"A problems" are for practice only, and should not be turned in.

Problem A1. Given any two affine spaces E and F, for any affine map $f: E \to F$, for any convex set U in E and any convex set V in F, prove that $f(U)$ is convex and that $f^{-1}(V)$ is convex. Recall that

$$f(U) = \{ b \in F \mid \exists a \in U, b = f(a) \}$$

is the direct image of U under f, and that

$$f^{-1}(V) = \{ a \in E \mid \exists b \in V, b = f(a) \}$$

is the inverse image of V under f.

Problem A2. Let E be a nonempty set and \vec{E} be a vector space and assume that there is a function $\Phi: E \times E \to \vec{E}$, such that if we denote $\Phi(a, b)$ by ab, the following properties hold:

1. $ab + bc = ac$, for all $a, b, c \in E$;

2. For every $a \in E$, the map $\Phi_a: E \to \vec{E}$ defined such that for every $b \in E$, $\Phi_a(b) = ab$, is a bijection.

Let $\Psi_a: \vec{E} \to E$ be the inverse of $\Phi_a: E \to \vec{E}$.

Prove that the function $+: E \times \vec{E} \to E$ defined such that

$$a + u = \Psi_a(u)$$

for all $a \in E$ and all $u \in \vec{E}$ makes $(E, \vec{E}, +)$ into an affine space.

Note: We showed in class that an affine space $(E, \vec{E}, +)$ satisfies the properties stated above. Thus, we obtain an equivalent characterization of affine spaces.

"B problems" must be turned in.
Problem B1 (10 pts). (a) Given a tetrahedron \((a, b, c, d)\), given any two distinct points \(x, y \in \{a, b, c, d\}\), let let \(m_{x,y}\) be the middle of the edge \((x, y)\). Prove that the barycenter \(g\) of the weighted points \((a, 1/4), (b, 1/4), (c, 1/4), \) and \((d, 1/4)\), is the common intersection of the line segments \((m_{a,b}, m_{c,d}), (m_{a,c}, m_{b,d}), \) and \((m_{a,d}, m_{b,c})\). Show that if \(g_d\) is the barycenter of \((a, 1/3), (b, 1/3), (c, 1/3)\) then \(g\) is the barycenter of \((d, 1/4)\) and \((g_d, 3/4)\).

Problem B2 (30 pts). Given any two distinct points \(a, b\) in \(A^2\) of barycentric coordinates \((a_0, a_1, a_2)\) and \((b_0, b_1, b_2)\) with respect to any given affine frame, show that the equation of the line \(\langle a, b \rangle\) determined by \(a\) and \(b\) is

\[
\begin{vmatrix}
a_0 & b_0 & x \\
a_1 & b_1 & y \\
a_2 & b_2 & z \\
\end{vmatrix} = 0,
\]

or equivalently

\[(a_1 b_2 - a_2 b_1) x + (a_2 b_0 - a_0 b_2) y + (a_0 b_1 - a_1 b_0) z = 0,
\]

where \((x, y, z)\) are the barycentric coordinates of the generic point on the line \(\langle a, b \rangle\).

Prove that the equation of a line in barycentric coordinates is of the form

\[ux + vy + wz = 0,
\]

where \(u \neq v\), or \(v \neq w\), or \(u \neq w\). Show that two equations

\[ux + vy + wz = 0 \quad \text{and} \quad u' x + v'y + w'z = 0
\]

represent the same line in barycentric coordinates iff \((u', v', w') = \lambda (u, v, w)\) for some \(\lambda \in \mathbb{R}\) (with \(\lambda \neq 0\)).

A triple \((u, v, w)\) where \(u \neq v\), or \(v \neq w\), or \(u \neq w\), is called a system of tangential coordinates of the line defined by the equation

\[ux + vy + wz = 0.
\]

Problem B3 (30 pts). Given two lines \(D\) and \(D'\) in \(A^2\) defined by tangential coordinates \((u, v, w)\) and \((u', v', w')\) (as defined in problem B2), let

\[
d = \begin{vmatrix}
\begin{array}{ccc}
u & v & w \\
u' & v' & w' \\
1 & 1 & 1
\end{array}
\end{vmatrix} = vw' - wv' + wu' - uw' + uv' - vu'.
\]

(a) Prove that \(D\) and \(D'\) have a unique intersection point iff \(d \neq 0\), and that when it exists, the barycentric coordinates of this intersection point are

\[
\frac{1}{d}(vw' - wv', wu' - uw', uv' - vu').
\]
(b) Letting \((O, i, j)\) be any affine frame for \(\mathbb{A}^2\), recall that when \(x + y + z = 0\), for any point \(a\), the vector
\[xaO + ya_i + za_j \]
is independent of \(a\) and equal to
\[yOi + zOj = (y, z). \]

The triple \((x, y, z)\) such that \(x + y + z = 0\) is called the barycentric coordinates of the vector \(yOi + zOj\) w.r.t. the affine frame \((O, i, j)\).

Given any affine frame \((O, i, j)\), prove that for \(u \neq v\), or \(v \neq w\), or \(u \neq w\), the line of equation
\[ux + vy + wz = 0 \]
in barycentric coordinates \((x, y, z)\) (where \(x + y + z = 1\)) has for direction the set of vectors of barycentric coordinates \((x, y, z)\) such that
\[ux + vy + wz = 0 \]
(where \(x + y + z = 0\)).

Prove that \(D\) and \(D'\) are parallel iff \(d = 0\). In this case, if \(D \neq D'\), show that the common direction of \(D\) and \(D'\) is defined by the vector of barycentric coordinates
\[(vw' - vw', uw' - uu', uu' - vv'). \]

(c) Given three lines \(D\), \(D'\), and \(D''\), at least two of which are distinct, and defined by tangential coordinates \((u, v, w)\), \((u', v', w')\), and \((u'', v'', w'')\), prove that \(D\), \(D'\), and \(D''\) are parallel or have a unique intersection point iff
\[\begin{vmatrix} u & v & w \\ u' & v' & w' \\ u'' & v'' & w'' \end{vmatrix} = 0. \]

Problem B4 (40 pts). This problem uses notions and results from Problems B2 and B3. In view of (a) and (b) of Problem B3, it is natural to extend the notion of barycentric coordinates of a point in \(\mathbb{A}^2\) as follows. Given any affine frame \((a, b, c)\) in \(\mathbb{A}^2\), we will say that the barycentric coordinates \((x, y, z)\) of a point \(M\), where \(x + y + z = 1\), are the normalized barycentric coordinates of \(M\). Then, any triple \((x, y, z)\) such that \(x + y + z \neq 0\) is also called a system of barycentric coordinates for the point of normalized barycentric coordinates
\[\frac{1}{x + y + z} (x, y, z). \]
With this convention, the intersection of the two lines D and D' is either a point or a vector, in both cases of barycentric coordinates

$$(vw' - wv', wu' - uw', uv' - vu').$$

When the above is a vector, we can think of it as a point at infinity (in the direction of the line defined by that vector).

Let $(D_0, D'_0), (D_1, D'_1),$ and (D_2, D'_2) be three pairs of six distinct lines, such that the four lines belonging to any union of two of the above pairs are neither parallel nor concurrent (have a common intersection point). If D_0 and D'_0 have a unique intersection point, let M be this point, and if D_0 and D'_0 are parallel, let M denote a nonnull vector defining the common direction of D_0 and D'_0. In either case, let (m, m', m'') be the barycentric coordinates of M, as explained at the beginning of the problem. We call M the intersection of D_0 and D'_0.

Similarly, define $N = (n, n', n'')$ as the intersection of D_1 and D'_1, and $P = (p, p', p'')$ as the intersection of D_2 and D'_2.

Prove that

$$
\begin{vmatrix}
 m & n & p \\
 m' & n' & p' \\
 m'' & n'' & p''
\end{vmatrix} = 0
$$

iff either

(i) $(D_0, D'_0), (D_1, D'_1),$ and (D_2, D'_2) are pairs of parallel lines; or

(ii) the lines of some pair (D_i, D'_i) are parallel, each pair (D_j, D'_j) (with $j \neq i$) has a unique intersection point, and these two intersection points are distinct and determine a line parallel to the lines of the pair (D_i, D'_i); or

(iii) each pair $(D_i, D'_i) (i = 0, 1, 2)$ has a unique intersection point, and these points M, N, P are distinct and collinear.

Problem B5 (20 pts). (a) Let E be an affine space over \mathbb{R}, and let (a_1, \ldots, a_n) be any $n \geq 3$ points in E. Let $(\lambda_1, \ldots, \lambda_n)$ be any n scalars in \mathbb{R}, with $\lambda_1 + \cdots + \lambda_n = 1$. Show that there must be some i, $1 \leq i \leq n$, such that $\lambda_i \neq 1$. To simplify the notation, assume that $\lambda_1 \neq 1$. Show that the barycenter $\lambda_1 a_1 + \cdots + \lambda_n a_n$ can be obtained by first determining the barycenter b of the $n - 1$ points a_2, \ldots, a_n assigned some appropriate weights, and then the barycenter of a_1 and b assigned the weights λ_1 and $\lambda_2 + \cdots + \lambda_n$. From this, show that the barycenter of any $n \geq 3$ points can be determined by repeated computations of barycenters of two points. Deduce from the above that a nonempty subset V of E is an affine subspace iff whenever V contains any two points $x, y \in V$, then V contains the entire line $(1 - \lambda)x + \lambda y$, $\lambda \in \mathbb{R}$.

(b) Assume that K is a field such that $2 = 1 + 1 \neq 0$, and let E be an affine space over K. In the case where $\lambda_1 + \cdots + \lambda_n = 1$ and $\lambda_i = 1$, for $1 \leq i \leq n$ and $n \geq 3$, in which
case, we are dealing with a field of characteristic \(p \geq 3 \) and \(p \) divides \(n - 1 \), show that the barycenter, \(a_1 + a_2 + \cdots + a_n \), can still be computed by repeated computations of barycenters of two points.

Extra Credit (20 points). Prove that even in the case where \(K \) is a field of characteristic 2 but \(K \) has at least three distinct elements, the barycenter of any \(n \geq 3 \) points can be computed by repeated computations of barycenters of two points.

Problem B6 (30 pts). (i) Let \((a, b, c)\) be three points in \(\mathbb{A}^2 \), and assume that \((a, b, c)\) are not collinear. For any point \(x \in \mathbb{A}^2 \), if \(x = \lambda_0 a + \lambda_1 b + \lambda_2 c \), where \((\lambda_0, \lambda_1, \lambda_2)\) are the barycentric coordinates of \(x \) with respect to \((a, b, c)\), show that

\[
\lambda_0 = \frac{\det(xb, bc)}{\det(ab, ac)}, \quad \lambda_1 = \frac{\det(ax, ac)}{\det(ab, ac)}, \quad \lambda_2 = \frac{\det(ab, ax)}{\det(ab, ac)}.
\]

Conclude that \(\lambda_0, \lambda_1, \lambda_2 \) are certain signed ratios of the areas of the triangles \((a, b, c)\), \((x, a, b)\), \((x, a, c)\), and \((x, b, c)\).

(ii) Let \((a, b, c)\) be three points in \(\mathbb{A}^3 \), and assume that \((a, b, c)\) are not collinear. For any point \(x \) in the plane determined by \((a, b, c)\), if \(x = \lambda_0 a + \lambda_1 b + \lambda_2 c \), where \((\lambda_0, \lambda_1, \lambda_2)\) are the barycentric coordinates of \(x \) with respect to \((a, b, c)\), show that

\[
\lambda_0 = \frac{xb \times bc}{ab \times ac}, \quad \lambda_1 = \frac{ax \times ac}{ab \times ac}, \quad \lambda_2 = \frac{ab \times ax}{ab \times ac}.
\]

Given any point \(O \) not in the plane of the triangle \((a, b, c)\), prove that

\[
\lambda_1 = \frac{\det(Oa, Ox, Oc)}{\det(Oa, Ob, Oc)}, \quad \lambda_2 = \frac{\det(Oa, Ob, Ox)}{\det(Oa, Ob, Oc)},
\]

and

\[\lambda_0 = \frac{\det(Ox, Ob, Oc)}{\det(Oa, Ob, Oc)}\].

(iii) Let \((a, b, c, d)\) be four points in \(\mathbb{A}^3 \), and assume that \((a, b, c, d)\) are not coplanar. For any point \(x \in \mathbb{A}^3 \), if \(x = \lambda_0 a + \lambda_1 b + \lambda_2 c + \lambda_3 d \), where \((\lambda_0, \lambda_1, \lambda_2, \lambda_3)\) are the barycentric coordinates of \(x \) with respect to \((a, b, c, d)\), show that

\[
\lambda_1 = \frac{\det(ax, ac, ad)}{\det(ab, ac, ad)}, \quad \lambda_2 = \frac{\det(ab, ax, ad)}{\det(ab, ac, ad)}, \quad \lambda_3 = \frac{\det(ab, ac, ax)}{\det(ab, ac, ad)},
\]

and

\[\lambda_0 = \frac{\det(xb, bc, bd)}{\det(ab, ac, ad)}.\]

Conclude that \(\lambda_0, \lambda_1, \lambda_2, \lambda_3 \) are certain signed ratios of the volumes of the five tetrahedra \((a, b, c, d)\), \((x, a, b, c)\), \((x, a, b, d)\), \((x, a, c, d)\), and \((x, b, c, d)\).
Let \((a_0, \ldots, a_m)\) be \(m+1\) points in \(\mathbb{A}^m\), and assume that they are affinely independent. For any point \(x \in \mathbb{A}^m\), if \(x = \lambda_0 a_0 + \cdots + \lambda_m a_m\), where \((\lambda_0, \ldots, \lambda_m)\) are the barycentric coordinates of \(x\) with respect to \((a_0, \ldots, a_m)\), show that

\[
\lambda_i = \frac{\det(a_0 a_1, \ldots, a_0 a_{i-1}, a_0 x, a_0 a_{i+1}, \ldots, a_0 a_m)}{\det(a_0 a_1, \ldots, a_0 a_{i-1}, a_0 a_i, a_0 a_{i+1}, \ldots, a_0 a_m)}
\]

for every \(i, 1 \leq i \leq m\), and

\[
\lambda_0 = \frac{\det(x a_1, a_1 a_2, \ldots, a_1 a_m)}{\det(a_0 a_1, \ldots, a_0 a_i, \ldots, a_0 a_m)}.
\]

Conclude that \(\lambda_i\) is the signed ratio of the volumes of the simplexes \((a_0, \ldots, x, \ldots a_m)\) and \((a_0, \ldots, a_i, \ldots a_m)\), where \(0 \leq i \leq m\).

TOTAL: 160 (+ 20) points.