
Spring, 2011 CIS 610

Advanced Geometric Methods in Computer Science

Jean Gallier

Homework 1

February 22, 2011; Due March 17, 2011

“A problems” are for practice only, and should not be turned in.

Problem A1. Given a finite dimensional Euclidean space, E, if U and V are two orthogonal
subspaces that span E, i.e., E = U ⊕ V , we have the linear projections pU :E → U and
pV :E → V . Recall: since every w ∈ E can be written uniquely as w = u + v, with u ∈ U
and v ∈ V , we have pU(w) = u, pV (w) = v and pU(w)+pV (w) = w, for all w ∈ E. We define
the orthogonal reflection with respect to U and parallel to V as the linear map, s, given by

s(w) = 2pU(w)− w = w − 2pV (w),

for all w ∈ E. Observe that s ◦ s = id, that s is the identity on U and s = −id on V . When
U = H is a hyperplane, s is called a hyperplane reflection (about H).

(a) If w is any nonzero vector orthogonal to the hyperplane H, prove that s is given by

s(x) = x− 2
〈x,w〉
‖w‖2

w,

for all x ∈ E. (Here, ‖w‖2 = 〈w,w〉.)
(b) In matrix form, if the vector w is represented by the column vector W , show that the

matrix of the hyperplane reflection about the hyperplane K = {w}⊥ is

I − 2
WW>

W>W
.

Such matrices are called Householder matrices .

Problem A2. Given an m× n matrix, A, prove that its Frobenius norm,

‖A‖F =

√∑
ij

|ai j|2

satisfies
‖A‖F =

√
tr(A∗A) =

√
tr(AA∗)
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where tr(B) is the trace of the square matrix B (the sum of its diagonal elements).

Problem A3. (a) Find two symmetric matrices, A and B, such that AB is not symmetric.

(b) Find two matrices, A and B, such that

eAeB 6= eA+B.

Try

A =
π

2

 0 0 0
0 0 −1
0 1 0

 and B =
π

2

 0 0 1
0 0 0
−1 0 0

 .

“B problems” must be turned in.

Problem B1 (40 pts). (a) Given a rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
,

where 0 < θ < π, prove that there is a skew symmetric matrix B such that

R = (I −B)(I +B)−1.

(b) If B is a skew symmetric n×n matrix, prove that λIn−B and λIn +B are invertible
for all λ 6= 0, and that they commute.

(c) Prove that
R = (λIn −B)(λIn +B)−1

is a rotation matrix that does not admit −1 as an eigenvalue. (Recall, a rotation is an
orthogonal matrix R with positive determinant, i.e., det(R) = 1.)

(d) Given any rotation matrix R that does not admit −1 as an eigenvalue, prove that
there is a skew symmetric matrix B such that

R = (In −B)(In +B)−1 = (In +B)−1(In −B).

This is known as the Cayley representation of rotations (Cayley, 1846).

(e) Given any rotation matrix R, prove that there is a skew symmetric matrix B such
that

R =
(
(In −B)(In +B)−1

)2
.

Problem B2 (40). (a) Consider the map, f :GL+(n)→ S(n), given by

f(A) = A>A− I.
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Check that
df(A)(H) = A>H +H>A,

for any matrix, H.

(b) Consider the map, f :GL(n)→ R, given by

f(A) = det(A).

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity
matrix). Then, prove that

df(A)(B) = det(A)tr(A−1B),

where A ∈ GL(n).

(c) Use the map A 7→ det(A)− 1 to prove that SL(n) is a manifold of dimension n2 − 1.

(d) Let J be the (n+ 1)× (n+ 1) diagonal matrix

J =

(
In 0
0 −1

)
.

We denote by SO(n, 1) the group of real (n+ 1)× (n+ 1) matrices

SO(n, 1) = {A ∈ GL(n+ 1) | A>JA = J and det(A) = 1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A−1 = JA>J (this is
the special Lorentz group.) Consider the function f :GL+(n+ 1)→ S(n+ 1), given by

f(A) = A>JA− J,

where S(n+ 1) denotes the space of (n+ 1)× (n+ 1) symmetric matrices. Prove that

df(A)(H) = A>JH +H>JA

for any matrix, H. Prove that df(A) is surjective for all A ∈ SO(n, 1) and that SO(n, 1) is

a manifold of dimension n(n+1)
2

.

Problem B3 (40 pts). (a) Given any matrix

B =

(
a b
c −a

)
∈ sl(2,C),

if ω2 = a2 + bc and ω is any of the two complex roots of a2 + bc, prove that if ω 6= 0, then

eB = coshω I +
sinh ω

ω
B,

and eB = I +B, if a2 + bc = 0. Observe that tr(eB) = 2 cosh ω.
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Prove that the exponential map, exp: sl(2,C)→ SL(2,C), is not surjective. For instance,
prove that (

−1 1
0 −1

)
is not the exponential of any matrix in sl(2,C).

(b) Recall that a matrix, N , is nilpotent iff there is some m ≥ 0 so that Nm = 0. Let
A be any n× n matrix of the form A = I −N , where N is nilpotent. Why is A invertible?
prove that there is some B so that eB = I −N as follows: Recall that for any y ∈ R so that
|y − 1| is small enough, we have

log(y) = −(1− y)− (1− y)2

2
− · · · − (1− y)k

k
− · · · .

As N is nilpotent, we have Nm = 0, where m is the smallest integer with this propery. Then,
the expression

B = log(I −N) = −N − N2

2
− · · · − Nm−1

m− 1

is well defined. Use a formal power series argument to show that

eB = A.

We denote B by log(A).

(c) Let A ∈ GL(n,C). Prove that there is some matrix, B, so that eB = A. Thus, the
exponential map, exp: gl(n,C)→ GL(n,C), is surjective.

First, use the fact that A has a Jordan form, PJP−1. Then, show that finding a log of
A reduces to finding a log of every Jordan block of J . As every Jordan block, J , has a fixed
nonzero constant, λ, on the diagonal, with 1’s immediately above each diagonal entry and
zero’s everywhere else, we can write J as (λI)(I − N), where N is nilpotent. Find B1 and
B2 so that λI = eB1 , I −N = eB2 , and B1B2 = B2B1. Conclude that J = eB1+B2 .

Problem B4 (60 pts). Recall from Homework 1, Problem B1, the Cayley parametrization
of rotation matrices in SO(n) given by

C(B) = (I −B)(I +B)−1,

where B is any n × n skew symmetric matrix. In that problem, it was shown that C(B)
is a rotation matrix that does not admit −1 as an eigenvalue and that every such rotation
matrix is of the form C(B).

(a) If you have not already done so, prove that the map B 7→ C(B) is injective.

(b) Prove that

dC(B)(A) = DA((I −B)(I +B)−1) = −[I + (I −B)(I +B)−1]A(I +B)−1.
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Hint . First, show that DA(B−1) = −B−1AB−1 (where B is invertible) and that
DA(f(B)g(B)) = (DAf(B))g(B) + f(B)(DAg(B)), where f and g are differentiable matrix
functions.

Deduce that dC(B) is injective, for every skew-symmetric matrix, B. If we identify
the space of n × n skew symmetric matrices with Rn(n−1)/2, show that the Cayley map,
C:Rn(n−1)/2 → SO(n), is a parametrization of SO(n).

(c) Now, consider n = 3, i.e., SO(3). Let E1, E2 and E3 be the rotations about the
x-axis, y-axis, and z-axis, respectively, by the angle π, i.e.,

E1 =

 1 0 0
0 −1 0
0 0 −1

 , E2 =

−1 0 0
0 1 0
0 0 −1

 , E3 =

−1 0 0
0 −1 0
0 0 1

 .

Prove that the four maps

B 7→ C(B)

B 7→ E1C(B)

B 7→ E2C(B)

B 7→ E3C(B)

where B is skew symmetric, are parametrizations of SO(3) and that the union of the images
of C, E1C, E2C and E3C covers SO(3), so that SO(3) is a manifold.

(d) Let A be any matrix (not necessarily invertible). Prove that there is some diagonal
matrix, E, with entries +1 or −1, so that EA+ I is invertible.

(e) Prove that every rotation matrix, A ∈ SO(n), is of the form

A = E(I −B)(I +B)−1,

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1, and where the number of −1 is even. Moreover, prove that every orthogonal matrix
A ∈ O(n) is of the form

A = E(I −B)(I +B)−1,

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1. The above provide parametrizations for SO(n) (resp. O(n)) that show that SO(n) and
O(n) are manifolds. However, observe that the number of these charts grows exponentially
with n.

TOTAL: 180 points.
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