Homework I (due September 30), Math 602, Fall 2002.
BIII (a). We first prove the following proposition:

Proposition 1.1 Given a group G, for any finite normal subgroup, H, of G and any p-Sylow
subgroup P of H, we have G = Ng(P)H.

Proof. For every g € G, clearly, g~ Pg is a subgroup of ¢ "'Hg = H, since H is normal in
G. Since |g~'Pg| = | P|, the subgroup g~!Pg is also a p-Sylow subgroup of H. By Sylow II,
g ' Pg is some conjugate of P in H, i.e.,

g 'Pg=hPh™' forsome he H.

Thus, ghPh~'g~! = P, which implies that gh € Ng(P), so g € Ng(P)H. Since the reasoning
holds for every g € G, we get G = Ng(P)H. O

Now, since H is normal in G, by the second homomorphism theorem, we know that
G/H = (Ng(P)H)/H = Ng(P)/(Ng(P) N H). Moreover, it is clear that Ng(P) N H =
Ny (P),so G/H = Ng(P)/Ng(P), as desired.

(b) We shall prove that every p-Sylow subgroup of ®(G) is normal in ®(G) (and in fact,
in ). From this, we will deduce that ®(G) has property (N). Indeed, if we inspect the proof
of the proposition proved in class stating that if G is a finite group that has (N), then G is
isomorphic to the product of its p-Sylow subgroups, we see that this proof only depends on
the fact that every p-Sylow subgroup of GG is normal in G. However, we also proved that
every p-group has (N), and so, we will be able to conclude by proving that if G is a p-group
and H is a ¢-group, then G [[ H also has (N).

In order to prove that every p-Sylow subgroup of ®(G) is normal in ®(G), we first prove:

Proposition 1.2 Given a finite group G, if K is any subgroup of ®(G), then there is no
proper subgroup H of G so that G = HK.

Proof. Let H be a proper subgroup of G. There is some maximal subgroup M of GG so that
H < M < G. Since K < ®(G) and ®(G) is the intersection of all the maximal subgroups of
G, we have K < M. Now, since H < M and K < M, we have HK < M < (. Therefore,
there is no proper subgroup, H, of G so that G = HK.

Remark: Proposition 1.2 also follows immediately from the fact (proved in class) that the
elements of (@) are nongenerators. If G = HK, with K C ®(G) and H a proper subgroup
of G, then G = Gp{H U K} = Gp(H) = H, since the elements in K are nongenerators, a
contradiction (since H < G).

Let P be any p-Sylow subgroup of ®(G). Since ®(G) is normal in G, by proposition 1.1,
we have

G = No(P)®(G).
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Since P < ®(G), by Proposition 1.2, we must have Ng(P) = G, so P is normal in G, and
thus, in ®(G).

To conclude, we need the proposition

Proposition 1.3 If G is a p-group and H is a q-group, then G[[ H has (N).

First, we prove the following simple lemma:
Lemma 1.4 For any two group G and H,
ZG[H) =2z) ][] 2H).
Proof. Given any g € GG and any h € H, note that for all ¢’ € G and all h' € H,
(9, 1)(g", 1) = (¢",h)(g,h) if gg'=g'g and hAh =h'h,

(99", hl') = (9, 1) (g’ 1) = (¢, 1) (9, ) = (g9, I'D).
Therefore, Z(G][H) = Z(G)[[ Z(H). O

Proof of Proposition 1.3. The case where G and H are {1} is trivial, so we may assume that
G ][ H is nontrivial. Then, either G is nontrivial or H is nontrivial. Since G is a p-group and
H is a g-group, we know from class that either Z(G) is nontrivial or Z(H) is nontrivial. But
then, Z(G[[H) = Z(G) ] Z(H) is nontrivial, and since Z(G [[ H) is normal in G [[ H, the
factor group (G[[H)/Z(G|] H) = (G/Z(G))[[(H/Z(H)) is again the product of a p-group
and a g-group, but (G[[H)/Z(G]] H) has strictly smaller order than G [[ H. Thus, we
can now proceed by induction on the order of G [[ H. The proof turns out to be identical to
the proof given in class that a single p-group has (N). Indeed, this proof only uses the fact
that at every step of the induction, the center of the group is nontrivial. Therefore, G[[ H
has (N). O

By an obvious induction, any finite direct product of p;-groups has (N), and since ®(G)
is isomorphic to the direct product of its p,;-Sylow subgroups, it has (N).

BV (a). The only interesting case is the case where GG is a nontrivial finite non-simple
group. So, assume that G is a nontrivial finite non-simple group and that G possesses no
proper nontrivial characteristic subgroup (we have to allow the trivial subgroup because of
part (b), see below). In this case, G has some nontrivial minimal normal subgroup, say H;.
For every automorphism ¢ € Aut(G), the group ¢(H;) is a normal subgroup of G.

Let H be a subgroup of G of maximal order such that H = H1Hy - - - K}, = Hle H;, where
each H; is a normal subgroup of GG isomorphic to Hy, for « = 2, ..., k. Since H; is normal in
G, it is clear that H is normal in G. We wish to prove that H is a nontrivial characteristic
subgroup of G. Since H = HyHs--- Hy in G, for every automorphism ¢ € Aut(G), we
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have p(H) = ¢(Hy)p(Hs) - - - @(Hy). If we prove that every ¢(H;) is a subgroup of H, then
we will have proved that ¢(H) = H. Assume that there is some H; so that ¢(H;) is not
a subgroup of H. We know that ¢(H;) is normal in G (since ¢ is an automorphism) and
HnNe(H;) < ¢(H;), so that H N ¢(H;) is a normal subgroup of G of order strictly smaller
than than of Hj, contradicting the minimality of H;. Therefore H Np(H;) = {1}, and then,

He(H,) = H [ [ (H,).

Now, Hp(H;) is also a normal subgroup of G satisfying the same property as H, and this
contradicts the fact that H is of maximal order with that property. Therefore, p(H;) < H
and H is a characteristic subgroup of G. Finally, since H is nontrivial, we must have H = G.

It remains to prove that H; is simple, since then, we will have

where the H; are isomorphic simple groups. Now, if H is normal in Hy, then H’ is isomorphic
to the subgroup H'T[{1}]---TI{1} of [I:, Hi, and this group is obviously normal in
Hle H;, so H' is normal in G. Therefore, since H; is minimal, normal in GG, we deduce that
H' = {1} or H' = H, and H, is simple.

(b) Let H be minimal, normal in G (as in (a), assume that G is not simple). First, we
claim:

Lemma 1.5 For any group, G, if N is normal in G and K is a characteristic subgroup of
N, then K is normal in G.

Proof. Let ¢, denote the inner automorphism of G defined by ¢,(z) = grg~'. For every

such g4, the restriction of ¢, to N is an automorphism, since N is normal in G, and since
K is characteristic in N, we have
gKg ' =K.

Since this holds for every g € G, the group K is indeed normal in G. [J

Now, since H is normal in GG, by the above fact, every characteristic subgroup of H is
normal in GG, which implies that either K = {1} of K = H, i.e., H has no proper nontrivial
characteristic subgroups. Thus, we can apply (a). If H is nonabelian, it is clear that H; is
nonabelian, and H is isomorphic to a product of mutually isomorphic, non-abelian, simple
groups. It remains to treat the case where H is abelian.

Let p be any prime dividing the order of |H|, and let
A={a€ H|d" =1}
Obviously, A is an elementary abelian subgroup of H. We claim that H = A.
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First, we prove that A is a characteristic subgroup of H. Indeed, for any ¢ € Aut(H)
and any a € A, we have

1=(1) = ¢(a”) = ¢(a)”,
so p(a) € A, as desired. Furthermore, since p is a prime dividing |H|, we know (Cauchy)

that there is some element of order p in H, and thus, 1 < A. But then, A is a nontrivial
characteristic subgroup of H, which implies that H = A, and H is an elementary abelian

p-group.
(c) We will use the following fact:

Lemma 1.6 If G is a solvable group, then every subgroup of G is also solvable.
Proof . It was proved in class that a group, G, is solvable iff the strictly descending chain
G>ADG) > ADG) > - > AD(G)
reaches {1} after finitely many steps, where A®(G) = G, AW(G) = [G, G] and
A(j“)(G) — [A(j)(G),A(j)(G)] — A(l)(AU)(G)).

If H is any subgroup in G, it is clear that [H, H] < [G,G], and by induction, we get
AV (H) < AU(G) for all j. Since AD(G) = {1}, we also have AW (H) = {1} and H is
solvable. OO0

Let H be a minimal, normal subgroup of GG, and assume G solvable. Since H is normal and
[H, H] is characteristic in H (proved in class), by Lemma 1.5, the group [H, H] is normal in
G. Since H is minimal, normal in G, we deduce that either [H, H| = H or [H, H] = {1}. But
G being solvable, by Lemma 1.6, the group [H, H] is also solvable. Therefore, [H, H] = {1},
i.e., H is abelian. Therefore, if G is solvable, any minimal, normal subgroup of G is an
abelian p-group.

B VI (a). Since G is a p-group, we have |®(G)| = p™ and |G/®(G)| = p? for some
m,n € N. We denote by g the image in G/®(G) of an element g € G under the natural
projection G — G/®(G). We proved in class that since G is a p-group, G/®(G) is an
abelian elementary p-group, and the assumption |G/®(G)| = p? implies that, as a vector
space over Z/pZ, the vector space G/®(G) has dimension d. Also, by the Burnside basis

theorem, any minimal system of generators for G is a collection of d elements x4, ..., x4 such
that 77, ...,Z4 is a basis of G/®(G).

Let x1,...,z4 be such a minimal system of generators for G. Then, for all \{,..., \g €
®((G), the elements \jzq,..., A\gzy also form a minimal system of generators for G, since

(Aix;) = T;. Define S to be the set of d-tuples
S={(Mwy,...,  azq) | N € B(G), with 1<i<d}.

Clearly, |S| = p™.



We have a homomorphism 0: Aut(G) — Aut(G/®(G), also denoted by bar, defined so

that
P(92(G)) = »(9)2(G)

for all g € G. If we let K = Ker 6 denote the kernel of 6: Aut(G) — Aut(G/®(G), our
plan is to show that K acts on S, and that for every y € S, the stabilizer, Stabg(y), of y is
trivial. Then, for every subgroup H of K, we will also have an action of H on & with the
same property, namely the stabilizer, Stabg (y), of any y € S is trivial. Then, since S is the
union of disjoint orbits, we will conclude that |H| divide |S|, and from this, we will get (a).

Now, observe that if ® =1id, i.e., p € K = Ker 6, then
p(Aizi) = (N e(zi) = p(2:)2(G) = p(2;2(G)) = 2,9(G) = T,

since = id. This shows that for every ¢ € K and every (yi,...ys) € S, we have
(o(y1),...o(ya)) € S. Therefore, we can define an action of K on S by

o (Y, ya) = (Y1), - 0(Ya),

for every ¢ € K and every (y1,...,yq) € S. Consider the stabilizer Stabg (y) of any element
y=(y1,...,ya) €S. This group consists of those ¢ € K so that

(o(y1)s - 0(ya) = (Y1, -, Ya),

that is, ¢(y;) = y; for i = 1,...,d. However, we observed earlier that any (yi,...,yq) € S
is a minimal system of generators of G, and thus, ¢ = id. Therefore, Stabg(y) = {id} for
every y € S and every orbit has size |K]|.

Now, let H be the cyclic group generated by the automorphism ¢ € Aut(G). Since we
are assuming that ¢ has order n, the group H has order n. If p = id, then it is obvious
that ¢ = id for all 4, and so, H < K. The restriction to H of the action of K on S is an
action of H on S, and of course Staby(y) = {id} for every y € S, so every orbit consists
of |H| elements. Since S is the union of disjoint orbits, |H| divides |S|. However, |H| = n,
|S| = p™?, and since we are assuming that (n,p) = 1, we must have n = 1. This proves that
» =1id, as desired.

(b) Since every linear map is determined by its action on a basis, it is clear that
|GL(G/®(G))| is just the number of ordered bases of d elements over Z/pZ. Now,
|G/®(G)| = p?, and we can pick p? — 1 nonzero vectors, u;, as the first basis vector, p? — p
vectors, ug, other than a scalar multiple of u;, as the second basis vector, p? — p? vectors,
ug, other than a linear combination of u; and wus, as the third basis vector, etc. Therefore,

IGL(G/®(G)] = (@*=1)@"—p)--- " —p*")
= (' = Dpp* =1 p"p-1)

d
d(d—1)
=p 2 []Je*-0.

k=1
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If P is any p-Sylow subgroup of GL(G/®(G)), since |P| is the largest p-power dividing
|GL(G/®(@G))|, we must have |P| = p@, since p is relatively prime to szl(pk —1). This
implies that

d(d—1)
o *  =id,
and since det(c*) = det(o)* for all £ € N, we have

d(d—1)

det(o)? * =1.

However, a? = a for all a € Z/pZ (since p is prime), so

d(d—1)

det(o) = det(o)? * =1,

which shows that o € SL(G/®(G)).
(c) Given any p-Sylow subgroup, P, of GL(G/®(G)), let

P ={p e Aut(G) | g € P}.

For every ¢ € Aut(G), we may assume that the order, n, of ¢ is of the form n = p“t for
some a,t € N, where ¢ is relatively prime to p.

We claim that if ¢ € P, then o
©P* = id.
If so, since ¢P" has order t relatively prime to p, by part (a), we deduce that
¢’ =id,
and thus, ¢ = 1. Since this is true for every ¢ € P, we conclude that P is a p-subgroup of
Aut(G).
It remains to prove that if ¢ € P, then
P =id.

For any 1 € Aut(G), if 9™ = id then (1))" = id, and we see that the order of 1 divides the
order of 1. Since P is a p-Sylow subgroup of GL(G/®(G)), the order of ¥ is some p-power,
p®, and we must have p® < p?, since p® divides p®t and t is relatively prime to p. So,

a

PP =id,

as claimed.

Remark: We can prove that |Aut(G)| divides pmdpd(d;) szl(pk — 1). Going back to (a),

where we defined an action of K = Ker 6 on S, recall that we proved that every orbit has
size |K|. Since § is a disjoint union of orbits, |K| must divide |S| = p™?. We know that
|Aut(G)| = |Ker 0||Im 6|, and since Im 6 is a subgroup of |GL(G/®(G))|, we see that |Im 6|

d(d—1) d(d—1)

divides |GL(G/®(G))| =p~ = [t (p*—1). Thus, |Aut(G)| divides p™¥p~ 7 []L_,(p"—1).




