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Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 2

June 9, 2009; Due June 18, 2009

“B problems” must be turned in.

Problem B1 (30 pts). The purpose of this problem is to study certain affine maps of A
2.

(1) Consider affine maps of the form(
x1

x2

)
�→

(
cos θ − sin θ
sin θ cos θ

) (
x1

x2

)
+

(
b1

b2

)
.

Prove that such maps have a unique fixed point c if θ �= 2kπ, for all integers k. Show
that these are rotations of center c, which means that with respect to a frame with origin c
(the unique fixed point), these affine maps are represented by rotation matrices.

(2) Consider affine maps of the form(
x1

x2

)
�→

(
λ cos θ −λ sin θ
µ sin θ µ cos θ

)(
x1

x2

)
+

(
b1

b2

)
.

Prove that such maps have a unique fixed point iff (λ + µ) cos θ �= 1 + λµ. Prove that if
λµ = 1 and λ > 0, there is some angle θ for which either there is no fixed point, or there are
infinitely many fixed points.

(3) Prove that the affine map(
x1

x2

)
�→

(
8/5 −6/5
3/10 2/5

)(
x1

x2

)
+

(
1
1

)

has no fixed point.

(4) Prove that an arbitrary affine map(
x1

x2

)
�→

(
a1 a2

a3 a4

)(
x1

x2

)
+

(
b1

b2

)

has a unique fixed point iff the matrix(
a1 − 1 a2

a3 a4 − 1

)
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is invertible.

Problem B2 (30 pts). Prove Proposition 2.3 of the notes on Convex Sets, Polytopes,
Polyhedra, ..., that is:

If K is any compact subset of A
m, then the convex hull, conv(K), of K is also compact.

Problem B3 (30 pts). Prove the version of Carathéodory’s theorem for cones (Theorem
2.4 of notes on Convex Sets, Polytopes, Polyhedra, ...), that is:

Given any vector space, E, of dimension m, for any (nonvoid) family S = (vi)i∈L of vectors
in E, the cone, cone(S), spanned by S is equal to the set of positive combinations of families
of m vectors in S.

Problem B4 (30 pts). (i) Show that if E is an affine space of dimension m and S is a
finite subset of E with n elements, if either n ≥ m + 3 or n = m + 2 and some family of
m + 1 points of S is affinely dependent, then S has at least two Radon partitions.

(ii) Prove the version of Radon’s theorem for cones (Theorem 2.11 of Convex Sets, Poly-
topes, Polyhedra, ...), namely:

Given any vector space E of dimension m, for every subset X of E, if cone(X) is a pointed
cone such that X has at least m + 1 nonzero vectors, then there is a partition of X into two
nonempty disjoint subsets, X1 and X2, such that the cones, cone(X1) and cone(X2), have a
nonempty intersection not reduced to {0}.

(iii) (Extra Credit (30 pts)) Does the converse of (i) hold?

Problem B5 (30 pts). Let S be any nonempty subset of an affine space E. Given some
point a ∈ S, we say that S is star-shaped with respect to a iff the line segment [a, x] is
contained in S for every x ∈ S, i.e. (1− λ)a + λx ∈ S for all λ such that 0 ≤ λ ≤ 1. We say
that S is star-shaped iff it is star-shaped w.r.t. to some point a ∈ S.

(1) Prove that every nonempty convex set is star-shaped.

(2) Show that there are star-shaped subsets that are not convex. Show that there are
nonempty subsets that are not star-shaped (give an example in A

n, n = 1, 2, 3).

(3) Given a star-shaped subset S of E, let N(S) be the set of all points a ∈ S such that
S is star-shaped with respect to a. Prove that N(S) is convex.

Problem B6 (50 pts). (a) Let E be a vector space, and let U and V be two subspaces
of E so that they form a direct sum E = U ⊕ V . Recall that this means that every vector
x ∈ E can be written as x = u + v, for some unique u ∈ U and some unique v ∈ V . Define
the function pU : E → U (resp. pV : E → V ) so that pU(x) = u (resp. pV (x) = v), where
x = u + v, as explained above. Check that that pU and pV are linear.
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(b) Now assume that E is an affine space (nontrivial), and let U and V be affine subspaces

such that
−→
E =

−→
U ⊕ −→

V . Pick any Ω ∈ V , and define qU : E → −→
U (resp. qV : E → −→

V , with
Ω ∈ U) so that

qU(a) = p−→
U

(Ωa) (resp. qV (a) = p−→
V

(Ωa)), for every a ∈ E.

Prove that qU does not depend on the choice of Ω ∈ V (resp. qV does not depend on the
choice of Ω ∈ U). Define the map pU : E → U (resp. pV : E → V ) so that

pU(a) = a − qV (a) (resp. pV (a) = a − qU(a)), for every a ∈ E.

Prove that pU (resp. pV ) is affine.

The map pU (resp. pV ) is called the projection onto U parallel to V (resp. projection
onto V parallel to U).

(c) Let (a0, . . . , an) be n + 1 affinely independent points in A
n, and let ∆(a0, . . . , an)

denote the convex hull of (a0, . . . , an) (an n-simplex). Prove that if f : An → A
n is an affine

map sending ∆(a0, . . . , an) inside itself, i.e.,

f(∆(a0, . . . , an)) ⊆ ∆(a0, . . . , an),

then, f has some fixed point b ∈ ∆(a0, . . . , an), i.e.,

f(b) = b.

Hint : Proceed by induction on n. First, treat the case n = 1. The affine map is determined
by f(a0) and f(a1), which are affine combinations of a0 and a1. There is an explicit formula
for some fixed point of f . For the induction step, compose f with some suitable projections.

TOTAL: 200 (+ 30) points.
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