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Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 3

June 23, 2009; Due June 30 2009

“B problems” must be turned in.

Problem B1 (30 pts). Let (v1, . . . , vn) be a sequence of n vectors in R
d and let V be the

d×n matrix whose j-th column is vj. Prove the equivalence of the following two statements:

(a) There is no nontrivial positive linear dependence among the vj, which means that there
is no nonzero vector, y = (y1, . . . , yn) ∈ R

n, with yj ≥ 0 for j = 1, . . . , n, so that

y1v1 + · · · + ynvn = 0

or equivalently, V y = 0.

(b) There is some vector, c ∈ R
d, so that c�V > 0, which means that c�vj > 0, for

j = 1, . . . , n.

Problem B2 (20 pts). Let E be a real vector space of finite dimension, n ≥ 1. Say that
two bases, (u1, . . . , un) and (v1, . . . , vn), of E have the same orientation iff det(P ) > 0, where
P the change of basis matrix from (u1, . . . , un) and (v1, . . . , vn), namely, the matrix whose
jth columns consist of the coordinates of vj over the basis (u1, . . . , un).

(a) Prove that having the same orientation is an equivalence relation with two equivalence
classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e1, . . . , en), of
E. Any other basis, (v1, . . . , vn), has the same orientation as (e1, . . . , en) (and is said to be
positive or direct) iff det(P ) > 0, else it said to have the opposite orientation of (e1, . . . , en)
(or to be negative or indirect), where P is the change of basis matrix from (e1, . . . , en) to
(v1, . . . , vn). An oriented vector space is a vector space with some chosen orientation (a
positive basis).

(b) Let B1 = (u1, . . . , un) and B2 = (v1, . . . , vn) be two orthonormal bases. For any
sequence of vectors, (w1, . . . , wn), in E, let detB1(w1, . . . , wn) be the determinant of the
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matrix whose columns are the coordinates of the wj’s over the basis B1 and similarly for
detB2(w1, . . . , wn).

Prove that if B1 and B2 have the same orientation, then

detB1(w1, . . . , wn) = detB2(w1, . . . , wn).

Given any oriented vector space, E, for any sequence of vectors, (w1, . . . , wn), in E, the
common value, detB(w1, . . . , wn), for all positive orthonormal bases, B, of E is denoted

λE(w1, . . . , wn)

and called a volume form of (w1, . . . , wn).

(c) Given any Euclidean oriented vector space, E, of dimension n for any n − 1 vectors,
w1, . . . , wn−1, in E, check that the map

x �→ λE(w1, . . . , wn−1, x)

is a linear form. Then, prove that there is a unique vector, denoted w1 × · · · × wn−1, such
that

λE(w1, . . . , wn−1, x) = (w1 × · · · × wn−1) · x,

for all x ∈ E. The vector w1 × · · · ×wn−1 is called the cross-product of (w1, . . . , wn−1). It is
a generalization of the cross-product in R

3 (when n = 3).

Problem B3 (30 pts). Given p vectors (u1, . . . , up) in a Euclidean space E of dimension
n ≥ p, the Gram determinant (or Gramian) of the vectors (u1, . . . , up) is the determinant

Gram(u1, . . . , up) =
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...
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∣
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(1) Prove that
Gram(u1, . . . , un) = λE(u1, . . . , un)2.

Hint . If (e1, . . . , en) is an orthonormal basis and A is the matrix of the vectors (u1, . . . , un)
over this basis,

det(A)2 = det(A�A) = det(Ai · Aj),

where Ai denotes the ith column of the matrix A, and (Ai · Aj) denotes the n × n matrix
with entries Ai · Aj.

(2) Prove that
‖u1 × · · · × un−1‖2 = Gram(u1, . . . , un−1).
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Hint . Letting w = u1 × · · · × un−1, observe that

λE(u1, . . . , un−1, w) = 〈w,w〉 = ‖w‖2,

and show that

‖w‖4 = λE(u1, . . . , un−1, w)2 = Gram(u1, . . . , un−1, w)

= Gram(u1, . . . , un−1)‖w‖2.

Problem B4 (50 pts). Given a Euclidean space E, let U be a nonempty affine subspace
of E, and let a be any point in E. We define the distance d(a, U) of a to U as

d(a, U) = inf{‖ab‖ | b ∈ U}.
(a) Prove that the affine subspace U⊥

a defined such that

U⊥
a = a +

−→
U

⊥

intersects U in a single point b such that d(a, U) = ‖ab‖.
Hint . Recall the discussion after Lemma 2.11.2.

(b) Let (a0, . . . , ap) be a frame for U (not necessarily orthonormal). Prove that

d(a, U)2 =
Gram(a0a, a0a1, . . . , a0ap)

Gram(a0a1, . . . , a0ap)
.

Hint . Gram is unchanged when a linear combination of other vectors is added to one of the
vectors, and thus

Gram(a0a, a0a1, . . . , a0ap) = Gram(ba, a0a1, . . . , a0ap),

where b is the unique point defined in question (a).

(c) If D and D′ are two lines in E that are not coplanar, a, b ∈ D are distinct points on
D, and a′, b′ ∈ D′ are distinct points on D′, prove that if d(D,D′) is the shortest distance
between D and D′ (why does it exist?), then

d(D,D′)2 =
Gram(aa′, ab, a′b′)

Gram(ab, a′b′)
.

Problem B5 (30 pts). (1) If an upper triangular n × n matrix R is invertible, prove that
its inverse is also upper triangular.

(2) If an upper triangular matrix is orthogonal, prove that it must be a diagonal matrix.

If A is an invertible n × n matrix and if A = Q1R1 = Q2R2, where R1 and R2 are upper
triangular with positive diagonal entries and Q1, Q2 are orthogonal, prove that Q1 = Q2 and
R1 = R2.

TOTAL: 160 points.
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