that (e1, v2, . . . , vn) is a basis.

(b) Let (e1, . . . , en) be a basis of vectors that are pairwise conjugate w.r.t. ϕ, and assume
that they are ordered such that

ϕ(ei, ei) =

{
θi 6= 0 if 1 ≤ i ≤ r,
0 if r + 1 ≤ i ≤ n,

where r is the rank of ϕ. Show that the matrix of ϕ w.r.t. (e1, . . . , en) is a diagonal matrix,
and that

ϕ(x, y) =
r∑

i=1

θixiyi,

where x =
∑n

i=1 xiei and y =
∑n

i=1 yiei.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

P>AP = D,

where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ), such that
ϕ(ui, ui) > 0 for exactly p vectors of every basis (u1, . . . , un) of vectors that are pairwise
conjugate w.r.t. ϕ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1, . . . , un), for any x ∈ E, we have

ϕ(x, x) = α1x
2
1 + · · ·+ αpx

2
p − αp+1x

2
p+1 − · · · − αrx

2
r,

where x =
∑n

i=1 xiui, and that in the basis (v1, . . . , vn), for any x ∈ E, we have

ϕ(x, x) = β1y
2
1 + · · ·+ βqy

2
q − βq+1y

2
q+1 − · · · − βry2r ,

where x =
∑n

i=1 yivi, with αi > 0, βi > 0, 1 ≤ i ≤ r.

Assume that p > q and derive a contradiction. First, consider x in the subspace F
spanned by

(u1, . . . , up, ur+1, . . . , un),

and observe that ϕ(x, x) ≥ 0 if x 6= 0. Next, consider x in the subspace G spanned by

(vq+1, . . . , vr),

and observe that ϕ(x, x) < 0 if x 6= 0. Prove that F ∩ G is nontrivial (i.e., contains some
nonnull vector), and derive a contradiction. This implies that p ≤ q. Finish the proof.
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The pair (p, r − p) is called the signature of ϕ.

(d) A symmetric bilinear form ϕ is definite if for every x ∈ E, if ϕ(x, x) = 0, then x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n, 0) or (0, n). In
other words, a symmetric definite bilinear form has rank n and is either positive or negative.

Problem B3 (30 pts). Let ‖ ‖ be any matrix norm. Given an invertible n× n matrix A,
if c = 1/(2 ‖A−1‖), then for every n × n matrix H, if ‖H‖ ≤ c, then A + H is invertible.
Furthermore, if ‖ ‖ is an operator norm and if ‖H‖ ≤ c, then ‖(A+H)−1‖ ≤ 1/c.

Problem B4 (20 pts). Let f : R2 → R be the function given by

f(x, y) =

{
x2y

x4+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

(a) Compute the directional derivative Duf(0, 0) of f at (0, 0) for every vector u =
(u1, u2) 6= 0.

(b) Prove that the derivative Df(0, 0) does not exist. What is the behavior of the function
f on the parabola y = x2 near the origin (0, 0)?

Problem B5 (40 pts). (a) Let f : Mn(R) → Mn(R) be the function defined on n × n
matrices by

f(A) = A2.

Prove that
DfA(H) = AH +HA,

for all A,H ∈ Mn(R).

(b) Let f : Mn(R)→ Mn(R) be the function defined on n× n matrices by

f(A) = A3.

Prove that
DfA(H) = A2H + AHA+HA2,

for all A,H ∈ Mn(R).

(c) Let f : GL(n,R)→ Mn(R) be the function defined on invertible n× n matrices by

f(A) = A−1.

Prove that
DfA(H) = −A−1HA−1,

for all A ∈ GL(n,R) and for all H ∈ Mn(R).
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Problem B6 (60 pts). Let H be a symmetric positive definite matrix and let K be any
symmetric matrix.

(1) Prove that HK is diagonalizable, with real eigenvalues.

(2) If K is also positive definite, then prove that the eigenvalues of HK are positive.

(3) If K is any symmetric matrix, prove that the number of positive (resp. negative)
eigenvalues of HK is equal to the number of positive (resp. negative) eigenvalues of K.

Problem B7 (80 pts). Recall that a matrix B ∈ Mn(R) is skew-symmetric if

B> = −B.

Check that the set so(n) of skew-symmetric matrices is a vector space of dimension n(n−1)/2,
and thus is isomorphic to Rn(n−1)/2.

(a) Given a rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
,

where 0 < θ < π, prove that there is a skew symmetric matrix B such that

R = (I −B)(I +B)−1.

(b) Prove that the eigenvalues of a skew-symmetric matrix are either 0 or pure imaginary
(that is, of the form iµ for µ ∈ R.).

Let C : so(n)→ Mn(R) be the function given by

C(B) = (I −B)(I +B)−1.

Prove that if B is skew-symmetric, then I − B and I + B are invertible, and so C is well-
defined. Prove that

(I +B)(I −B) = (I −B)(I +B),

and that
(I +B)(I −B)−1 = (I −B)−1(I +B).

Prove that
(C(B))>C(B) = I

and that
detC(B) = +1,

so that C(B) is a rotation matrix. Furthermore, show that C(B) does not admit −1 as an
eigenvalue.
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(c) Let SO(n) be the group of n× n rotation matrices. Prove that the map

C : so(n)→ SO(n)

is bijective onto the subset of rotation matrices that do not admit −1 as an eigenvalue. Show
that the inverse of this map is given by

B = (I +R)−1(I −R) = (I −R)(I +R)−1,

where R ∈ SO(n) does not admit −1 as an eigenvalue. Check that C is a homeomorphism
between so(n) and C(so(n)).

(d) If f : Mn(R) → Mn(R) and g : Mn(R) → Mn(R) are differentiable matrix functions,
prove that

d(fg)A(B) = dfA(B)g(A) + f(A)dgA(B),

for all A,B ∈ Mn(R).

(e) Prove that

dC(B)(A) = −[I + (I −B)(I +B)−1]A(I +B)−1.

Prove that dC(B) is injective, for every skew-symmetric matrix B. Prove that C a
parametrization of SO(n).
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