Homework V (due March 31), Math 603, Spring 2003. (GJZ)

B I(a). First, assume that A is a Dedekind domain. We proved in class that every ideal, 2,
can be expressed uniquely (up to the order of the factors) as a product of powers of prime
ideals:

A=pi o py

In fact, since A is a Dedekind domain, every nonzero prime is maximal, so, we may assume
that the p; are maximal. We will prove that 2 is generated by at most two elements.

The first step is to prove that for every nonzero ideal, 2, the ring A/2 is a P.I.D. Since,
A =py'-epp,

where the p; are maximal, we have p;+p; = A, whenever i # j. This implies that p} +p’ = A,
for all k£, > 1. This is because if 2 and B are any two ideals, then it is easy to prove that

A+ B = Aiff VA4 VB = A. Since \/pF = p; and \/;é:pj,wehavepf+p§:A, for all

k,l > 1, as claimed. Thus, the Chinese remainder’s theorem applies, and we deduce that
t
A/ =TT A/
i=1

If every A/p;* is a P.I.D., then, A itself is a P.I.D., since every ideal of A is a product szl A,
where 2l; is an ideal of A/p{". Therefore, we are reduced to the case where 2 = m?, for some
maximal ideal, m. Since A is a Dedekind domain, it is noetherian; by the Krull intersection
theorem, since m # A, we have ();5,m’ = (0). Thus, we can find some t € m —m?.

The second step is to prove that for any n > 1,
m’ = At° +m", forevery s=1,...,n.

First, we prove that m = At 4+ m", for every n > 1. Of course, something needs to be proved
only if n > 1. The ideal At has a unique decomposition

€r
T

At =m - m

and since ¢ € m, one of the m; must be equal to m. Say m, = m. Now, ¢t € m{* and ¢t ¢ m?
implies e; = 1. If follows that

At +m" =m(my - m& +m" ).

On the other hand, we have m; + m; = A, whenever ¢ # j, and we know that this implies
that m} + mé- = A, for all k,l > 1. Consequently, we have

A=mi +m" ! fori=2,...,r,



so there exist some z; € m; and y; € m" ! so that z; + y; = 1. Thus,

r

1:H(:ci+y7;):m2--~xr+z,

=2

n—1

where z € m"~" and so,

T
A= Lm0,
i=2
and as a consequence,
At 4+m" =m.

We now proceed by induction on s. We just proved the base case, s = 1. For the induction
step, as s < n, observe that

At 4 m" Cm® =m* 'm = (A + m") (At +m") C At +m",

which shows that m* = At®* + m”, as desired.

Now, any ideal, 2, of A/m? is of the form m* - --m¢* /m?, where m?¢ C m$* ---m*. Asm
and the m; are maximal, we must have t = 1, m = m; and e; < d. Since m® = At* + m?,
we deduce that % = (") is a principal ideal. Therefore, we proved that A/ is a P.I.D. for
every nonzero ideal, 2, of A.

Finally, let 24 be a nonprincipal ideal of a Dedekind domain. If we pick any a # 0 in 2,
we know that the ideal, 2/(a), of A/(a) is a P.ID. Say /(a) is generated by b € A/(a),
where b € . Then, for every x € A, we have T = @b, with @ € A/(a); thus, x — ab € (a),
which shows that A = (a,b).

For the converse, assume that A is an integral domain so that every ideal, 2, of A, for
every a € A (a # 0), there is some b € A so that 2 = (a,b). Then, A is noetherian. Now, it
can be shown that a noetherian domain is a Dedekind domain iff for every maximal ideal, m,
the local ring A, is a P.I.LD. and in turn, a local noetherian domain is a P.I.D. iff its maximal
ideal is principal. Thus, it would be enough to prove that for every maximal ideal, m, the
ideal m® is principal in A,,. Now, as A is noetherian, A, is also noetherian. Moreover, as
ideals in A, are in one-to-one correspondence with ideals of A contained in m, the ideals
of A, also have the property assumed for ideals of A. Thus, we are reduced to the case of
a noetherian local ring, B, with maximal ideal, m. Since m # B, we have m? < m. If we
pick any @ € m?, we can find some ¢ € m so that m = Bt + Ba = Bt + m?. As m? < m,
we must have ¢ € m — m?. Then, observe that the vector space m/m? over the field B/m
has dimension 1, since m/m? = {(B/m). Now, by a corollary to Nakayama’s lemma applied
to the module M = m and to the Jacobson ideal J = m (since we are in a local ring), as
M/JM = m/m? is generated by a single element, we deduce that M = m is generated by
a single element. Thus, m is indeed principal in B, as desired. Therefore, m¢ is indeed a
principal ideal in Ay, which concludes our proof.



B IV. a) First, note that a homomorphism, f: A — B, is continuous (where the local rings
A and B are given their m-adic topology, which makes them metric spaces). Since A and B
are the usual completion of a metric space and since B C B , the continuous map, f: A — B ,
extends uniquely to a map f A — B. Namely, since every a € A is the limit of some Cauchy
sequence, {a,}, we must have

~

Fla) = f(lim a,) = lim f(ay,).

n—oo n—oo
By continuity, it is easy to show that ]?is a homomorphism and that m; goes to m.

B IV. b) We have a homomorphism f: A — B of local rings such that f(ms) C mp and we
assume that

(i) B is flat over A.
(ii) f(ma)B = mp.
(ii) A/my — B/mp is an isomorphism.

We will prove that ]? A — Bisan isomorphism.
First, we prove that if A and B are local ring and f: A — B is a flat homomorphism

satisfying (ii), then B is faithfully flat over A. For this, we prove

Proposition 1.1 A flat A-module, M, is faithfully flat iff mM # M for every maximal
ideal, m, of A.

Proof. If M is faithfully flat, as
M/mM = (A/m) @4 M,

the fact that A/m # (0) implies that mM # M.

Conversely, let N # (0) be an A-module. For any z € N so that z # 0, we have
Ax = A/Ann(z). Now, there is some maximal ideal, m, with Ann(z) C m, and since
mM # M, we get M # Ann(x)M. Consequently,

Ar @4 M = (A/Ann(z)) @4 M = M/(Ann(z)M) # (0).

As M is flat and Az — N is an injection, the map Az ®4 M — N ® 4 M is also an injection
and since Az @4 M # (0), we have N ® 4 M # (0), which shows that M is faithfully flat. O

Let us apply the above to the flat morphism of local rings f: A — B. The ring B is an
A-module via f, means which that the action of A on B is given by a-b = f(a)b, for all
a € Aand be B. Since f(my)B = mp, we see that my - B = f(ms)B = mp, and as B is
a local ring, by Nakayama, B # mgB. By Proposition 1.1, the module B is faithfully flat
over A.



We also need the fact that if f: A — B is a faithfully flat ring homomorphism, then it
is injective. This is because for every A-module, M, the map M — M ®4 B defined by
m+— m ® 1 is injective. Setting M = A, as A ®4 B = B, we get the desired result.

It remains to prove that for every A-module, M, the map M — M ®4 B defined by
m+— m ® 1 is injective.

Pick any m # 0 in M. Then, the module (Am) ®4 B is a B-submodule of M ®4 B
and it is clear that it is isomorphic to (m ® 1)B. Since B is faithfully flat over A, we have
(Am) ®4 B # (0), which proves that m ® 1 # 0, and the map m — m ® 1 is injective.

The key point is that the functor A ~ A is exact. This can be proved using the charac-
terization of A as a left limit and using the Artin/Rees lemma. Sorry, we ran out of time to
give a proof. The proof also shows that A is a local ring with maximal ideal m4 and that

A/mk = A/mb forall k> 1.
In particular, for £ = 1, we get 2/ m4 = A/my. We have the exact sequences
0—my —A— A/my — 0

and
0— mp— B— B/mgp —0

and by hypothesis, A/my = B/mg and f(m4)B = mp. We have the commutative diagram

0O — my — A — A/my — 0

Lol

0 — mgp — B — B/mgp — 0.
Applying completion to the above diagram, we get

0—>t’ﬁA—>A\—>A\/ﬁ\1A—>0

| |7 ||

O—>ﬁ13—>§—>§/ﬁ13—>0.

Since f is injective and since f(m4)B = mp, we have my = mg. We deduce from the
commutative diagram and the 5-lemma that f is an isomorphism.



