Spring, 2011 CIS 610

Advanced Geometric Methods in Computer Science Jean Gallier

Homework 1

February 22, 2011; Due March 17, 2011

"A problems" are for practice only, and should not be turned in.

Problem A1. Given a finite dimensional Euclidean space, E, if U and V are two orthogonal subspaces that span E, i.e., $E = U \oplus V$, we have the linear projections $p_U: E \to U$ and $p_V: E \to V$. Recall: since every $w \in E$ can be written uniquely as w = u + v, with $u \in U$ and $v \in V$, we have $p_U(w) = u$, $p_V(w) = v$ and $p_U(w) + p_V(w) = w$, for all $w \in E$. We define the orthogonal reflection with respect to U and parallel to V as the linear map, s, given by

$$s(w) = 2p_U(w) - w = w - 2p_V(w),$$

for all $w \in E$. Observe that $s \circ s = id$, that s is the identity on U and s = -id on V. When U = H is a hyperplane, s is called a hyperplane reflection (about H).

(a) If w is any nonzero vector orthogonal to the hyperplane H, prove that s is given by

$$s(x) = x - 2\frac{\langle x, w \rangle}{\|w\|^2}w,$$

for all $x \in E$. (Here, $||w||^2 = \langle w, w \rangle$.)

(b) In matrix form, if the vector w is represented by the column vector W, show that the matrix of the hyperplane reflection about the hyperplane $K = \{w\}^{\perp}$ is

$$I - 2\frac{WW^{\top}}{W^{\top}W}.$$

Such matrices are called *Householder matrices*.

Problem A2. Given an $m \times n$ matrix, A, prove that its Frobenius norm,

$$\|A\|_F = \sqrt{\sum_{ij} |a_{ij}|^2}$$

satisfies

$$\|A\|_F = \sqrt{\operatorname{tr}(A^*A)} = \sqrt{\operatorname{tr}(AA^*)}$$

where tr(B) is the trace of the square matrix B (the sum of its diagonal elements).

Problem A3. (a) Find two symmetric matrices, A and B, such that AB is not symmetric.

(b) Find two matrices, A and B, such that

$$e^A e^B \neq e^{A+B}.$$

Try

$$A = \frac{\pi}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad B = \frac{\pi}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

"B problems" must be turned in.

Problem B1 (40 pts). (a) Given a rotation matrix

$$R = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix},$$

where $0 < \theta < \pi$, prove that there is a skew symmetric matrix B such that

$$R = (I - B)(I + B)^{-1}.$$

(b) If B is a skew symmetric $n \times n$ matrix, prove that $\lambda I_n - B$ and $\lambda I_n + B$ are invertible for all $\lambda \neq 0$, and that they commute.

(c) Prove that

$$R = (\lambda I_n - B)(\lambda I_n + B)^{-1}$$

is a rotation matrix that does not admit -1 as an eigenvalue. (Recall, a rotation is an orthogonal matrix R with positive determinant, i.e., det(R) = 1.)

(d) Given any rotation matrix R that does not admit -1 as an eigenvalue, prove that there is a skew symmetric matrix B such that

$$R = (I_n - B)(I_n + B)^{-1} = (I_n + B)^{-1}(I_n - B).$$

This is known as the *Cayley representation* of rotations (Cayley, 1846).

(e) Given any rotation matrix R, prove that there is a skew symmetric matrix B such that

$$R = ((I_n - B)(I_n + B)^{-1})^2.$$

Problem B2 (40). (a) Consider the map, $f: \mathbf{GL}^+(n) \to \mathbf{S}(n)$, given by

$$f(A) = A^{\top}A - I.$$

Check that

$$df(A)(H) = A^{\top}H + H^{\top}A,$$

for any matrix, H.

(b) Consider the map, $f: \mathbf{GL}(n) \to \mathbb{R}$, given by

$$f(A) = \det(A).$$

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity matrix). Then, prove that

$$df(A)(B) = \det(A)\operatorname{tr}(A^{-1}B),$$

where $A \in \mathbf{GL}(n)$.

- (c) Use the map $A \mapsto \det(A) 1$ to prove that $\mathbf{SL}(n)$ is a manifold of dimension $n^2 1$.
- (d) Let J be the $(n+1) \times (n+1)$ diagonal matrix

$$J = \begin{pmatrix} I_n & 0\\ 0 & -1 \end{pmatrix}.$$

We denote by SO(n, 1) the group of real $(n + 1) \times (n + 1)$ matrices

$$\mathbf{SO}(n,1) = \{ A \in \mathbf{GL}(n+1) \mid A^{\top}JA = J \quad \text{and} \quad \det(A) = 1 \}.$$

Check that $\mathbf{SO}(n, 1)$ is indeed a group with the inverse of A given by $A^{-1} = JA^{\top}J$ (this is the *special Lorentz group.*) Consider the function $f: \mathbf{GL}^+(n+1) \to \mathbf{S}(n+1)$, given by

$$f(A) = A^{\top}JA - J,$$

where $\mathbf{S}(n+1)$ denotes the space of $(n+1) \times (n+1)$ symmetric matrices. Prove that

$$df(A)(H) = A^{\top}JH + H^{\top}JA$$

for any matrix, *H*. Prove that df(A) is surjective for all $A \in \mathbf{SO}(n, 1)$ and that $\mathbf{SO}(n, 1)$ is a manifold of dimension $\frac{n(n+1)}{2}$.

Problem B3 (40 pts). (a) Given any matrix

$$B = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathfrak{sl}(2, \mathbb{C}),$$

if $\omega^2 = a^2 + bc$ and ω is any of the two complex roots of $a^2 + bc$, prove that if $\omega \neq 0$, then

$$e^B = \cosh \omega I + \frac{\sinh \omega}{\omega} B_s$$

and $e^B = I + B$, if $a^2 + bc = 0$. Observe that $tr(e^B) = 2 \cosh \omega$.

Prove that the exponential map, exp: $\mathfrak{sl}(2,\mathbb{C}) \to \mathbf{SL}(2,\mathbb{C})$, is *not* surjective. For instance, prove that

$$\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$

is not the exponential of any matrix in $\mathfrak{sl}(2,\mathbb{C})$.

(b) Recall that a matrix, N, is *nilpotent* iff there is some $m \ge 0$ so that $N^m = 0$. Let A be any $n \times n$ matrix of the form A = I - N, where N is nilpotent. Why is A invertible? prove that there is some B so that $e^B = I - N$ as follows: Recall that for any $y \in \mathbb{R}$ so that |y - 1| is small enough, we have

$$\log(y) = -(1-y) - \frac{(1-y)^2}{2} - \dots - \frac{(1-y)^k}{k} - \dots$$

As N is nilpotent, we have $N^m = 0$, where m is the smallest integer with this property. Then, the expression

$$B = \log(I - N) = -N - \frac{N^2}{2} - \dots - \frac{N^{m-1}}{m-1}$$

is well defined. Use a formal power series argument to show that

$$e^B = A$$

We denote B by $\log(A)$.

(c) Let $A \in \mathbf{GL}(n, \mathbb{C})$. Prove that there is some matrix, B, so that $e^B = A$. Thus, the exponential map, exp: $\mathfrak{gl}(n, \mathbb{C}) \to \mathbf{GL}(n, \mathbb{C})$, is surjective.

First, use the fact that A has a Jordan form, PJP^{-1} . Then, show that finding a log of A reduces to finding a log of every Jordan block of J. As every Jordan block, J, has a fixed nonzero constant, λ , on the diagonal, with 1's immediately above each diagonal entry and zero's everywhere else, we can write J as $(\lambda I)(I - N)$, where N is nilpotent. Find B_1 and B_2 so that $\lambda I = e^{B_1}$, $I - N = e^{B_2}$, and $B_1B_2 = B_2B_1$. Conclude that $J = e^{B_1+B_2}$.

Problem B4 (60 pts). Recall from Homework 1, Problem B1, the Cayley parametrization of rotation matrices in SO(n) given by

$$C(B) = (I - B)(I + B)^{-1},$$

where B is any $n \times n$ skew symmetric matrix. In that problem, it was shown that C(B) is a rotation matrix that does not admit -1 as an eigenvalue and that every such rotation matrix is of the form C(B).

(a) If you have not already done so, prove that the map $B \mapsto C(B)$ is injective.

(b) Prove that

$$dC(B)(A) = D_A((I-B)(I+B)^{-1}) = -[I+(I-B)(I+B)^{-1}]A(I+B)^{-1}$$

Hint. First, show that $D_A(B^{-1}) = -B^{-1}AB^{-1}$ (where *B* is invertible) and that $D_A(f(B)g(B)) = (D_Af(B))g(B) + f(B)(D_Ag(B))$, where *f* and *g* are differentiable matrix functions.

Deduce that dC(B) is injective, for every skew-symmetric matrix, B. If we identify the space of $n \times n$ skew symmetric matrices with $\mathbb{R}^{n(n-1)/2}$, show that the Cayley map, $C: \mathbb{R}^{n(n-1)/2} \to \mathbf{SO}(n)$, is a parametrization of $\mathbf{SO}(n)$.

(c) Now, consider n = 3, i.e., **SO**(3). Let E_1 , E_2 and E_3 be the rotations about the *x*-axis, *y*-axis, and *z*-axis, respectively, by the angle π , i.e.,

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad E_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad E_3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Prove that the four maps

$$B \mapsto C(B)$$

$$B \mapsto E_1C(B)$$

$$B \mapsto E_2C(B)$$

$$B \mapsto E_3C(B)$$

where B is skew symmetric, are parametrizations of SO(3) and that the union of the images of C, E_1C , E_2C and E_3C covers SO(3), so that SO(3) is a manifold.

(d) Let A be any matrix (not necessarily invertible). Prove that there is some diagonal matrix, E, with entries +1 or -1, so that EA + I is invertible.

(e) Prove that every rotation matrix, $A \in \mathbf{SO}(n)$, is of the form

$$A = E(I - B)(I + B)^{-1},$$

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and -1, and where the number of -1 is even. Moreover, prove that every orthogonal matrix $A \in \mathbf{O}(n)$ is of the form

$$A = E(I - B)(I + B)^{-1},$$

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and -1. The above provide parametrizations for SO(n) (resp. O(n)) that show that SO(n) and O(n) are manifolds. However, observe that the number of these charts grows exponentially with n.

TOTAL: 180 points.