
Homework VI (due April 21), Math 603, Spring 2003. (GJZ)

B I(a). Let k be a field of characteristic 0 and let f(X) ∈ k[X] be an irreducible polynomial
of degree n ≥ 2. Write α1, . . . , αn for a full set of roots of f(X) in its splitting field, M .
We proved in class that M is normal over k, and as a corollary, this implies that for any
two distinct roots α, β of f(X), there is a k-automorphism, σ, of M so that σ(α) = β. As
every permutation is a product of transpositions, we deduce that for every permutation, π,
of the roots α1, . . . , αn, there is a k-automorphism, σ, of M so that σ(αi) = σ(απ(i)), for
i = 1, . . . , n. Consequently, if some difference of roots, say α2 − α1 is in k, by applying the
k-automorphism, σj, so that σj(α2) = αj and σ(αi) = αi for all i 6= 2, with j ≥ 3, we see
that αj − α1 ∈ k for j = 2, . . . , n. Then, the sum of these differences is

n∑
j=2

αj − (n− 1)α1 =
n∑

j=1

αj − nα1 ∈ k.

But,
∑n

j=1 αj is ± the coefficient of the term of degre n − 1 in f(X), thus in k, and since
char(k) = 0, we can divide by n, and we deduce that α1 ∈ k, which is absurd, as f(X) is
irreducible over k.

Now, for a counter-example if char(k) = p > 0. We claim that the polynomial

f(X) = Xp −X − 1

over k = Z/pZ is irreducible and has distinct roots, α1 = α, α2 = α + 1, . . . , αp = α + p− 1,
where α is any of the roots of f(X) in its splitting field, Ω. Since p is a prime, we know that

ap = a, for every a ∈ Z/pZ

and so
ap − a− 1 = a− a− 1 = −1, for every a ∈ Z/pZ,

which shows that f(X) has no root in Z/pZ. Thus, α /∈ Z/pZ. We also know that (x+y)p =
xp + zp, and so, for every a ∈ Z/pZ (with a 6= 0)

f(α + a) = (α + a)p − (α + a)− 1 = αp + ap − α− a− 1 = 0,

since αp−α−1 = 0 and ap = a, for all a ∈ Z/pZ. It remains to show that f(X) = Xp−X−1
is irreducible over Z/pZ. Now, if f(X) is reducible it can be factored as f(X) = g(X)h(X),
with deg(g), deg(h) ≥ 1. If deg(g) = 1, then g(X) is of the form X − ξ, where ξ ∈ Z/pZ
is some root of f(X), contradicting the fact that no root of f(X) is in Z/pZ. So, we may
assume that 2 ≤ deg(g) ≤ p − 1. In the splitting field, Ω, of f(X), the roots of g(X) are
ξ + i1, . . . , ξ + ir, where r = deg(g), 0 ≤ ij ≤ p − 1 and ξ ∈ Ω is some root of f(X) not in
Z/pZ. However,

r∑
j=1

(ξ + ij) = rξ +
r∑

j=1

ij
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is equal to ± the coefficient of Xr−1 in g(X); this implies that rξ ∈ Z/pZ, and since
2 ≤ r ≤ p − 1, we deduce that ξ ∈ Z/pZ, a contradiction. Therefore, f(X) is irreducible
over Z/pZ.

B II. Let k ⊆ K be two fields of characteristic 0 and assume the following conditions:

(i) Every f(X) ∈ k[X] of odd degree has a root in K.

(ii) For every α ∈ K, the polynomial X2 − α has a root in K.

(a) Let g(X) ∈ k[X] be any polynomial of degree deg(g) = n ≥ 1. We prove by induction
on m, where n = 2mn0 (with n0 odd), that g(X) has a root in K. The case m = 0 holds by
(i), since n0 is odd.

Assume that the induction hypothesis holds up to m − 1, for any given m ≥ 1. Let
α1, . . . , αn be the roots of g is a splitting field, Ω, of g, and for any r ∈ k, let γ

(r)
ij =

αi + αj + rαiαj, with 1 ≤ i < j ≤ n. Let h(X) ∈ Ω[X] be given by

h(X) =
∏

1≤i<j≤n

(X − γ
(r)
ij ).

We know that every coefficient, cl, of h(X) is ± some elementary symmetric function, sl, in

the indeterminates γ
(r)
ij , and so,

cl = ±sl(. . . , γ
(r)
ij , . . .) = ±sl(. . . , αi + αj + rαiαj, . . .).

For every transposition π = (i, k) of {1, . . . , n}, if j 6= k, then π(γ
(r)
ij ) = γ

(r)
jk , and if j = k,

then π(γ
(r)
ij ) = γ

(r)
ij . As every permutation is a product of transpositions, we deduce that cl

is a symmetric polynomial in α1, . . . , αn. However, it is well-known that every symmetric
poylynomial in α1, . . . , αn can be written as a polynomial in the elementary symmetric
functions in α1, . . . , αn. As these functions are ± the coefficients of g(X), we have cl ∈ k for
all l.

Moreover, deg(h) = n(n − 1)/2 = 2m−1n0(2
mn0 − 1) = 2m−1n′0, where n′0 = 2mn0 − 1 is

odd. Therefore, by the induction hypothesis, for every r ∈ k, there are some integers ir, jr

with 1 ≤ ir < jr ≤ n, so that γ
(r)
irjr

∈ K is a root of h(X). Since char(k) = 0, the field k must
be infinite, and so, the set of pairs (i, j) as above is infinite. Note: Since char(k) = 0, the
field Q is contained in k, so, we may assume r ∈ Z. This implies that there are r1 6= r2 ∈ k
so that ir1 = ir2 = i and jr1 = jr2 = j. Then,

αi + αj + r1αiαj ∈ K and αi + αj + r2αiαj ∈ K.

It follows that αi + αj = α ∈ K and αiαj = β ∈ K. Consequently, αi and αj are the roots
of the quadratic equation

X2 − αX + β = 0.
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Since char(K) = 0, of course, this equation can be written as

(X − α/2)2 +
4β − α2

4
= 0.

We are reduced to proving that every element of K has a square root, but this is holds by
(ii). Therefore, we conclude that αi, αj ∈ K, i.e., f(X) has a root in K. It follows that every
nonconstant polynomial f(X) ∈ k[X] has all its roots in K.

BII (b) Further assume that K/k is normal of finite degree. Let G = G(K/k) be the Galois
group of K/k. As char(k) = 0, we proved in class that the fixed field Fix(G(K/k)) is equal
to k. If g(X) ∈ K[X] is any polynomial of nonzero degree, let

h(X) =
∏
σ∈G

σ(g)(X).

Observe that h is fixed by all σ ∈ G, so its coefficients are in Fix(G(K/k)) = k, and
h(X) ∈ k[X]. By part (a), we know that h(X) has some root θ ∈ K. But, if h(θ) = 0, then

σ(g)(θ) = g(σ(θ)) = 0,

for some σ ∈ G, and thus, σ(θ) is a root of g(X) in K. Therefore, K is algebraically closed.

BII (c) If k = R and K = C, by the intermediate value theorem, (i) holds. If α ∈ C, we can
write α = r(cos θ + i sin θ), where r ∈ R with r ≥ 0. Then,

√
r(cos(θ/2) + i sin(θ/2)) is a

square root of α. Moreover, C = R[i] is a normal extension of degree 2, since i is a root of
the irreducible (separable) polynomial X2 +1. By part (b), we deduce that C is algebraically
closed.
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BVI (a) Say k is a field with char(k) = p > 2; let K = k(X, Y ) (where X,Y are indep.
transcendentals over k) and let f(Z) = Z2p + XZp + Y ∈ K[Z].

First, observe that f ′(Z) = 2pZ2p−1 + pXZp−1 ≡ 0. Thus, f(X) is inseparable over K.
We claim that f(Z) is irreducible in K[Z].

If not, then either f(Z) = (g(Z))s, where g(Z) is irreducible, or f(Z) = g(Z)h(Z), where
(g, h) = 1 (with g(Z), h(Z) ∈ K[Z]). Since f ′(Z) = 0, in the first case, f(Z) = (g(Z))s, we
get

sg(Z)g′(Z) = 0.

If p does not divide s, then g′(Z) ≡ 0. For degree reasons, we must have g(Z) = Zp + u and
s = 2. Thus,

f(Z) = (Zp + u)2 = Z2p + 2uZp + u2 = Z2p + XZp + Y ∈ K[Z]

which implies 2u = X and u2 = Z. As X and Y are independent transcendentals over k,
this is impossible. Thus, p | s, and for degree reasons, s = 2p and f(Z) = (Z2 + aZ + b)p,
where a, b ∈ K. It follows that

f(Z) = (Z2 + aZ + b)p = Z2p + apZp + bp = Z2p + XZp + Y ∈ K[Z],

which implies that ap = X and bp = Y in K = k(X,Y ). However, this is imposssible.
Therefore, we are reduced to the case f(Z) = g(Z)h(Z), where (g, h) = 1.

Since f ′(Z) = 0, we get g′h + gh′ = 0. Since (g, h) = 1, there exist u, v ∈ K[Z] so that
ug + hv = 1. Then, we have

g′ = ugg′ + g′hv = ugg′ − gh′v = g(ug′ − h′v).

If g′(Z) 6≡ 0, then g(Z) divides g′(Z), which is absurd. Thus, g′(Z) ≡ 0. As g′h + gh′ = 0,
we also deduce that h′(Z) = 0. For degree reasons, we must have g(Z) = Zp + u and
h(Z) = Zp + v (in K[Z]). Then,

f(X) = (Zp + u)(Zp + v) = Z2p + (u + v)Zp + uv = Z2p + XZp + Y ∈ K[Z].

It follows that u + v = X and uv = Y , which is impossible, as X and Y are independent
transcendentals over k.

In conclusion, f(Z) is irreducible over K[Z].

Let L = K(θ), where θ is a root of f(Z) in its splitting field. Assume that there is some
β ∈ L with β /∈ K and βp ∈ K. If f(Z) were irreducible over K(β)[Z], then f(Z) would
be the minimum K(β)-polynomial of θ, and so [L: K(β)] = 2p. But, as f(Z) is irreducible
over K[Z], we also have [L: K] = 2p = deg(f), and so, K = K(β); this implies β ∈ K, a
contradiction. Therefore, f(Z) is reducible over K(β)[Z].
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We claim that f(Z) = g(Z)p, for some g(Z) ∈ K(β)[Z]. If so, for degree reasons,
g(Z) = Z2 + aZ + b, and as we saw earlier, X = ap and Y = bp, for some a, b ∈ K(β) ⊆ L.
It follows that X1/p, Y 1/p ∈ K(β) ⊆ L and then

2p = [L: K] ≥ [k(X1/p, Y 1/p): K] = p2,

i.e., p(2− p) ≥ 0, but this is absurd, since p ≥ 3.

Thus, it remains to prove that if f(Z) is reducible in K(β)[Z], then f(Z) = (g(Z))p, for
some g(Z) ∈ K(β)[Z]. The proof of the irreducibilty of f(Z) in K[Z] already proved that
if f(Z) is not a product of relatively prime factors, then f(Z) = (g(Z))p. So, assume that
f(Z) = g(Z)h(Z), with (g, h) = 1. We already know from the proof of the irreducibilty of
f(Z) in K[Z] that we must have g(Z) = Zp + u and h(Z) = Zp + v, in k(β)[Z]. But now,
as f(θ) = 0, either g(θ) = 0 or h(θ) = 0. Say, g(θ) = 0, the other case being similar.

Then, θp + u = 0 with u ∈ K(β)[Z], and since βp ∈ K, we get θp2 ∈ K. From
θ2p + Xθp + Y = 0, we get

θ2p2

+ Xpθp2

+ Y p = 0.

If we write θp2
= a/b, where a, b ∈ k[X, Y ], with (a, b) = 1, we get

a2 + Xpab + Y pb2 = 0.

Thus, b | a, and since (a, b) = 1, we may assume that b = 1. It follows that

a2 = −(Xpa + Y p),

which is impossible, as the degree of Y in a2 must be even. Finally, this proves that L/K
does not contain any purely separable element over K even though it is inseparable over K.

BVI (b) Let Ω be the a normal closure of L/K. We claim that G(Ω/K) = Z/2Z. This is
because

Z2p + XZp + Y = 0

has two distinct roots in Ω, each with multiplicity p. Indeed, if we let U = Zp, then U is a
root of Z2 + XZ + Y = 0, which has two distinct roots, θ1, θ2, if char(k) = p ≥ 3. Then, we
need to solve for Zp = θi, with i = 1, 2. Each of these equations has p multiple roots.
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B VIII (a) Assume that K/k is a finite extension of fields and assume that K/k is separable.
If so, K = k(θ), where θ is some root of some irreducible separable polynomial f(X) ∈ k[X]
and

K ∼= k[X](f(X)).

In any extension L/k, we can write f(X) =
∏t

i=1 gi(X), where the gi(X) are mutually
distinct irreducible polynomials, because f(X) has distinct roots in its splitting field. Then,

K ⊗k L = (k[X]/(f(X)))⊗k L ∼= L[X]/(f(X)L) ∼=
t∏

i=1

L[X]/(gi(X)L).

However, as each gi(X) is irreducible over k, each Ki = L[X]/(gi(X)L) is a field. Moreover,
each extension Ki/L is separable. This yields (1) ⇒ (2).

Obviously, (2) ⇒ (3).
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