Summer 1, 2009 CIS 610

Advanced Geometric Methods in Computer Science Jean Gallier

Homework 3

June 23, 2009; Due June 30 2009

"B problems" must be turned in.

Problem B1 (30 pts). Let (v_1, \ldots, v_n) be a sequence of n vectors in \mathbb{R}^d and let V be the $d \times n$ matrix whose j-th column is v_j . Prove the equivalence of the following two statements:

(a) There is no nontrivial positive linear dependence among the v_j , which means that there is no nonzero vector, $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, with $y_j \ge 0$ for $j = 1, \ldots, n$, so that

$$y_1v_1 + \dots + y_nv_n = 0$$

or equivalently, Vy = 0.

(b) There is some vector, $c \in \mathbb{R}^d$, so that $c^\top V > 0$, which means that $c^\top v_j > 0$, for $j = 1, \ldots, n$.

Problem B2 (20 pts). Let *E* be a real vector space of finite dimension, $n \ge 1$. Say that two bases, (u_1, \ldots, u_n) and (v_1, \ldots, v_n) , of *E* have the same orientation iff det(P) > 0, where *P* the change of basis matrix from (u_1, \ldots, u_n) and (v_1, \ldots, v_n) , namely, the matrix whose *j*th columns consist of the coordinates of v_j over the basis (u_1, \ldots, u_n) .

(a) Prove that having the same orientation is an equivalence relation with two equivalence classes.

An orientation of a vector space, E, is the choice of any fixed basis, say (e_1, \ldots, e_n) , of E. Any other basis, (v_1, \ldots, v_n) , has the same orientation as (e_1, \ldots, e_n) (and is said to be positive or direct) iff det(P) > 0, else it said to have the opposite orientation of (e_1, \ldots, e_n) (or to be negative or indirect), where P is the change of basis matrix from (e_1, \ldots, e_n) to (v_1, \ldots, v_n) . An oriented vector space is a vector space with some chosen orientation (a positive basis).

(b) Let $B_1 = (u_1, \ldots, u_n)$ and $B_2 = (v_1, \ldots, v_n)$ be two orthonormal bases. For any sequence of vectors, (w_1, \ldots, w_n) , in E, let $\det_{B_1}(w_1, \ldots, w_n)$ be the determinant of the

matrix whose columns are the coordinates of the w_j 's over the basis B_1 and similarly for $\det_{B_2}(w_1,\ldots,w_n)$.

Prove that if B_1 and B_2 have the same orientation, then

$$\det_{B_1}(w_1,\ldots,w_n) = \det_{B_2}(w_1,\ldots,w_n).$$

Given any oriented vector space, E, for any sequence of vectors, (w_1, \ldots, w_n) , in E, the common value, $\det_B(w_1, \ldots, w_n)$, for all positive orthonormal bases, B, of E is denoted

$$\lambda_E(w_1,\ldots,w_n)$$

and called a *volume form* of (w_1, \ldots, w_n) .

(c) Given any Euclidean oriented vector space, E, of dimension n for any n-1 vectors, w_1, \ldots, w_{n-1} , in E, check that the map

$$x \mapsto \lambda_E(w_1, \ldots, w_{n-1}, x)$$

is a linear form. Then, prove that there is a unique vector, denoted $w_1 \times \cdots \times w_{n-1}$, such that

$$\lambda_E(w_1,\ldots,w_{n-1},x) = (w_1 \times \cdots \times w_{n-1}) \cdot x,$$

for all $x \in E$. The vector $w_1 \times \cdots \times w_{n-1}$ is called the *cross-product* of (w_1, \ldots, w_{n-1}) . It is a generalization of the cross-product in \mathbb{R}^3 (when n = 3).

Problem B3 (30 pts). Given p vectors (u_1, \ldots, u_p) in a Euclidean space E of dimension $n \ge p$, the Gram determinant (or Gramian) of the vectors (u_1, \ldots, u_p) is the determinant

$$\operatorname{Gram}(u_1,\ldots,u_p) = \begin{vmatrix} \|u_1\|^2 & \langle u_1, u_2 \rangle & \ldots & \langle u_1, u_p \rangle \\ \langle u_2, u_1 \rangle & \|u_2\|^2 & \ldots & \langle u_2, u_p \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle u_p, u_1 \rangle & \langle u_p, u_2 \rangle & \ldots & \|u_p\|^2 \end{vmatrix}.$$

(1) Prove that

$$\operatorname{Gram}(u_1,\ldots,u_n) = \lambda_E(u_1,\ldots,u_n)^2.$$

Hint. If (e_1, \ldots, e_n) is an orthonormal basis and A is the matrix of the vectors (u_1, \ldots, u_n) over this basis,

$$\det(A)^2 = \det(A^{\top}A) = \det(A_i \cdot A_j),$$

where A_i denotes the *i*th column of the matrix A, and $(A_i \cdot A_j)$ denotes the $n \times n$ matrix with entries $A_i \cdot A_j$.

(2) Prove that

$$||u_1 \times \cdots \times u_{n-1}||^2 = \operatorname{Gram}(u_1, \dots, u_{n-1}).$$

Hint. Letting $w = u_1 \times \cdots \times u_{n-1}$, observe that

$$\lambda_E(u_1,\ldots,u_{n-1},w) = \langle w,w \rangle = ||w||^2,$$

and show that

$$||w||^4 = \lambda_E(u_1, \dots, u_{n-1}, w)^2 = \operatorname{Gram}(u_1, \dots, u_{n-1}, w)$$

= $\operatorname{Gram}(u_1, \dots, u_{n-1})||w||^2.$

Problem B4 (50 pts). Given a Euclidean space E, let U be a nonempty affine subspace of E, and let a be any point in E. We define the *distance* d(a, U) of a to U as

$$d(a, U) = \inf\{\|\mathbf{ab}\| \mid b \in U\}.$$

(a) Prove that the affine subspace U_a^\perp defined such that

$$U_a^{\perp} = a + \overrightarrow{U}^{\perp}$$

intersects U in a single point b such that $d(a, U) = ||\mathbf{ab}||$. Hint. Recall the discussion after Lemma 2.11.2.

(b) Let (a_0, \ldots, a_p) be a frame for U (not necessarily orthonormal). Prove that

$$d(a, U)^{2} = \frac{\operatorname{Gram}(\mathbf{a_{0}a_{1}}, \mathbf{a_{0}a_{1}}, \dots, \mathbf{a_{0}a_{p}})}{\operatorname{Gram}(\mathbf{a_{0}a_{1}}, \dots, \mathbf{a_{0}a_{p}})}.$$

Hint. Gram is unchanged when a linear combination of other vectors is added to one of the vectors, and thus

$$\operatorname{Gram}(\mathbf{a_0}\mathbf{a}, \mathbf{a_0}\mathbf{a_1}, \dots, \mathbf{a_0}\mathbf{a_p}) = \operatorname{Gram}(\mathbf{b}\mathbf{a}, \mathbf{a_0}\mathbf{a_1}, \dots, \mathbf{a_0}\mathbf{a_p}),$$

where b is the unique point defined in question (a).

(c) If D and D' are two lines in E that are not coplanar, $a, b \in D$ are distinct points on D, and $a', b' \in D'$ are distinct points on D', prove that if d(D, D') is the shortest distance between D and D' (why does it exist?), then

$$d(D, D')^2 = \frac{\operatorname{Gram}(\mathbf{aa'}, \mathbf{ab}, \mathbf{a'b'})}{\operatorname{Gram}(\mathbf{ab}, \mathbf{a'b'})}.$$

Problem B5 (30 pts). (1) If an upper triangular $n \times n$ matrix R is invertible, prove that its inverse is also upper triangular.

(2) If an upper triangular matrix is orthogonal, prove that it must be a diagonal matrix.

If A is an invertible $n \times n$ matrix and if $A = Q_1 R_1 = Q_2 R_2$, where R_1 and R_2 are upper triangular with positive diagonal entries and Q_1, Q_2 are orthogonal, prove that $Q_1 = Q_2$ and $R_1 = R_2$.

TOTAL: 160 points.