
Spring 2018 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 2

February 13; Due March 13, 2018

Problem B1 (60). (a) Consider the map, f : GL(n,R)→ R, given by

f(A) = det(A).

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity
matrix). Then, prove that

df(A)(B) = det(A)tr(A−1B),

where A ∈ GL(n,R).

(b) Use the map A 7→ det(A) − 1 to prove that SL(n,R) is a manifold of dimension
n2 − 1.

(c) Let J be the (n+ 1)× (n+ 1) diagonal matrix

J =

(
In 0
0 −1

)
.

We denote by SO(n, 1) the group of real (n+ 1)× (n+ 1) matrices

SO(n, 1) = {A ∈ GL(n+ 1,R) | A>JA = J and det(A) = 1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A−1 = JA>J (this is
the special Lorentz group.) Consider the function f : GL+(n+ 1)→ S(n+ 1), given by

f(A) = A>JA− J,

where S(n+ 1) denotes the space of (n+ 1)× (n+ 1) symmetric matrices. Prove that

df(A)(H) = A>JH +H>JA

for any matrix, H. Prove that df(A) is surjective for all A ∈ SO(n, 1) and that SO(n, 1) is

a manifold of dimension n(n+1)
2

.
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Problem B2 (30). (a) Given any matrix

B =

(
a b
c −a

)
∈ sl(2,C),

if ω2 = a2 + bc and ω is any of the two complex roots of a2 + bc, prove that if ω 6= 0, then

eB = coshω I +
sinh ω

ω
B,

and eB = I +B, if a2 + bc = 0. Observe that tr(eB) = 2 cosh ω.

Prove that the exponential map, exp: sl(2,C)→ SL(2,C), is not surjective. For instance,
prove that (

−1 1
0 −1

)
is not the exponential of any matrix in sl(2,C).

Problem B3 (60 pts). Given a group G, recall that its center is the subset

Z(G) = {a ∈ G, ag = ga for all g ∈ G}.

(1) Check that Z(G) is a commutative normal subgroup of G.

(2) Prove that a matrix A ∈ Mn(R) commutes with all matrices B ∈ GL(n,R) iff A = λI
for some λ ∈ R.

Hint . Remember the elementary matrices.

Prove that
Z(GL(n,R)) = {λI | λ ∈ R, λ 6= 0}.

(3) Prove that for any m ≥ 1,

Z(SO(2(m+ 1))) = {I,−I}
Z(SO(2m− 1)) = {I}
Z(SL(m,R)) = {λI | λ ∈ R, λm = 1}.

(4) Prove that a matrix A ∈ Mn(C) commutes with all matrices B ∈ GL(n,C) iff A = λI
for some λ ∈ C.

(5) Prove that for any n ≥ 1,

Z(GL(n,C)) = {λI | λ ∈ C, λ 6= 0}

Z(SL(n,C)) = {e
k2π
n
iI | k = 0, 1, . . . , n− 1}

Z(U(n)) = {eiθI | 0 ≤ θ < 2π}

Z(SU(n)) = {e
k2π
n
iI | k = 0, 1, . . . , n− 1}.
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(6) Prove that the groups SO(3) and SU(2) are not isomorphic (although their Lie
algebras are isomorphic).

Problem B4 (120 pts). Recall from Homework 1, Problem B6, the Cayley parametrization
of rotation matrices in SO(n) given by

C(B) = (I −B)(I +B)−1,

where B is any n× n skew symmetric matrix.

(a) Now, consider n = 3, i.e., SO(3). Let E1, E2 and E3 be the rotations about the
x-axis, y-axis, and z-axis, respectively, by the angle π, i.e.,

E1 =

1 0 0
0 −1 0
0 0 −1

 , E2 =

−1 0 0
0 1 0
0 0 −1

 , E3 =

−1 0 0
0 −1 0
0 0 1

 .

Prove that the four maps

B 7→ C(B)

B 7→ E1C(B)

B 7→ E2C(B)

B 7→ E3C(B)

where B is skew symmetric, are parametrizations of SO(3) and that the union of the images
of C, E1C, E2C and E3C covers SO(3), so that SO(3) is a manifold.

(b) Let A be any matrix (not necessarily invertible). Prove that there is some diagonal
matrix, E, with entries +1 or −1, so that EA+ I is invertible.

(c) Prove that every rotation matrix, A ∈ SO(n), is of the form

A = E(I −B)(I +B)−1,

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1, and where the number of −1 is even. Moreover, prove that every orthogonal matrix
A ∈ O(n) is of the form

A = E(I −B)(I +B)−1,

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1. The above provide parametrizations for SO(n) (resp. O(n)) that show that SO(n) and
O(n) are manifolds. However, observe that the number of these charts grows exponentially
with n.
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Problem B5 (30). Consider the parametric surface given by

x(u, v) =
8uv

(u2 + v2 + 1)2
,

y(u, v) =
4v(u2 + v2 − 1)

(u2 + v2 + 1)2
,

z(u, v) =
4(u2 − v2)

(u2 + v2 + 1)2
.

The trace of this surface is called a crosscap. In order to plot this surface, make the change
of variables

u = ρ cos θ

v = ρ sin θ.

Prove that we obtain the parametric definition

x =
4ρ2

(ρ2 + 1)2
sin 2θ,

y =
4ρ(ρ2 − 1)

(ρ2 + 1)2
sin θ,

z =
4ρ2

(ρ2 + 1)2
cos 2θ.

Show that the entire trace of the surface is obtained for ρ ∈ [0, 1] and θ ∈ [−π, π].

Hint . What happens if you change ρ to 1/ρ?

Plot the trace of the surface using the above parametrization. Show that there is a line
of self-intersection along the portion of the z-axis corresponding to 0 ≤ z ≤ 1. What can
you say about the point corresponding to ρ = 1 and θ = 0?

Plot the portion of the surface for ρ ∈ [0, 1] and θ ∈ [0, π].

(b) Express the trigonometric functions in terms of u = tan(θ/2), and letting v = ρ, show
that we get

x =
16uv2(1− u2)

(u2 + 1)2(v2 + 1)2
,

y =
8uv(u2 + 1)(v2 − 1)

(u2 + 1)2(v2 + 1)2
,

z =
4v2(u4 − 6u2 + 1)

(u2 + 1)2(v2 + 1)2
.
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Problem B6 (30). Consider the parametric surface given by

x(u, v) =
4v(u2 + v2 − 1)

(u2 + v2 + 1)2
,

y(u, v) =
4u(u2 + v2 − 1)

(u2 + v2 + 1)2
,

z(u, v) =
4(u2 − v2)

(u2 + v2 + 1)2
.

The trace of this surface is called the Steiner Roman surface. In order to plot this surface,
make the change of variables

u = ρ cos θ

v = ρ sin θ.

Prove that we obtain the parametric definition

x =
4ρ(ρ2 − 1)

(ρ2 + 1)2
sin θ,

y =
4ρ(ρ2 − 1)

(ρ2 + 1)2
cos θ,

z =
4ρ2

(ρ2 + 1)2
cos 2θ.

Show that the entire trace of the surface is obtained for ρ ∈ [0, 1] and θ ∈ [−π, π]. Plot
the trace of the surface using the above parametrization.

Plot the portion of the surface for ρ ∈ [0, 1] and θ ∈ [0, π].

Prove that this surface has five singular points.

(b) Express the trigonometric functions in terms of u = tan(θ/2), and letting v = ρ, show
that we get

x =
8uv(u2 + 1)(v2 − 1)

(u2 + 1)2(v2 + 1)2
,

y =
4v(1− u4)(v2 − 1)

(u2 + 1)2(v2 + 1)2
,

z =
4v2(u4 − 6u2 + 1)

(u2 + 1)2(v2 + 1)2
.

Problem B7 (160). Consider the map H : R3 → R4 defined such that

(x, y, z) 7→ (xy, yz, xz, x2 − y2).
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Prove that when it is restricted to the sphere S2 (in R3), we have H(x, y, z) = H(x′, y′, z′) iff
(x′, y′, z′) = (x, y, z) or (x′, y′, z′) = (−x,−y,−z). In other words, the inverse image of every
point in H(S2) consists of two antipodal points.

(a) Prove that the map H induces an injective map from the projective plane onto H(S2),
and that it is a homeomorphism.

(b) The map H allows us to realize concretely the projective plane in R4 as an embedded
manifold. Consider the three maps from R2 to R4 given by

ψ1(u, v) =

(
uv

u2 + v2 + 1
,

v

u2 + v2 + 1
,

u

u2 + v2 + 1
,

u2 − v2

u2 + v2 + 1

)
,

ψ2(u, v) =

(
u

u2 + v2 + 1
,

v

u2 + v2 + 1
,

uv

u2 + v2 + 1
,

u2 − 1

u2 + v2 + 1

)
,

ψ3(u, v) =

(
u

u2 + v2 + 1
,

uv

u2 + v2 + 1
,

v

u2 + v2 + 1
,

1− u2

u2 + v2 + 1

)
.

Observe that ψ1 is the composition H ◦ α1, where α1 : R2 −→ S2 is given by

(u, v) 7→
(

u√
u2 + v2 + 1

,
v√

u2 + v2 + 1
,

1√
u2 + v2 + 1

)
,

that ψ2 is the composition H ◦ α2, where α2 : R2 −→ S2 is given by

(u, v) 7→
(

u√
u2 + v2 + 1

,
1√

u2 + v2 + 1
,

v√
u2 + v2 + 1

)
.

and ψ3 is the composition H ◦ α3, where α3 : R2 −→ S2 is given by

(u, v) 7→
(

1√
u2 + v2 + 1

,
u√

u2 + v2 + 1
,

v√
u2 + v2 + 1

)
,

Prove that each ψi is injective, continuous and nonsingular (i.e., the Jacobian has rank 2).

(c) Prove that if ψ1(u, v) = (x, y, z, t), then

y2 + z2 ≤ 1

4
and y2 + z2 =

1

4
iff u2 + v2 = 1.

Prove that if ψ1(u, v) = (x, y, z, t), then u and v satisfy the equations

(y2 + z2)u2 − zu+ z2 = 0

(y2 + z2)v2 − yv + y2 = 0.

Prove that if y2 + z2 6= 0, then

u =
z(1−

√
1− 4(y2 + z2))

2(y2 + z2)
if u2 + v2 ≤ 1,

6



else

u =
z(1 +

√
1− 4(y2 + z2))

2(y2 + z2)
if u2 + v2 ≥ 1,

and there are similar formulae for v. Prove that the expression giving u in terms of y and z
is continuous everywhere in {(y, z) | y2 + z2 ≤ 1

4
} and similarly for the expression giving v

in terms of y and z. Conclude that ψ1 : R2 → ψ1(R2) is a homeomorphism onto its image.
Therefore, U1 = ψ1(R2) is an open subset of H(S2).

Prove that if ψ2(u, v) = (x, y, z, t), then

x2 + y2 ≤ 1

4
and x2 + y2 =

1

4
iff u2 + v2 = 1.

Prove that if ψ2(u, v) = (x, y, z, t), then u and v satisfy the equations

(x2 + y2)u2 − xu+ x2 = 0

(x2 + y2)v2 − yv + y2 = 0.

Conclude that ψ2 : R2 → ψ2(R2) is a homeomorphism onto its image and that the set
U2 = ψ2(R2) is an open subset of H(S2).

Prove that if ψ3(u, v) = (x, y, z, t), then

x2 + z2 ≤ 1

4
and x2 + z2 =

1

4
iff u2 + v2 = 1.

Prove that if ψ3(u, v) = (x, y, z, t), then u and v satisfy the equations

(x2 + z2)u2 − xu+ x2 = 0

(x2 + z2)v2 − zv + z2 = 0.

Conclude that ψ3 : R2 → ψ3(R2) is a homeomorphism onto its image and that the set
U3 = ψ3(R2) is an open subset of H(S2).

Prove that the union of the Ui’s covers H(S2). Conclude that ψ1, ψ2, ψ3 are parametriza-
tions of RP2 as a smooth manifold in R4.

(d) Plot the surfaces obtained by dropping the fourth coordinate and the third coordi-
nates, respectively (with u, v ∈ [−1, 1]).

(e) Prove that if (x, y, z, t) ∈ H(S2), then

x2y2 + x2z2 + y2z2 = xyz

x(z2 − y2) = yzt.

Prove that the zero locus of these equations strictly contains H(S2). This is a “famous
mistake” of Hilbert and Cohn-Vossen in Geometry and the Immagination!
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Finding a set of equations defining exactly H(S2) appears to be an open problem.

Problem B8 (80). Recall that adA = LA−RA, and that LA and RA commute. Prove that

d(exp)A = eLA
∞∑
j=0

(−1)j

(j + 1)!
(LA −RA)j.

Hint . Recall from Homework 1 Problem B3 that

d(exp)A =
∑
h,k≥0

LhAR
k
A

(h+ k + 1)!
.

To simplify notation, write a for LA and b for LB. Then, the problem is to prove that

ea
∞∑
j=0

(−1)j

(j + 1)!
(a− b)j =

∑
h,k≥0

ahbk

(h+ k + 1)!
, (∗)

assuming that ab = ba.

Expand the expression on the left and equate the coefficients of the monomial ahbk. To
conclude, you will need to prove the following identity:

h∑
i=0

(−1)h−i
(
h+ k + 1

i

)(
h+ k − i

k

)
= 1.

TOTAL: 570 points.
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