
Homework I (due September 30), Math 602, Fall 2002.

BIII (a). We first prove the following proposition:

Proposition 1.1 Given a group G, for any finite normal subgroup, H, of G and any p-Sylow
subgroup P of H, we have G = NG(P )H.

Proof . For every g ∈ G, clearly, g−1Pg is a subgroup of g−1Hg = H, since H is normal in
G. Since |g−1Pg| = |P |, the subgroup g−1Pg is also a p-Sylow subgroup of H. By Sylow II,
g−1Pg is some conjugate of P in H, i.e.,

g−1Pg = hPh−1 for some h ∈ H.

Thus, ghPh−1g−1 = P , which implies that gh ∈ NG(P ), so g ∈ NG(P )H. Since the reasoning
holds for every g ∈ G, we get G = NG(P )H.

Now, since H is normal in G, by the second homomorphism theorem, we know that
G/H = (NG(P )H)/H ∼= NG(P )/(NG(P ) ∩ H). Moreover, it is clear that NG(P ) ∩ H =
NH(P ), so G/H ∼= NG(P )/NH(P ), as desired.

(b) We shall prove that every p-Sylow subgroup of Φ(G) is normal in Φ(G) (and in fact,
in G). From this, we will deduce that Φ(G) has property (N). Indeed, if we inspect the proof
of the proposition proved in class stating that if G is a finite group that has (N), then G is
isomorphic to the product of its p-Sylow subgroups, we see that this proof only depends on
the fact that every p-Sylow subgroup of G is normal in G. However, we also proved that
every p-group has (N), and so, we will be able to conclude by proving that if G is a p-group
and H is a q-group, then G

∏
H also has (N).

In order to prove that every p-Sylow subgroup of Φ(G) is normal in Φ(G), we first prove:

Proposition 1.2 Given a finite group G, if K is any subgroup of Φ(G), then there is no
proper subgroup H of G so that G = HK.

Proof . Let H be a proper subgroup of G. There is some maximal subgroup M of G so that
H ≤M < G. Since K ≤ Φ(G) and Φ(G) is the intersection of all the maximal subgroups of
G, we have K ≤ M . Now, since H ≤ M and K ≤ M , we have HK ≤ M < G. Therefore,
there is no proper subgroup, H, of G so that G = HK.

Remark: Proposition 1.2 also follows immediately from the fact (proved in class) that the
elements of Φ(G) are nongenerators. If G = HK, with K ⊆ Φ(G) and H a proper subgroup
of G, then G = Gp{H ∪K} = Gp(H) = H, since the elements in K are nongenerators, a
contradiction (since H < G).

Let P be any p-Sylow subgroup of Φ(G). Since Φ(G) is normal in G, by proposition 1.1,
we have

G = NG(P )Φ(G).
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Since P ≤ Φ(G), by Proposition 1.2, we must have NG(P ) = G, so P is normal in G, and
thus, in Φ(G).

To conclude, we need the proposition

Proposition 1.3 If G is a p-group and H is a q-group, then G
∏
H has (N).

First, we prove the following simple lemma:

Lemma 1.4 For any two group G and H,

Z(G
∏

H) = Z(G)
∏

Z(H).

Proof . Given any g ∈ G and any h ∈ H, note that for all g′ ∈ G and all h′ ∈ H,

(g, h)(g′, h′) = (g′, h′)(g, h) iff gg′ = g′g and hh′ = h′h,

since
(gg′, hh′) = (g, h)(g′, h′) = (g′, h′)(g, h) = (g′g, h′h).

Therefore, Z(G
∏
H) = Z(G)

∏
Z(H).

Proof of Proposition 1.3. The case where G and H are {1} is trivial, so we may assume that
G

∏
H is nontrivial. Then, either G is nontrivial or H is nontrivial. Since G is a p-group and

H is a q-group, we know from class that either Z(G) is nontrivial or Z(H) is nontrivial. But
then, Z(G

∏
H) = Z(G)

∏
Z(H) is nontrivial, and since Z(G

∏
H) is normal in G

∏
H, the

factor group (G
∏
H)/Z(G

∏
H) ∼= (G/Z(G))

∏
(H/Z(H)) is again the product of a p-group

and a q-group, but (G
∏
H)/Z(G

∏
H) has strictly smaller order than G

∏
H. Thus, we

can now proceed by induction on the order of G
∏
H. The proof turns out to be identical to

the proof given in class that a single p-group has (N). Indeed, this proof only uses the fact
that at every step of the induction, the center of the group is nontrivial. Therefore, G

∏
H

has (N).

By an obvious induction, any finite direct product of pj-groups has (N), and since Φ(G)
is isomorphic to the direct product of its pj-Sylow subgroups, it has (N).

BV (a). The only interesting case is the case where G is a nontrivial finite non-simple
group. So, assume that G is a nontrivial finite non-simple group and that G possesses no
proper nontrivial characteristic subgroup (we have to allow the trivial subgroup because of
part (b), see below). In this case, G has some nontrivial minimal normal subgroup, say H1.
For every automorphism ϕ ∈ Aut(G), the group ϕ(H1) is a normal subgroup of G.

LetH be a subgroup of G of maximal order such thatH = H1H2 · · ·Kk
∼=

∏k
i=1Hi, where

each Hi is a normal subgroup of G isomorphic to H1, for i = 2, . . . , k. Since H1 is normal in
G, it is clear that H is normal in G. We wish to prove that H is a nontrivial characteristic
subgroup of G. Since H = H1H2 · · ·Hk in G, for every automorphism ϕ ∈ Aut(G), we
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have ϕ(H) = ϕ(H1)ϕ(H2) · · ·ϕ(Hk). If we prove that every ϕ(Hi) is a subgroup of H, then
we will have proved that ϕ(H) = H. Assume that there is some Hi so that ϕ(Hi) is not
a subgroup of H. We know that ϕ(Hi) is normal in G (since ϕ is an automorphism) and
H ∩ ϕ(Hi) < ϕ(Hi), so that H ∩ ϕ(Hi) is a normal subgroup of G of order strictly smaller
than than of H1, contradicting the minimality of H1. Therefore H ∩ϕ(Hi) = {1}, and then,

Hϕ(Hi) ∼= H
∏

ϕ(Hi).

Now, Hϕ(Hi) is also a normal subgroup of G satisfying the same property as H, and this
contradicts the fact that H is of maximal order with that property. Therefore, ϕ(Hi) ≤ H
and H is a characteristic subgroup of G. Finally, since H is nontrivial, we must have H = G.

It remains to prove that H1 is simple, since then, we will have

G ∼=
k∏

i=1

Hi

where the Hi are isomorphic simple groups. Now, if H ′ is normal in H1, then H ′ is isomorphic
to the subgroup H ′ ∏{1}

∏
· · ·

∏
{1} of

∏k
i=1Hi, and this group is obviously normal in∏k

i=1Hi, so H ′ is normal in G. Therefore, since H1 is minimal, normal in G, we deduce that
H ′ = {1} or H ′ = H, and H1 is simple.

(b) Let H be minimal, normal in G (as in (a), assume that G is not simple). First, we
claim:

Lemma 1.5 For any group, G, if N is normal in G and K is a characteristic subgroup of
N , then K is normal in G.

Proof . Let ϕg denote the inner automorphism of G defined by ϕg(x) = gxg−1. For every
such ϕg, the restriction of ϕg to N is an automorphism, since N is normal in G, and since
K is characteristic in N , we have

gKg−1 = K.

Since this holds for every g ∈ G, the group K is indeed normal in G.

Now, since H is normal in G, by the above fact, every characteristic subgroup of H is
normal in G, which implies that either K = {1} of K = H, i.e., H has no proper nontrivial
characteristic subgroups. Thus, we can apply (a). If H is nonabelian, it is clear that H1 is
nonabelian, and H is isomorphic to a product of mutually isomorphic, non-abelian, simple
groups. It remains to treat the case where H is abelian.

Let p be any prime dividing the order of |H|, and let

A = {a ∈ H | ap = 1}.

Obviously, A is an elementary abelian subgroup of H. We claim that H = A.
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First, we prove that A is a characteristic subgroup of H. Indeed, for any ϕ ∈ Aut(H)
and any a ∈ A, we have

1 = ϕ(1) = ϕ(ap) = ϕ(a)p,

so ϕ(a) ∈ A, as desired. Furthermore, since p is a prime dividing |H|, we know (Cauchy)
that there is some element of order p in H, and thus, 1 < A. But then, A is a nontrivial
characteristic subgroup of H, which implies that H = A, and H is an elementary abelian
p-group.

(c) We will use the following fact:

Lemma 1.6 If G is a solvable group, then every subgroup of G is also solvable.

Proof . It was proved in class that a group, G, is solvable iff the strictly descending chain

G > ∆(1)(G) > ∆(2)(G) > · · · > ∆(t)(G)

reaches {1} after finitely many steps, where ∆(0)(G) = G, ∆(1)(G) = [G,G] and

∆(j+1)(G) = [∆(j)(G),∆(j)(G)] = ∆(1)(∆(j)(G)).

If H is any subgroup in G, it is clear that [H,H] ≤ [G,G], and by induction, we get
∆(j)(H) ≤ ∆(j)(G) for all j. Since ∆(t)(G) = {1}, we also have ∆(t)(H) = {1} and H is
solvable.

LetH be a minimal, normal subgroup ofG, and assumeG solvable. SinceH is normal and
[H,H] is characteristic in H (proved in class), by Lemma 1.5, the group [H,H] is normal in
G. Since H is minimal, normal in G, we deduce that either [H,H] = H or [H,H] = {1}. But
G being solvable, by Lemma 1.6, the group [H,H] is also solvable. Therefore, [H,H] = {1},
i.e., H is abelian. Therefore, if G is solvable, any minimal, normal subgroup of G is an
abelian p-group.

B VI (a). Since G is a p-group, we have |Φ(G)| = pm and |G/Φ(G)| = pd for some
m,n ∈ N. We denote by g the image in G/Φ(G) of an element g ∈ G under the natural
projection G −→ G/Φ(G). We proved in class that since G is a p-group, G/Φ(G) is an
abelian elementary p-group, and the assumption |G/Φ(G)| = pd implies that, as a vector
space over Z/pZ, the vector space G/Φ(G) has dimension d. Also, by the Burnside basis
theorem, any minimal system of generators for G is a collection of d elements x1, . . . , xd such
that x1, . . . , xd is a basis of G/Φ(G).

Let x1, . . . , xd be such a minimal system of generators for G. Then, for all λ1, . . . , λd ∈
Φ(G), the elements λ1x1, . . . , λdxd also form a minimal system of generators for G, since
(λixi) = xi. Define S to be the set of d-tuples

S = {(λ1x1, . . . , λdxd) | λi ∈ Φ(G), with 1 ≤ i ≤ d}.

Clearly, |S| = pmd.
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We have a homomorphism θ: Aut(G) −→ Aut(G/Φ(G), also denoted by bar, defined so
that

ϕ(gΦ(G)) = ϕ(g)Φ(G)

for all g ∈ G. If we let K = Ker θ denote the kernel of θ: Aut(G) −→ Aut(G/Φ(G), our
plan is to show that K acts on S, and that for every y ∈ S, the stabilizer, StabK(y), of y is
trivial. Then, for every subgroup H of K, we will also have an action of H on S with the
same property, namely the stabilizer, StabK(y), of any y ∈ S is trivial. Then, since S is the
union of disjoint orbits, we will conclude that |H| divide |S|, and from this, we will get (a).

Now, observe that if ϕ = id, i.e., ϕ ∈ K = Ker θ, then

ϕ(λixi) = ϕ(λ)ϕ(xi) = ϕ(xi)Φ(G) = ϕ(xiΦ(G)) = xiΦ(G) = xi,

since ϕ = id. This shows that for every ϕ ∈ K and every (y1, . . . yd) ∈ S, we have
(ϕ(y1), . . . ϕ(yd)) ∈ S. Therefore, we can define an action of K on S by

ϕ · (y1, . . . , yd) = (ϕ(y1), . . . , ϕ(yd)),

for every ϕ ∈ K and every (y1, . . . , yd) ∈ S. Consider the stabilizer StabK(y) of any element
y = (y1, . . . , yd) ∈ S. This group consists of those ϕ ∈ K so that

(ϕ(y1), . . . , ϕ(yd)) = (y1, . . . , yd),

that is, ϕ(yi) = yi for i = 1, . . . , d. However, we observed earlier that any (y1, . . . , yd) ∈ S
is a minimal system of generators of G, and thus, ϕ = id. Therefore, StabK(y) = {id} for
every y ∈ S and every orbit has size |K|.

Now, let H be the cyclic group generated by the automorphism ϕ ∈ Aut(G). Since we
are assuming that ϕ has order n, the group H has order n. If ϕ = id, then it is obvious
that ϕi = id for all i, and so, H ≤ K. The restriction to H of the action of K on S is an
action of H on S, and of course StabH(y) = {id} for every y ∈ S, so every orbit consists
of |H| elements. Since S is the union of disjoint orbits, |H| divides |S|. However, |H| = n,
|S| = pmd, and since we are assuming that (n, p) = 1, we must have n = 1. This proves that
ϕ = id, as desired.

(b) Since every linear map is determined by its action on a basis, it is clear that
|GL(G/Φ(G))| is just the number of ordered bases of d elements over Z/pZ. Now,
|G/Φ(G)| = pd, and we can pick pd − 1 nonzero vectors, u1, as the first basis vector, pd − p
vectors, u2, other than a scalar multiple of u1, as the second basis vector, pd − p2 vectors,
u3, other than a linear combination of u1 and u2, as the third basis vector, etc. Therefore,

|GL(G/Φ(G))| = (pd − 1)(pd − p) · · · (pd − pd−1)

= (pd − 1)p(pd−1 − 1) · · · pd−1(p− 1)

= p
d(d−1)

2

d∏
k=1

(pk − 1).
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If P is any p-Sylow subgroup of GL(G/Φ(G)), since |P | is the largest p-power dividing

|GL(G/Φ(G))|, we must have |P | = p
d(d−1)

2 , since p is relatively prime to
∏d

k=1(p
k − 1). This

implies that

σp
d(d−1)

2 = id,

and since det(σk) = det(σ)k for all k ∈ N, we have

det(σ)p
d(d−1)

2 = 1.

However, ap = a for all a ∈ Z/pZ (since p is prime), so

det(σ) = det(σ)p
d(d−1)

2 = 1,

which shows that σ ∈ SL(G/Φ(G)).

(c) Given any p-Sylow subgroup, P , of GL(G/Φ(G)), let

P = {ϕ ∈ Aut(G) | ϕ ∈ P}.

For every ϕ ∈ Aut(G), we may assume that the order, n, of ϕ is of the form n = pat for
some a, t ∈ N, where t is relatively prime to p.

We claim that if ϕ ∈ P , then
ϕpa = id.

If so, since ϕpa
has order t relatively prime to p, by part (a), we deduce that

ϕpa

= id,

and thus, t = 1. Since this is true for every ϕ ∈ P , we conclude that P is a p-subgroup of
Aut(G).

It remains to prove that if ϕ ∈ P , then

ϕpa = id.

For any ψ ∈ Aut(G), if ψn = id then (ψ)n = id, and we see that the order of ψ divides the
order of ψ. Since P is a p-Sylow subgroup of GL(G/Φ(G)), the order of ϕ is some p-power,
pb, and we must have pb ≤ pa, since pb divides pat and t is relatively prime to p. So,

ϕpa = id,

as claimed.

Remark: We can prove that |Aut(G)| divides pmdp
d(d−1)

2

∏d
k=1(p

k − 1). Going back to (a),
where we defined an action of K = Ker θ on S, recall that we proved that every orbit has
size |K|. Since S is a disjoint union of orbits, |K| must divide |S| = pmd. We know that
|Aut(G)| = |Ker θ||Im θ|, and since Im θ is a subgroup of |GL(G/Φ(G))|, we see that |Im θ|
divides |GL(G/Φ(G))| = p

d(d−1)
2

∏d
k=1(p

k−1). Thus, |Aut(G)| divides pmdp
d(d−1)

2

∏d
k=1(p

k−1).
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