Homework VI (due April 21), Math 603, Spring 2003. (GJZ)

B I(a). Let k be a field of characteristic 0 and let f(X) € k[X] be an irreducible polynomial
of degree n > 2. Write ay,...,q, for a full set of roots of f(X) in its splitting field, M.
We proved in class that M is normal over k, and as a corollary, this implies that for any
two distinct roots «, 3 of f(X), there is a k-automorphism, o, of M so that o(a) = . As
every permutation is a product of transpositions, we deduce that for every permutation, ,
of the roots ar,...,a,, there is a k-automorphism, o, of M so that o(co;) = o(ax), for
1 =1,...,n. Consequently, if some difference of roots, say as — a; is in k, by applying the
k-automorphism, o;, so that o;(a2) = «; and o(a;) = o; for all i # 2, with j > 3, we see
that o; — a; € k for j = 2,...,n. Then, the sum of these differences is

Zaj —(n—1ao = Zaj —na; € k.
=2 j=1

But, Z?Zl a; is £ the coefficient of the term of degre n — 1 in f(X), thus in k, and since
char(k) = 0, we can divide by n, and we deduce that oy € k, which is absurd, as f(X) is
irreducible over k.

Now, for a counter-example if char(k) = p > 0. We claim that the polynomial
f(X)=XP-X -1

over k = Z/pZ is irreducible and has distinct roots, oy = a, e =a+1,...,a, =a+p—1,
where « is any of the roots of f(X) in its splitting field, 2. Since p is a prime, we know that

a’ =a, forevery a € Z/pZ

and so
a?—a—-1=a—a—1=-1, foreveryac Z/pZ,

which shows that f(X) has no root in Z/pZ. Thus, a ¢ Z/pZ. We also know that (z+y)P =
aP + 2P, and so, for every a € Z/pZ (with a # 0)

fla+a)=(a+a)f —(a+a)—1=cP+ad’ —a—a—1=0,

since o —a—1 = 0 and a? = q, for all a € Z/pZ. 1t remains to show that f(X) = X?—X —1
is irreducible over Z/pZ. Now, if f(X) is reducible it can be factored as f(X) = g(X)h(X),
with deg(g),deg(h) > 1. If deg(g) = 1, then g(X) is of the form X — ¢, where £ € Z/pZ
is some root of f(X), contradicting the fact that no root of f(X) is in Z/pZ. So, we may
assume that 2 < deg(g) < p — 1. In the splitting field, Q, of f(X), the roots of g(X) are
E+411,...,&+ i, where r = deg(g), 0 < i; <p—1and £ € 2 is some root of f(X) not in
Z./pZ. However,
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is equal to & the coefficient of X"~ in ¢g(X); this implies that r{ € Z/pZ, and since
2 <r <p-1, we deduce that £ € Z/pZ, a contradiction. Therefore, f(X) is irreducible
over Z/pZ.

B II. Let £ C K be two fields of characteristic 0 and assume the following conditions:
(i) Every f(X) € k[X] of odd degree has a root in K.

(ii) For every o € K, the polynomial X% — a has a root in K.

(a) Let g(X) € k[X] be any polynomial of degree deg(g) = n > 1. We prove by induction
on m, where n = 2™n (with ny odd), that g(X) has a root in K. The case m = 0 holds by
(1), since nyg is odd.

Assume that the induction hypothesis holds up to m — 1, for any given m > 1. Let
ai,...,q, be the roots of g is a splitting field, 2, of g, and for any r» € k, let %(;) =
a; + a; + rogog, with 1 <i < j <n. Let h(X) € Q[X] be given by

We know that every coefficient, ¢;, of h(X) is £ some elementary symmetric function, s;, in

the indeterminates V(T)

4+ and so,

a==xs(... ,71-(;), ) =380+ o Frogag,. ).
For every transposition m = (i,k) of {1,...,n}, if j # k, then 7T(’}/l-(;)
then W(’yi(; )) = 71-(;). As every permutation is a product of transpositions, we deduce that ¢
is a symmetric polynomial in aq,...,a,. However, it is well-known that every symmetric
poylynomial in «g,...,q, can be written as a polynomial in the elementary symmetric
functions in ay, ..., a,. As these functions are + the coefficients of g(X), we have ¢; € k for
all [.

Moreover, deg(h) = n(n — 1)/2 = 2™ ng(2™ny — 1) = 2™~ nf, where nj = 2™ng — 1 is
odd. Therefore, by the induction hypothesis, for every r € k, there are some integers ,, j,
with 1 <4, < j, < n, so that ”yz-(:;r € K is aroot of h(X). Since char(k) = 0, the field £ must
be infinite, and so, the set of pairs (i,j) as above is infinite. Note: Since char(k) = 0, the
field Q is contained in k, so, we may assume r € Z. This implies that there are r| £ ry € k
so that i,, =4,, =% and j,, = j,, = j. Then,

) = 7](7,;), and if j = k,

a; +a; +ro;a; € K and o;+ a; + roouay € K.

It follows that o; + a; = a € K and a5 = 3 € K. Consequently, o; and «; are the roots
of the quadratic equation
X?—aX+8=0.
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Since char(K) = 0, of course, this equation can be written as

A4 — o

0.
4

(X —a/2)’ +

We are reduced to proving that every element of K has a square root, but this is holds by
(ii). Therefore, we conclude that a;, a; € K, i.e., f(X) has aroot in K. It follows that every
nonconstant polynomial f(X) € k[X] has all its roots in K.

BII (b) Further assume that K/k is normal of finite degree. Let G = G(K/k) be the Galois
group of K/k. As char(k) = 0, we proved in class that the fixed field Fix(G(K/k)) is equal
to k. If g(X) € K[X] is any polynomial of nonzero degree, let

hx) = [[ol@)(X).

oeg
Observe that h is fixed by all ¢ € G, so its coefficients are in Fix(G(K/k)) = k, and
h(X) € k[X]. By part (a), we know that A(X) has some root § € K. But, if h(f) = 0, then

for some o € G, and thus, o(0) is a root of g(X) in K. Therefore, K is algebraically closed.

BII (¢) If k=R and K = C, by the intermediate value theorem, (i) holds. If a € C, we can
write o« = r(cos@ + isind), where r € R with » > 0. Then, /r(cos(0/2) + isin(6/2)) is a
square root of . Moreover, C = R[i] is a normal extension of degree 2, since i is a root of
the irreducible (separable) polynomial X2+ 1. By part (b), we deduce that C is algebraically
closed.



BVI (a) Say k is a field with char(k) = p > 2; let K = k(X,Y) (where X,Y are indep.
transcendentals over k) and let f(Z) = Z* + XZP +Y € K|[Z].

First, observe that f/(Z) = 2pZ*~! + pXZP~1 = 0. Thus, f(X) is inseparable over K.
We claim that f(Z) is irreducible in K[Z].

If not, then either f(Z) = (g(Z))?, where g(Z) is irreducible, or f(Z) = g(Z)h(Z), where
(9,h) =1 (with g(Z),h(Z) € K[Z]). Since f'(Z) = 0, in the first case, f(Z) = (9(2))?,
get

s9(2)g'(Z) = 0.

If p does not divide s, then ¢'(Z) = 0. For degree reasons, we must have g(Z) = Z? 4+ u and
s = 2. Thus,

F(Z2)= (2P +u)? = Z% + 2uZP +u* = Z% + XZP + Y € K|[Z]

which implies 2u = X and u? = Z. As X and Y are independent transcendentals over k,
this is impossible. Thus, p | s, and for degree reasons, s = 2p and f(Z) = (Z* + aZ + b)?,
where a,b € K. It follows that

f(2)=(Z*+aZ +b)P =Z +a?ZP + V= Z* + XZP + Y € K|Z],
which implies that ¢ = X and ¥ = Y in K = k(X,Y). However, this is imposssible.
Therefore, we are reduced to the case f(Z) = g(Z)h(Z), where (g,h) = 1.

Since f'(Z) =0, we get g'h + gh’ = 0. Since (g, h) = 1, there exist u,v € K[Z] so that
ug + hv = 1. Then, we have

g =ugq + g'hv =ugg’' — gh'v = g(ug’ — h'v).

If ¢'(Z) #£ 0, then ¢g(Z) divides ¢'(Z), which is absurd. Thus, ¢’(Z) =0. As ¢h+ gh/ =0,
we also deduce that h'(Z) = 0. For degree reasons, we must have g(Z) = Z? + u and
hZ)=Z?+v (in K[Z]). Then,

f(X)=(Z°4+u)(Z° +v) = Z% + (u+v)Z° +uv = Z* + XZP + Y € K[Z].

It follows that © + v = X and uv = Y, which is impossible, as X and Y are independent
transcendentals over k.

In conclusion, f(Z) is irreducible over K[Z].

Let L = K (), where 6 is a root of f(Z) in its splitting field. Assume that there is some
B € L with 8 ¢ K and ? € K. If f(Z) were irreducible over K(3)[Z], then f(Z) would
be the minimum K (3)-polynomial of §, and so [L: K ()] = 2p. But, as f(Z) is irreducible
over K[Z], we also have [L: K| = 2p = deg(f), and so, K = K([3); this implies f € K, a
contradiction. Therefore, f(Z) is reducible over K (3)[Z].



We claim that f(Z) = g(Z)P, for some g(Z) € K(B)[Z]. If so, for degree reasons,
g(Z) = Z* + aZ + b, and as we saw earlier, X = a” and Y = b, for some a,b € K(3) C L.
It follows that X'/?,Y''/? ¢ K(3) C L and then

2 = [L: K] = [H(X/P,Y/P): K] = p?,

i.e., p(2 —p) > 0, but this is absurd, since p > 3.

Thus, it remains to prove that if f(Z) is reducible in K(3)[Z], then f(Z) = (9(Z))?, for
some ¢g(Z) € K(()[Z]. The proof of the irreducibilty of f(Z) in K[Z] already proved that
if f(Z) is not a product of relatively prime factors, then f(Z) = (g(Z))P. So, assume that
f(Z) = g(Z)h(Z), with (g,h) = 1. We already know from the proof of the irreducibilty of
f(Z) in K[Z] that we must have ¢(Z) = Z? + v and h(Z) = Z? + v, in k(B)[Z]. But now,
as f(0) = 0, either g(0) =0 or h(A) = 0. Say, g(f) = 0, the other case being similar.

Then, 0 + v = 0 with v € K(8)[Z], and since ¥ € K, we get or* € K. From
0% + X0P +Y =0, we get
0" + XP0P +YP = 0.

If we write 67" = a/b, where a,b € k[X,Y], with (a,b) = 1, we get
a* 4+ XPab+ Y?b* = 0.
Thus, b | a, and since (a,b) = 1, we may assume that b = 1. It follows that
a® = —(XPa +YP),

which is impossible, as the degree of Y in a? must be even. Finally, this proves that L/K
does not contain any purely separable element over K even though it is inseparable over K.

BVI (b) Let © be the a normal closure of L/K. We claim that G(Q/K) = Z/27Z. This is
because
7%+ XZP +Y =0

has two distinct roots in €2, each with multiplicity p. Indeed, if we let U = ZP, then U is a
root of Z? + XZ +Y = 0, which has two distinct roots, 0y, 0s, if char(k) = p > 3. Then, we
need to solve for ZP = 0;, with ¢ = 1, 2. Each of these equations has p multiple roots.



B VIII (a) Assume that K/k is a finite extension of fields and assume that K /k is separable.
If so, K = k(0), where 0 is some root of some irreducible separable polynomial f(X) € k[X]
and

K = E[X](f(X)).

In any extension L/k, we can write f(X) = HZ:1 9:(X), where the ¢;(X) are mutually
distinct irreducible polynomials, because f(X) has distinct roots in its splitting field. Then,

t
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K@y L= (k[X]/(f(X))) @ L = LIX]/(F(X)L)

However, as each ¢;(X) is irreducible over k, each K; = L[X]/(¢;(X)L) is a field. Moreover,
each extension K;/L is separable. This yields (1) = (2).

Obviously, (2) = (3).



