Fall 2015 CIS 610

Advanced Geometric Methods in Computer Science Jean Gallier

Homework 1

January 22; Due February 3, 2015

Problem B1 (50). (a) Find two symmetric matrices, A and B, such that AB is not symmetric.

(b) Find two matrices A and B such that

$$e^A e^B \neq e^{A+B}.$$

Hint. Try

$$A = \pi \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad B = \pi \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

and use the Rodrigues formula.

(c) Find some square matrices A, B such that $AB \neq BA$, yet

 $e^A e^B = e^{A+B}.$

Hint. Look for 2×2 matrices with zero trace.

Problem B2 (60 pts). Let $M_n(\mathbb{C})$ denote the vector space of $n \times n$ matrices with complex coefficients (and $M_n(\mathbb{R})$ denote the vector space of $n \times n$ matrices with real coefficients). For any matrix $A \in M_n(\mathbb{C})$, let R_A and L_A be the maps from $M_n(\mathbb{C})$ to itself defined so that

$$L_A(B) = AB$$
, $R_A(B) = BA$, for all $B \in M_n(\mathbb{C})$.

Check that L_A and R_A are linear, and that L_A and R_B commute for all A, B.

Let $\mathrm{ad}_A \colon \mathrm{M}_n(\mathbb{C}) \to \mathrm{M}_n(\mathbb{C})$ be the linear map given by

$$\operatorname{ad}_A(B) = L_A(B) - R_A(B) = AB - BA = [A, B], \text{ for all } B \in \operatorname{M}_n(\mathbb{C}).$$

Note that [A, B] is the Lie bracket.

(1) Prove that if A is invertible, then L_A and R_A are invertible; in fact, $(L_A)^{-1} = L_{A^{-1}}$ and $(R_A)^{-1} = R_{A^{-1}}$. Prove that if $A = PBP^{-1}$ for some invertible matrix P, then

$$L_A = L_P \circ L_B \circ L_P^{-1}, \quad R_A = R_P^{-1} \circ R_B \circ R_P.$$

(2) Recall that the n^2 matrices E_{ij} defined such that all entries in E_{ij} are zero except the (i, j)th entry, which is equal to 1, form a basis of the vector space $M_n(\mathbb{C})$. Consider the partial ordering of the E_{ij} defined such that if i - j < h - k, then E_{ij} precedes E_{hk} .

Draw the Hasse diagam of the partial order defined above when n = 3.

There are total orderings extending this partial ordering. How would you find them algorithmically? Check that the following is such a total order:

$$(1,3), (1,2), (2,3), (1,1), (2,2), (3,3), (2,1), (3,2), (3,1).$$

(3) Pick any total order of the basis (E_{ij}) extending the partial ordering defined in (2). Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A (not necessarily distinct). Using Schur's theorem, A is similar to a lower triangular matrix B, that is, $A = PBP^{-1}$ with B lower triangular, and we may assume that the diagonal entries of B in descending order are $\lambda_1, \ldots, \lambda_n$. Use the fact that

$$L_A = L_P \circ L_B \circ L_P^{-1}, \quad R_A = R_P^{-1} \circ R_B \circ R_P$$

and prove that R_B is a lower triangular matrix whose diagonal entries are

$$(\lambda_{r(E_{1n})},\ldots,\lambda_{r(E_{n1})}),$$

with $r(E_{ij}) = j$, and that L_B is a lower triangular matrix whose diagonal entries are

$$(\lambda_{l(E_{1n})},\ldots,\lambda_{l(E_{n1})}),$$

with $l(E_{ij}) = i$, where the E_{ij} are listed according to their chosen total order. For example, using the total order listed above, the eigenvalues of R_A are

$$(\lambda_3, \lambda_2, \lambda_3, \lambda_1, \lambda_2, \lambda_3, \lambda_1, \lambda_2, \lambda_1),$$

and the eigenvalues of L_A are

$$(\lambda_1,\lambda_1,\lambda_2,\lambda_1,\lambda_2,\lambda_3,\lambda_2,\lambda_3,\lambda_3).$$

Hint. Figure out what are $R_B(E_{ij})$ and $L_B(E_{ij})$.

Conclude that the eigenvalues of ad_A are $\lambda_i - \lambda_j$ listed in the same order as the E_{ij} , with $1 \leq i, j \leq n$.

Problem B3 (80 pts). Given any two matrices $A, X \in M_n(\mathbb{C})$, define the function $f_A: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ by

$$f_A(X) = \sum_{p,q \ge 0} \frac{A^p X A^q}{(p+q+1)!}$$

(1) Prove that

$$f_A = \sum_{p,q \ge 0} \frac{L_A^p \circ R_A^q}{(p+q+1)!}.$$

(2) Prove that

$$\operatorname{ad}_A \circ f_A = \sum_{k \ge 1} \frac{1}{k!} (L_A^k - R_A^k).$$

(3) Prove that

$$\operatorname{ad}_A \circ f_A = e^{L_A} \circ (\operatorname{id} - e^{-\operatorname{ad}_A}).$$

Check that

$$e^{L_A}(B) = e^A B.$$

Conclude that

$$\operatorname{ad}_A \circ f_A = e^A (\operatorname{id} - e^{-\operatorname{ad}_A}).$$

Observe that

$$\operatorname{id} - e^{-\operatorname{ad}_A} = \sum_{k=0}^{\infty} \frac{(-1)^k \operatorname{ad}_A^{k+1}}{(k+1)!}$$

so it would be tempting to say that

$$f_A = e^A \sum_{k=0}^{\infty} \frac{(-1)^k \mathrm{ad}_A^k}{(k+1)!},$$

but I don't know (yet) how to justify this fact!

(4) Prove that

$$d(\exp)_A(X) = \sum_{p,q \ge 0} \frac{A^p X A^q}{(p+q+1)!} = f_A(X).$$

Remark: It is known that

$$d(\exp)_A = e^A \sum_{k=0}^{\infty} \frac{(-1)^k \mathrm{ad}_A^k}{(k+1)!},$$

so the bold unsubstantiated conclusion in (3) is actually correct. In fact, it is customary to use the notation

$$\frac{\mathrm{id} - e^{-\mathrm{ad}_A}}{\mathrm{ad}_A}$$

for the power series

$$\sum_{k=0}^{\infty} \frac{(-1)^k \mathrm{ad}_A^k}{(k+1)!},$$

and the formula for the derivative of exp is usually stated as

$$d(\exp)_A = e^A \left(\frac{\mathrm{id} - e^{-\mathrm{ad}_A}}{\mathrm{ad}_A} \right).$$

Problem B4 (20 pts). Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function given by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

(a) Compute the directional derivative $D_u f(0,0)$ of f at (0,0) for every vector $u = (u_1, u_2) \neq 0$.

(b) Prove that the derivative Df(0,0) does not exist. What is the behavior of the function f on the parabola $y = x^2$ near the origin (0,0)?

Problem B5 (40 pts). (a) Let $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be the function defined on $n \times n$ matrices by

$$f(A) = A^2.$$

Prove that

$$Df_A(H) = AH + HA,$$

for all $A, H \in M_n(\mathbb{R})$.

(b) Let $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be the function defined on $n \times n$ matrices by

$$f(A) = A^3.$$

Prove that

$$Df_A(H) = A^2H + AHA + HA^2,$$

for all $A, H \in M_n(\mathbb{R})$.

(c) Let $f: \operatorname{GL}(n,\mathbb{R}) \to \operatorname{M}_n(\mathbb{R})$ be the function defined on invertible $n \times n$ matrices by

$$f(A) = A^{-1}.$$

Prove that

$$\mathrm{D}f_A(H) = -A^{-1}HA^{-1},$$

for all $A \in GL(n, \mathbb{R})$ and for all $H \in M_n(\mathbb{R})$.

Problem B6 (80 pts). Recall that a matrix $B \in M_n(\mathbb{R})$ is skew-symmetric if

$$B^{\top} = -B.$$

Check that the set $\mathfrak{so}(n)$ of skew-symmetric matrices is a vector space of dimension n(n-1)/2, and thus is isomorphic to $\mathbb{R}^{n(n-1)/2}$.

(a) Given a rotation matrix

$$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix},$$

where $0 < \theta < \pi$, prove that there is a skew symmetric matrix B such that

$$R = (I - B)(I + B)^{-1}.$$

(b) Prove that the eigenvalues of a skew-symmetric matrix are either 0 or pure imaginary (that is, of the form $i\mu$ for $\mu \in \mathbb{R}$.).

Let $C: \mathfrak{so}(n) \to M_n(\mathbb{R})$ be the function given by

$$C(B) = (I - B)(I + B)^{-1}$$

Prove that if B is skew-symmetric, then I - B and I + B are invertible, and so C is welldefined. Prove that

$$(I+B)(I-B) = (I-B)(I+B),$$

and that

$$(I+B)(I-B)^{-1} = (I-B)^{-1}(I+B).$$

Prove that

$$(C(B))^{\top}C(B) = I$$

and that

$$\det C(B) = +1,$$

so that C(B) is a rotation matrix. Furthermore, show that C(B) does not admit -1 as an eigenvalue.

(c) Let SO(n) be the group of $n \times n$ rotation matrices. Prove that the map

$$C: \mathfrak{so}(n) \to \mathbf{SO}(n)$$

is bijective onto the subset of rotation matrices that do not admit -1 as an eigenvalue. Show that the inverse of this map is given by

$$B = (I+R)^{-1}(I-R) = (I-R)(I+R)^{-1},$$

where $R \in \mathbf{SO}(n)$ does not admit -1 as an eigenvalue. Check that C is a homeomorphism between $\mathfrak{so}(n)$ and $C(\mathfrak{so}(n))$.

(d) If $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ and $g: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ are differentiable matrix functions, prove that

$$d(fg)_A(B) = df_A(B)g(A) + f(A)dg_A(B),$$

for all $A, B \in M_n(\mathbb{R})$.

(e) Prove that

$$dC(B)(A) = -[I + (I - B)(I + B)^{-1}]A(I + B)^{-1} = -2(I + B)^{-1}A(I + B)^{-1}.$$

Prove that dC(B) is injective, for every skew-symmetric matrix B. Prove that C a parametrization of SO(n).

TOTAL: 330 points.