## Summer 1, 2013 CIS 610

## Advanced Geometric Methods in Computer Science Jean Gallier \& Dan Guralnik <br> Homework 2

June 4; Due June 14, 2013

Do Exercise 2.I.1, 2.II.1, 2.II.3, 2.II.4, 2.III.1, 2.III.2, 2.IV.3, from the handout on the web, and the two problems below.

Problem B1 (40 pts). Given a field $K$ and any nonempty set $I$, let $K^{(I)}$ be the subset of the cartesian product $K^{I}$ consisting of all functions $\lambda: I \rightarrow K$ with finite support, which means that $\lambda(i)=0$ for all but finitely many $i \in I$. We usually denote the function defined by $\lambda$ as $\left(\lambda_{i}\right)_{i \in I}$, and call is a family indexed by $I$. We define addition and multiplication by a scalar as follows:

$$
\left(\lambda_{i}\right)_{i \in I}+\left(\mu_{i}\right)_{i \in I}=\left(\lambda_{i}+\mu_{i}\right)_{i \in I}
$$

and

$$
\alpha \cdot\left(\mu_{i}\right)_{i \in I}=\left(\alpha \mu_{i}\right)_{i \in I} .
$$

(1) Check that $K^{(I)}$ is a vector space.
(2) If $I$ is any nonempty subset, for any $i \in I$, we denote by $e_{i}$ the family $\left(e_{j}\right)_{j \in I}$ defined so that

$$
e_{j}= \begin{cases}1 & \text { if } j=i \\ 0 & \text { if } j \neq i\end{cases}
$$

Prove that the family $\left(e_{i}\right)_{i \in I}$ is linearly independent and spans $K^{(I)}$, so that it is a basis of $K^{(I)}$ called the canonical basis of $K^{(I)}$. When $I$ is finite, say of cardinality $n$, then prove that $K^{(I)}$ is isomorphic to $K^{n}$.
(3) The function $\iota: I \rightarrow K^{(I)}$, such that $\iota(i)=e_{i}$ for every $i \in I$, is clearly an injection.

For any other vector space $F$, for any function $f: I \rightarrow F$, prove that there is a unique linear map $\bar{f}: K^{(I)} \rightarrow F$, such that

$$
f=\bar{f} \circ \iota,
$$

as in the following commutative diagram:


We call the vector space $K^{(I)}$ the vector space freely generated by the set $I$.
Problem B2 (100 pts). (Some pitfalls of infinite dimension) Let $E$ be the vector space freely generated by the set of natural numbers, $\mathbb{N}=\{0,1,2, \ldots\}$, and let $\left(e_{0}, e_{1}, e_{2}, \ldots, e_{n}, \ldots\right)$ be its canonical basis. We define the function $\varphi$ such that

$$
\varphi\left(e_{i}, e_{j}\right)= \begin{cases}\delta_{i j} & \text { if } i, j \geq 1 \\ 1 & \text { if } i=j=0 \\ 1 / 2^{j} & \text { if } i=0, j \geq 1 \\ 1 / 2^{i} & \text { if } i \geq 1, j=0\end{cases}
$$

and we extend $\varphi$ by bilinearity to a function $\varphi: E \times E \rightarrow K$. This means that if $u=\sum_{i \in \mathbb{N}} \lambda_{i} e_{i}$ and $v=\sum_{j \in \mathbb{N}} \mu_{j} e_{j}$, then

$$
\varphi\left(\sum_{i \in \mathbb{N}} \lambda_{i} e_{i}, \sum_{j \in \mathbb{N}} \mu_{j} e_{j}\right)=\sum_{i, j \in \mathbb{N}} \lambda_{i} \mu_{j} \varphi\left(e_{i}, e_{j}\right),
$$

but remember that $\lambda_{i} \neq 0$ and $\mu_{j} \neq 0$ only for finitely many indices $i, j$.
(1) Prove that $\varphi$ is positive definite, so that it is an inner product on $E$.

What would happen if we changed $1 / 2^{j}$ to 1 (or any constant)?
(2) Let $H$ be the subspace of $E$ spanned by the family $\left(e_{i}\right)_{i \geq 1}$, a hyperplane in $E$. Find $H^{\perp}$ and $H^{\perp \perp}$, and prove that

$$
H \neq H^{\perp \perp}
$$

(3) Let $U$ be the subspace of $E$ spanned by the family $\left(e_{2 i}\right)_{i \geq 1}$, and let $V$ be the subspace of $E$ spanned by the family $\left(e_{2 i-1}\right)_{i \geq 1}$. Prove that

$$
\begin{aligned}
U^{\perp} & =V \\
V^{\perp} & =U \\
U^{\perp \perp} & =U \\
V^{\perp \perp} & =V,
\end{aligned}
$$

yet

$$
(U \cap V)^{\perp} \neq U^{\perp}+V^{\perp}
$$

and

$$
(U+V)^{\perp \perp} \neq U+V .
$$

If $W$ is the subspace spanned by $e_{0}$ and $e_{1}$, prove that

$$
(W \cap H)^{\perp} \neq W^{\perp}+H^{\perp} .
$$

(4) Consider the dual space $E^{*}$ of $E$, and let $\left(e_{i}^{*}\right)_{i \in \mathbb{N}}$ be the family of dual forms of the basis $\left(e_{i}\right)_{i \in N}$. Check that the family $\left(e_{i}^{*}\right)_{i \in \mathbb{N}}$ is linearly independent.
(5) Let $f \in E^{*}$ be the linear form defined by

$$
f\left(e_{i}\right)=1 \quad \text { for all } i \in \mathbb{N} .
$$

Prove that $f$ is not in the subspace spanned by the $e_{i}^{*}$. If $F$ is the subspace of $E^{*}$ spanned by the $e_{i}^{*}$ and $f$, find $F^{0}$ and $F^{00}$, and prove that

$$
F \neq F^{00}
$$

TOTAL: $120+40$ points.

