
Homework V (due March 31), Math 603, Spring 2003. (GJZ)

B I(a). First, assume that A is a Dedekind domain. We proved in class that every ideal, A,
can be expressed uniquely (up to the order of the factors) as a product of powers of prime
ideals:

A = pe1
1 · · · pet

t .

In fact, since A is a Dedekind domain, every nonzero prime is maximal, so, we may assume
that the pi are maximal. We will prove that A is generated by at most two elements.

The first step is to prove that for every nonzero ideal, A, the ring A/A is a P.I.D. Since,

A = pe1
1 · · · pet

t ,

where the pi are maximal, we have pi+pj = A, whenever i 6= j. This implies that pk
i +pl

j = A,
for all k, l ≥ 1. This is because if A and B are any two ideals, then it is easy to prove that

A + B = A iff
√

A +
√

B = A. Since
√

pk
i = pi and

√
pl

j = pj, we have pk
i + pl

j = A, for all

k, l ≥ 1, as claimed. Thus, the Chinese remainder’s theorem applies, and we deduce that

A/A ∼=
t∏

i=1

A/pei
i .

If every A/pei
i is a P.I.D., then, A itself is a P.I.D., since every ideal of A is a product

∏t
i=1 Ai,

where Ai is an ideal of A/pei
i . Therefore, we are reduced to the case where A = md, for some

maximal ideal, m. Since A is a Dedekind domain, it is noetherian; by the Krull intersection
theorem, since m 6= A, we have

⋂
j≥0 mj = (0). Thus, we can find some t ∈ m−m2.

The second step is to prove that for any n ≥ 1,

ms = Ats + mn, for every s = 1, . . . , n.

First, we prove that m = At+mn, for every n ≥ 1. Of course, something needs to be proved
only if n > 1. The ideal At has a unique decomposition

At = me1
1 · · ·mer

r ,

and since t ∈ m, one of the mi must be equal to m. Say m1 = m. Now, t ∈ me1
1 and t /∈ m2

1

implies e1 = 1. If follows that

At + mn = m(me2
2 · · ·mer

r + mn−1).

On the other hand, we have mi + mj = A, whenever i 6= j, and we know that this implies
that mk

i + ml
j = A, for all k, l ≥ 1. Consequently, we have

A = mei
i + mn−1, for i = 2, . . . , r,
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so there exist some xi ∈ mi and yi ∈ mn−1 so that xi + yi = 1. Thus,

1 =
r∏

i=2

(xi + yi) = x2 · · ·xr + z,

where z ∈ mn−1, and so,

A =
r∏

i=2

mei
i + mn−1,

and as a consequence,
At + mn = m.

We now proceed by induction on s. We just proved the base case, s = 1. For the induction
step, as s ≤ n, observe that

Ats + mn ⊆ ms = ms−1m = (Ats−1 + mn)(At + mn) ⊆ Ats + mn,

which shows that ms = Ats + mn, as desired.

Now, any ideal, A, of A/md is of the form me1
1 · · ·met

t /md, where md ⊆ me1
1 · · ·met

t . As m

and the mi are maximal, we must have t = 1, m = m1 and e1 ≤ d. Since me1 = Ate1 + md,
we deduce that A = (t

e1) is a principal ideal. Therefore, we proved that A/A is a P.I.D. for
every nonzero ideal, A, of A.

Finally, let A be a nonprincipal ideal of a Dedekind domain. If we pick any a 6= 0 in A,
we know that the ideal, A/(a), of A/(a) is a P.I.D. Say A/(a) is generated by b ∈ A/(a),
where b ∈ A. Then, for every x ∈ A, we have x = αb, with α ∈ A/(a); thus, x − αb ∈ (a),
which shows that A = (a, b).

For the converse, assume that A is an integral domain so that every ideal, A, of A, for
every a ∈ A (a 6= 0), there is some b ∈ A so that A = (a, b). Then, A is noetherian. Now, it
can be shown that a noetherian domain is a Dedekind domain iff for every maximal ideal, m,
the local ring Am is a P.I.D. and in turn, a local noetherian domain is a P.I.D. iff its maximal
ideal is principal. Thus, it would be enough to prove that for every maximal ideal, m, the
ideal me is principal in Am. Now, as A is noetherian, Am is also noetherian. Moreover, as
ideals in Am are in one-to-one correspondence with ideals of A contained in m, the ideals
of Am also have the property assumed for ideals of A. Thus, we are reduced to the case of
a noetherian local ring, B, with maximal ideal, m. Since m 6= B, we have m2 < m. If we
pick any a ∈ m2, we can find some t ∈ m so that m = Bt + Ba = Bt + m2. As m2 < m,
we must have t ∈ m − m2. Then, observe that the vector space m/m2 over the field B/m
has dimension 1, since m/m2 ∼= t(B/m). Now, by a corollary to Nakayama’s lemma applied
to the module M = m and to the Jacobson ideal J = m (since we are in a local ring), as
M/JM = m/m2 is generated by a single element, we deduce that M = m is generated by
a single element. Thus, m is indeed principal in B, as desired. Therefore, me is indeed a
principal ideal in Am, which concludes our proof.
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B IV. a) First, note that a homomorphism, f : A → B, is continuous (where the local rings

A and B are given their m-adic topology, which makes them metric spaces). Since Â and B̂

are the usual completion of a metric space and since B ⊆ B̂, the continuous map, f : A → B̂,
extends uniquely to a map f̂ : Â → B̂. Namely, since every a ∈ Â is the limit of some Cauchy
sequence, {an}, we must have

f̂(a) = f̂( lim
n7→∞

an) = lim
n7→∞

f(an).

By continuity, it is easy to show that f̂ is a homomorphism and that mÂ goes to mB̂.

B IV. b) We have a homomorphism f : A → B of local rings such that f(mA) ⊆ mB and we
assume that

(i) B is flat over A.

(ii) f(mA)B = mB.

(iii) A/mA −→ B/mB is an isomorphism.

We will prove that f̂ : Â → B̂ is an isomorphism.

First, we prove that if A and B are local ring and f : A → B is a flat homomorphism
satisfying (ii), then B is faithfully flat over A. For this, we prove

Proposition 1.1 A flat A-module, M , is faithfully flat iff mM 6= M for every maximal
ideal, m, of A.

Proof . If M is faithfully flat, as

M/mM ∼= (A/m)⊗A M,

the fact that A/m 6= (0) implies that mM 6= M .

Conversely, let N 6= (0) be an A-module. For any x ∈ N so that x 6= 0, we have
Ax ∼= A/Ann(x). Now, there is some maximal ideal, m, with Ann(x) ⊆ m, and since
mM 6= M , we get M 6= Ann(x)M . Consequently,

Ax⊗A M = (A/Ann(x))⊗A M ∼= M/(Ann(x)M) 6= (0).

As M is flat and Ax ↪→ N is an injection, the map Ax⊗A M ↪→ N ⊗A M is also an injection
and since Ax⊗A M 6= (0), we have N ⊗A M 6= (0), which shows that M is faithfully flat.

Let us apply the above to the flat morphism of local rings f : A → B. The ring B is an
A-module via f , means which that the action of A on B is given by a · b = f(a)b, for all
a ∈ A and b ∈ B. Since f(mA)B = mB, we see that mA · B = f(mA)B = mB, and as B is
a local ring, by Nakayama, B 6= mBB. By Proposition 1.1, the module B is faithfully flat
over A.
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We also need the fact that if f : A → B is a faithfully flat ring homomorphism, then it
is injective. This is because for every A-module, M , the map M −→ M ⊗A B defined by
m 7→ m⊗ 1 is injective. Setting M = A, as A⊗A B = B, we get the desired result.

It remains to prove that for every A-module, M , the map M −→ M ⊗A B defined by
m 7→ m⊗ 1 is injective.

Pick any m 6= 0 in M . Then, the module (Am) ⊗A B is a B-submodule of M ⊗A B
and it is clear that it is isomorphic to (m ⊗ 1)B. Since B is faithfully flat over A, we have
(Am)⊗A B 6= (0), which proves that m⊗ 1 6= 0, and the map m 7→ m⊗ 1 is injective.

The key point is that the functor A Â is exact. This can be proved using the charac-
terization of Â as a left limit and using the Artin/Rees lemma. Sorry, we ran out of time to

give a proof. The proof also shows that Â is a local ring with maximal ideal m̂A and that

Â/m̂k
A
∼= A/mk

A for all k ≥ 1.

In particular, for k = 1, we get Â/m̂A
∼= A/mA. We have the exact sequences

0 −→ mA −→ A −→ A/mA −→ 0

and
0 −→ mB −→ B −→ B/mB −→ 0

and by hypothesis, A/mA
∼= B/mB and f(mA)B = mB. We have the commutative diagram

0 −→ mA −→ A −→ A/mA −→ 0y yf ‖
0 −→ mB −→ B −→ B/mB −→ 0.

Applying completion to the above diagram, we get

0 −→ m̂A −→ Â −→ Â/m̂A −→ 0y yf̂ ‖

0 −→ m̂B −→ B̂ −→ B̂/m̂B −→ 0.

Since f is injective and since f(mA)B = mB, we have m̂A
∼= m̂B. We deduce from the

commutative diagram and the 5-lemma that f̂ is an isomorphism.
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