
The Scaling and Squaring Method for the Matrix

Exponential Revisited

Nicholas J. Higham

2005

MIMS EPrint: 2006.394

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://www.manchester.ac.uk/mims/eprints

And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

SIAM J. MATRIX ANAL. APPL. c© 2005 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1179–1193

THE SCALING AND SQUARING METHOD FOR THE
MATRIX EXPONENTIAL REVISITED∗

NICHOLAS J. HIGHAM†

Abstract. The scaling and squaring method is the most widely used method for computing the
matrix exponential, not least because it is the method implemented in MATLAB’s expm function. The
method scales the matrix by a power of 2 to reduce the norm to order 1, computes a Padé approximant
to the matrix exponential, and then repeatedly squares to undo the effect of the scaling. We give a
new backward error analysis of the method (in exact arithmetic) that employs sharp bounds for the
truncation errors and leads to an implementation of essentially optimal efficiency. We also give new
rounding error analysis that shows the computed Padé approximant of the scaled matrix to be highly
accurate. For IEEE double precision arithmetic the best choice of degree of Padé approximant turns
out to be 13, rather than the 6 or 8 used by previous authors. Our implementation of the scaling
and squaring method always requires at least two fewer matrix multiplications than expm when the
matrix norm exceeds 1, which can amount to a 37% saving in the number of multiplications, and
it is typically more accurate, owing to the fewer required squarings. We also investigate a different
scaling and squaring algorithm proposed by Najfeld and Havel that employs a Padé approximation
to the function x coth(x). This method is found to be essentially a variation of the standard one
with weaker supporting error analysis.

Key words. matrix function, matrix exponential, Padé approximation, matrix polynomial
evaluation, scaling and squaring method, MATLAB, expm, backward error analysis, performance
profile

AMS subject classification. 65F30

DOI. 10.1137/04061101X

1. Introduction. The matrix exponential is a much-studied matrix function,
owing to its key role in the solution of differential equations. Computation of eA

is required in applications such as nuclear magnetic resonance spectroscopy [8], [18],
control theory [5], and Markov chain analysis [20]. Motivated by the applications,
mathematicians and engineers have produced a large amount of literature on methods
for computing eA.

A wide variety of methods for computing eA were analyzed in the classic paper of
Moler and Van Loan [16], which was reprinted with an update in [17]. The conclusion
of the paper was that there are three or four candidates for best method. One of
these, the scaling and squaring method, has become by far the most widely used, not
least because it is the method implemented in MATLAB.

In this work we take a fresh look at the scaling and squaring method, giving a
sharp analysis of truncation errors and a careful treatment of computational cost.
We derive a new implementation that has essentially optimal efficiency and show
that it requires at least one less matrix multiplication than existing implementations,
including that in MATLAB. Our analysis and implementation are presented in sec-
tion 2. Section 3 contains a comparison with existing implementations and numerical
experiments. The new implementation is found to be typically more accurate than

∗Received by the editors July 5, 2004; accepted for publication (in revised form) by I. C. F. Ipsen
September 30, 2004; published electronically June 3, 2005. This work was supported by Engineering
and Physical Sciences Research Council grant GR/T08739 and by a Royal Society-Wolfson Research
Merit Award.

http://www.siam.org/journals/simax/26-4/61101.html
†School of Mathematics, The University of Manchester, Sackville Street, Manchester, England

M60 1QD (higham@ma.man.ac.uk, http://www.ma.man.ac.uk/∼higham/).

1179

1180 NICHOLAS J. HIGHAM

the existing ones, owing to the fact that it usually requires fewer matrix squarings.
This work therefore provides another example of the phenomenon, illustrated in the
work of Dhillon and Parlett [2], for example, that speed and accuracy are not always
conflicting goals in matrix computations.

The standard scaling and squaring method employs Padé approximants to ex.
Najfeld and Havel [18] propose a variation using Padé approximants to the function
x coth(x) instead, and they argue that this approach is more efficient than direct
Padé approximation. In section 4 we show that the proposed method is essentially a
variation of the standard method, but with weaker supporting error analysis, both in
exact arithmetic and in floating point arithmetic.

For other recent work on the scaling and squaring method, concerned particularly
with arbitrary precision computations, see Sofroniou and Spaletta [21].

Throughout this paper, ‖ · ‖ denotes any subordinate matrix norm. We use the
standard model of floating point arithmetic with unit roundoff u [11, sec. 2.2]. Our
rounding error bounds are expressed in terms of the constants

γk =
ku

1 − ku
, γ̃k =

cku

1 − cku
,(1.1)

where c denotes a small integer constant whose exact value is unimportant.

2. The scaling and squaring method. The scaling and squaring method
exploits the relation eA = (eA/σ)σ, for A ∈ C

n×n and σ ∈ C, together with the
fact that eA can be well approximated by a Padé approximant near the origin, that
is, for small ‖A‖. The idea is to choose σ an integral power of 2, σ = 2s say,
so that A/σ has norm of order 1, approximate eA/2s ≈ rkm(A/2s), where rkm is
a [k/m] Padé approximant to the exponential, and then take eA ≈ rkm(A/2s)2

s

,
where the approximation is formed by s repeated squarings. Recall that rkm(x) =
pkm(x)/qkm(x) is defined by the properties that p and q are polynomials of degrees
at most k and m, respectively, and that ex − rkm(x) = O(xk+m+1). The scaling and
squaring method method goes back at least to Lawson [15].

The mathematical elegance of the scaling and squaring method is enhanced by the
fact that the [k/m] Padé approximants rkm(x) = pkm(x)/qkm(x) to the exponential
function are known explicitly for all k and m:

pkm(x) =

k∑
j=0

(k + m− j)!k!

(k + m)! (k − j)!

xj

j!
, qkm(x) =

m∑
j=0

(k + m− j)!m!

(k + m)! (m− j)!

(−x)j

j!
.(2.1)

Note that pkm(x) = qmk(−x), which reflects the property 1/ex = e−x of the expo-
nential function. Later we will exploit the fact that pmm(x) and qmm(x) approx-
imate ex/2 and e−x/2, respectively, though they do so much less accurately than
rmm = pmm/qmm approximates ex. That rkm satisfies the definition of Padé approx-
imant is demonstrated by the error expression [6, Thm. 5.5.1]

ex − rkm(x) = (−1)m
k!m!

(k + m)!(k + m + 1)!
xk+m+1 + O(xk+m+2).(2.2)

Diagonal approximants (k = m) are preferred, since rkm with k �= m is less accu-
rate than rjj , where j = max(k,m), but rjj can be evaluated at a matrix argument
at the same cost. Moreover, the diagonal approximants have the property that if
the eigenvalues of A lie in the open left half-plane then the eigenvalues of rmm(A)

MATRIX EXPONENTIAL REVISITED 1181

have modulus less than 1 (that is, the spectral radius ρ(rmm(A)) < 1), which is an
important property in applications to differential equations [23, Chap. 8]. We will
write the diagonal approximants as rm(x) = pm(x)/qm(x).

Our aim is to choose s, in the initial scaling A ← A/2s, so that the exponential is
computed with backward error bounded by the unit roundoff and with minimal cost.
In bounding the backward error we assume exact arithmetic and examine solely the
effects of the approximation errors in the Padé approximant.

We begin by considering errors. The choice of s will be based on ‖A‖, where
the norm can be any subordinate matrix norm. Our aim is therefore to bound the
backward error in terms of ‖2−sA‖ and then to determine, for each degree m, the max-
imum ‖2−sA‖ for which rm can be guaranteed to deliver the desired backward error.
Moler and Van Loan [16] give a very elegant backward error analysis, from which they
obtain a criterion for choosing m; see also Golub and Van Loan [7, sec. 11.3]. Their
analysis has two weaknesses. First, it makes an initial assumption that ‖A‖ ≤ 1/2,
whereas, as we will see, there are good reasons for allowing ‖A‖ to be much larger.
Second, it is designed to provide an explicit and easily computable error bound, and
the resulting bound is far from being sharp. We now adapt the ideas of Moler and
Van Loan in order to obtain a bound that makes no a priori assumption on ‖A‖ and
is as sharp as possible. The tradeoff is that the bound is hard to evaluate, but this is
a minor inconvenience because the evaluation need only be done during the design of
the algorithm.

Let

e−Arm(A) = I + G = eH ,(2.3)

where we assume that ‖G‖ < 1, so that H = log(I +G) is guaranteed to exist. (Here,
log denotes the principal logarithm.) From log(I +G) =

∑∞
j=1(−1)j+1Gj/j, we have

‖H‖ = ‖ log(I + G)‖ ≤
∞∑
j=1

‖G‖j/j = − log(1 − ‖G‖).

Now G is clearly a function of A (in the sense of matrix functions [9], [12, Chap. 6]),
hence so is H, and therefore H commutes with A. It follows that

rm(A) = eAeH = eA+H .

Now we replace A by A/2s, where s is a nonnegative integer, and raise both sides of
this equation to the power 2s to obtain

rm(A/2s)2
s

= eA+E ,

where E = 2sH satisfies

‖E‖ ≤ −2s log(1 − ‖G‖)

and G satisfies (2.3) with A replaced by 2−sA. We summarize our findings in the
following theorem.

Theorem 2.1. Let the diagonal Padé approximant rm satisfy

e−2−sA rm(2−sA) = I + G,(2.4)

1182 NICHOLAS J. HIGHAM

where ‖G‖ < 1. Then

rm(2−sA)2
s

= eA+E ,

where E commutes with A and

‖E‖
‖A‖ ≤ − log(1 − ‖G‖)

‖2−sA‖ .(2.5)

Theorem 2.1 is a backward error result: it interprets the truncation errors in the
Padé approximant as equivalent to a perturbation in the original matrix A. (The
result holds, in fact, for any rational approximation rm, as we have not yet used
specific properties of a Padé approximant.) The advantage of the backward error
viewpoint is that it automatically takes into account the effect of the squaring phase
on the error in the Padé approximant and, compared with a forward error bound,
avoids the need to consider the conditioning of the problem.

Our task now is to bound the norm of G in (2.4) in terms of ‖2−sA‖. Define the
function

ρ(x) = e−xrm(x) − 1.

In view of the Padé approximation property (2.2), ρ has a power series expansion

ρ(x) =

∞∑
i=2m+1

cix
i,(2.6)

and this series will converge absolutely for |x| < min{ |t| : qm(t) = 0 } =: νm. Hence

‖G‖ = ‖ρ(2−sA)‖ ≤
∞∑

i=2m+1

|ci|θi =: f(θ),(2.7)

where θ := ‖2−sA‖ < νm. It is clear that if A is a general matrix and only ‖A‖ is
known then (2.7) provides the smallest possible bound on ‖G‖. The corresponding
bound of Moler and Van Loan [16, Appx. 1, Lem. 4] is easily seen to be less sharp,
and a refined analysis of Dieci and Papini [3, sec. 2], which bounds a different error,
is also weaker when adapted to bound ‖G‖.

Combining (2.7) with (2.5) we have

‖E‖
‖A‖ ≤ − log(1 − f(θ))

θ
.(2.8)

Evaluation of f(θ) in (2.7) would be easy if the coefficients ci were one-signed, for
then we would have f(θ) = |ρ(θ)|. Experimentally, the ci are one-signed for some, but
not all, m. Using MATLAB’s Symbolic Math Toolbox, we have evaluated f(θ), and
hence the bound (2.8), in 250 decimal digit arithmetic, summing the first 150 terms
of the series, where the ci in (2.6) are obtained symbolically. For m = 1: 21 we have
used a zero-finder to determine the largest value of θ, denoted by θm, such that the
backward error bound (2.8) does not exceed u = 2−53 ≈ 1.1×10−16, the unit roundoff
in IEEE double precision arithmetic. The results are shown to two significant figures
in Table 2.1.

The second row of the table shows the values of νm, and we see that θm < νm
in each case, confirming that the bound (2.7) is valid. The inequalities θm < νm also

MATRIX EXPONENTIAL REVISITED 1183

Table 2.1

Maximal values θm of ‖2−sA‖ such that the backward error bound (2.8) does not exceed
u = 2−53, values of νm = min{ |x| : qm(x) = 0}, and upper bound ξm for ‖qm(A)−1‖.

m 1 2 3 4 5 6 7 8 9 10

θm 3.7e-8 5.3e-4 1.5e-2 8.5e-2 2.5e-1 5.4e-1 9.5e-1 1.5e0 2.1e0 2.8e0
νm 2.0e0 3.5e0 4.6e0 6.0e0 7.3e0 8.7e0 9.9e0 1.1e1 1.3e1 1.4e1
ξm 1.0e0 1.0e0 1.0e0 1.0e0 1.1e0 1.3e0 1.6e0 2.1e0 3.0e0 4.3e0

m 11 12 13 14 15 16 17 18 19 20 21

θm 3.6e0 4.5e0 5.4e0 6.3e0 7.3e0 8.4e0 9.4e0 1.1e1 1.2e1 1.3e1 1.4e1
νm 1.5e1 1.7e1 1.8e1 1.9e1 2.1e1 2.2e1 2.3e1 2.5e1 2.6e1 2.7e1 2.8e1
ξm 6.6e0 1.0e1 1.7e1 3.0e1 5.3e1 9.8e1 1.9e2 3.8e2 8.3e2 2.0e3 6.2e3

confirm the important fact that qm(A) is nonsingular for ‖A‖ ≤ θm (which is in any
case implicitly enforced by our analysis).

Next we need to determine the cost of evaluating rm(A). Because of the relation
qm(x) = pm(−x) between the numerator and denominator polynomials, an efficient
scheme can be based on explicitly computing the even powers of A, forming pm and qm,
and then solving the matrix equation qmrm = pm [22]. If pm(x) =

∑m
i=0 bix

i, we have,
for the even-degree case,

p2m(A) = b2mA2m + · · · + b2A
2 + b0I + A(b2m−1A

2m−2 + · · · + b3A
2 + b1I)(2.9)

=: U + V ,

which can be evaluated with m + 1 matrix multiplications by forming A2, A4, . . . ,
A2m. Then

q2m(A) = U − V

is available at no extra cost. For odd degrees,

p2m+1(A) = A(b2m+1A
2m + · · · + b3A

2 + b1I) + b2mA2m + · · · + b2A
2 + b0I(2.10)

=: U + V ,

and so p2m+1 and q2m+1 = −U +V can be evaluated at exactly the same cost as p2m

and q2m. However, for m ≥ 12 this scheme can be improved upon. For example, we
can write

p12(A) = A6(b12A
6 + b10A

4 + b8A
2 + b6I) + b4A

4 + b2A
2 + b0I(2.11)

+ A
[
A6(b11A

4 + b9A
2 + b7I) + b5A

4 + b3A
2 + b1I

]
=: U + V ,

and q12(A) = U −V . Thus p12 and q12 can be evaluated in just six matrix multiplica-
tions (for A2, A4, A6, and three additional multiplications). For m = 13 an analogous
formula holds with the outer multiplication by A transferred to the U term. Similar
formulae hold for m ≥ 14. Table 2.2 summarizes the number of matrix multiplications
required to evaluate pm and qm, which we denote by πm, for m = 1: 21.

The information in Tables 2.1 and 2.2 enables us to determine the optimal algo-
rithm when ‖A‖ ≥ θ21. From Table 2.2, we see that the choice is between m = 1, 2, 3,
5, 7, 9, 13, 17, and 21. (There is no reason to use m = 6, for example, since the cost of
evaluating the more accurate q7 is the same as the cost of evaluating q6.) Increasing

1184 NICHOLAS J. HIGHAM

Table 2.2

Number of matrix multiplications, πm, required to evaluate pm(A) and qm(A), and the measure
of overall cost Cm in (2.12).

m 1 2 3 4 5 6 7 8 9 10

πm 0 1 2 3 3 4 4 5 5 6
Cm 25 12 8.1 6.6 5.0 4.9 4.1 4.4 3.9 4.5

m 11 12 13 14 15 16 17 18 19 20 21

πm 6 6 6 7 7 7 7 8 8 8 8
Cm 4.2 3.8 3.6 4.3 4.1 3.9 3.8 4.6 4.5 4.3 4.2

from one of these values of m to the next requires an extra matrix multiplication to
evaluate rm, but this is offset by the larger allowed θm = ‖2−sA‖ if θm jumps by
more than a factor 2, since decreasing s by 1 saves one multiplication in the final
squaring stage. Table 2.1 therefore shows that m = 13 is the best choice. Another
way to arrive at this conclusion is to observe that the cost of the algorithm in matrix
multiplications is, since s = 	log2 ‖A‖/θm
 if ‖A‖ ≥ θm and s = 0 otherwise,

πm + s = πm + max (log2 ‖A‖ − log2 θm
, 0) .

(We ignore the required matrix equation solution, which is common to all m.) We
wish to determine which m minimizes this quantity. For ‖A‖ ≥ θm we can remove
the max and ignore the ‖A‖ term, which is essentially a constant shift, and so we
minimize

Cm = πm − log2 θm.(2.12)

The Cm values are shown in the second line of Table 2.2. Again, m = 13 is clearly
the best choice. We repeated the computations with u = 2−24 ≈ 6.0× 10−8, which is
the unit roundoff in IEEE single precision arithmetic, and u = 2−105 ≈ 2.5 × 10−32,
which corresponds to quadruple precision arithmetic; the optimal m are now m = 7
and m = 17, respectively.

Now we consider the effects of rounding errors on the evaluation of rm(A). We
immediately rule out m = 1 and m = 2 because r1 and r2 can suffer from loss
of significance in floating point arithmetic. For example, r1 requires ‖A‖ to be of
order 10−8 after scaling, and then the expression r1(A) = (I + A/2)(I − A/2)−1

loses about half the significant digits in A in double precision arithmetic; yet if the
original A has norm of order at least 1 then all the significant digits of some of the
elements of A should contribute to the result.

The effect of rounding errors on the evaluation of the numerator and denominator
of rm(A) is described by the following result, which can be proved using techniques
from [11].

Theorem 2.2. Let gm(x) =
∑m

k=0 bkx
k. The computed polynomial ĝm obtained

by evaluating gm at X ∈ C
n×n using explicit formation of matrix powers as in the

methods above satisfies

|gm − ĝm| ≤ γ̃mn g̃m(|X|),

where g̃m(X) =
∑m

i=0 |bk|Xk. Hence ‖gm − ĝm‖1 ≤ γ̃mn g̃m(‖X‖1).

Applying the theorem to pm(A), where ‖A‖1 ≤ θm, and noting that pm has all

MATRIX EXPONENTIAL REVISITED 1185

positive coefficients, we deduce that

‖pm(A) − p̂m(A)‖1 ≤ γ̃mn pm(‖A‖1)

≈ γ̃mn e
‖A‖1/2

≤ γ̃mn‖eA/2‖1 e
‖A‖1

≈ γ̃mn‖pm(A)‖1 e
‖A‖1 ≤ γ̃mn‖pm(A)‖1 e

θm .

Hence the relative error is bounded approximately by γ̃mne
θm , which is a very satis-

factory bound, given the values of θm in Table 2.1. Replacing A by −A in the latter
bound we obtain

‖qm(A) − q̂m(A)‖1 � γ̃mn‖qm(A)‖1 e
θm .

In summary, the errors in the evaluation of pm and qm are nicely bounded. This
analysis improves that of Ward [24, equation (3.5)], who assumes ‖A‖ ≤ 1 and obtains
absolute error bounds.

To obtain rm we solve a multiple right-hand side linear system with qm(A) as
coefficient matrix, so to be sure that this system is solved accurately we need to check
that qm(A) is well conditioned. It is possible to obtain a priori bounds for ‖qm(A)−1‖
under assumptions such as ‖A‖ ≤ 1/2 [16, Appx. 1, Lem. 2], ‖A‖ ≤ 1 [24, Thm. 1],
or qm(−‖A‖) < 2 [3, Lem. 2.1], but these assumptions are not satisfied for all the m
and ‖A‖ of interest to us. Therefore we take a similar approach to the way we derived
the constants θm. With ‖A‖ ≤ θm and by writing

qm(A) = e−A/2
(
I + eA/2qm(A) − I)

)
≡ e−A/2(I + F),

we have, if ‖F‖ < 1,

‖qm(A)−1‖ ≤ ‖eA/2‖ ‖(I + F)−1‖ ≤ eθm/2

1 − ‖F‖ .

We can expand ex/2qm(x) − 1 =
∑∞

i=2 dix
i, from which ‖F‖ ≤

∑∞
i=2 |di|θim follows.

Our overall bound is

‖qm(A)−1‖ ≤ eθm/2

1 −
∑∞

i=2 |di|θim
.

By determining the di symbolically and summing the first 150 terms of the sum in
250 decimal digit arithmetic, we obtained the bounds in the last row of Table 2.1,
which confirm that qm is very well conditioned for m up to about 13 when ‖A‖ ≤ θm.

Our algorithm is as follows. It first checks whether ‖A‖ ≤ θm for m ∈ {3, 5, 7,
9, 13} and, if so, evaluates rm for the smallest such m. Otherwise it uses the scaling
and squaring method with m = 13.

Algorithm 2.3. This algorithm evaluates the matrix exponential of A ∈ C
n×n

using the scaling and squaring method. It uses the constants θm given in Table 2.3.
1 % Coefficients of degree 13 Padé approximant.
2 b(0: 13) = [64764752532480000, 32382376266240000, 7771770303897600,
3 1187353796428800, 129060195264000, 10559470521600,
4 670442572800, 33522128640, 1323241920,
5 40840800, 960960, 16380, 182, 1]

1186 NICHOLAS J. HIGHAM

Table 2.3

Constants θm needed in Algorithm 2.3.

m θm
3 1.495585217958292e-2
5 2.539398330063230e-1
7 9.504178996162932e-1
9 2.097847961257068e0

13 5.371920351148152e0

6 % Preprocessing to reduce the norm.
7 A ← A− μI, where μ = trace(A)/n.
8 A ← D−1AD, where D is a balancing transformation (or set D = I if

balancing does not reduce the 1-norm of A).

9 for m = [3 5 7 9 13]
10 if ‖A‖1 ≤ θm
11 X = rm(A) % rm(A) = [m/m] Padé approximant to A.
12 X = eμDXD−1 % Undo preprocessing.
13 end
14 end
15 A ← A/2s with s a minimal integer such that ‖A/2s‖1 ≤ θ13

(i.e., s = 	log2(‖A‖1/θ13)
).
16 % Form [13/13] Padé approximant to eA.
17 A2 = A2, A4 = A2

2, A6 = A2A4

18 U = A
[
A6(b13A6 + b11A4 + b9A2) + b7A6 + b5A4 + b3A2 + b1I

]
19 V = A6(b12A6 + b10A4 + b8A2) + b6A6 + b4A4 + b2A2 + b0I
20 Solve (−U + V)r13 = U + V for r13.

21 X = r13
2s

by repeated squaring.
22 X = eμDXD−1 % Undo preprocessing.
The cost of Algorithm 2.3 is πm +	log2(‖A‖1/θm)
 matrix multiplications, where

m is the degree of Padé approximant used, and πm is tabulated in Table 2.2, plus the
solution of one matrix equation.

It is readily checked that the sequences θ2k
13b2k and θ2k+1

13 b2k+1 are approximately
monotonically decreasing with k, and hence the ordering given in Algorithm 2.3 for
evaluating U and V takes the terms in approximately increasing order of norm. This
ordering is certainly preferable when A has nonnegative elements, and since there
cannot be much cancellation in the sums it cannot be a bad ordering [11, Chap. 4].

The Padé approximant rm at line 11 is intended to be evaluated using (2.10) for
m ≤ 9, or as in lines 17–19 for m = 13.

The preprocessing in Algorithm 2.3 is precisely that suggested by Ward [24] and
attempts to reduce the norm by a shift and a similarity transformation.

The use of the [13/13] Padé approximation in Algorithm 2.3 gives optimal effi-
ciency. However, Table 2.1 reports a bound of 3.0 for ‖q9(A)−1‖, which is somewhat
smaller than the bound of 17 for ‖q13(A)−1‖, and C9 is only slightly larger than C13;
therefore the best compromise between numerical stability and efficiency could con-
ceivably be obtained by limiting to maximum degree m = 9. We will compare these
two degrees experimentally in the next section.

3. Comparison with existing algorithms. We now compare Algorithm 2.3
with existing implementations of the scaling and squaring method that also employ

MATRIX EXPONENTIAL REVISITED 1187

Padé approximations to ex.
The function expm in MATLAB 7 uses m = 6 with ‖2−sA‖∞ ≤ 0.5 as the scal-

ing criterion and does not employ preprocessing. (expm is a built-in function, but
expmdemo1 is an M-file implementation of the same algorithm, and in all our tests
expm and expmdemo1 produced exactly the same results.) Sidje [19] uses the same
parameters in his function padm. Surprisingly, neither expm nor padm evaluates r6 op-
timally: whereas (2.9) requires just 4 multiplications, expm uses 5, because it evaluates
all the powers A2, A3, . . . , A6, while padm expends 7 multiplications in using Horner’s
method with a variant of (2.9). We note that in padm, pm and qm are evaluated in
increasing order of norms of the terms, as in Algorithm 2.3, whereas expm uses the
reverse ordering.

Ward [24] uses m = 8 with ‖2−sA‖1 ≤ 1 and carries out the same preprocessing
as Algorithm 2.3.

In the following discussion we will assume that all the algorithms use the same
norm and ignore the preprocessing.

Since Ward’s value of θ is twice that used in expm and padm, and the [8/8] Padé
approximant can be evaluated with just one more matrix multiplication than the
[6/6] one, Ward’s algorithm would have exactly the same cost as expm and padm for
‖A‖ ≥ 0.5, were the latter algorithms to evaluate r6 efficiently.

It is clear from our analysis that the three algorithms under discussion are not
of optimal efficiency. If the [6/6] or [8/8] Padé approximants are to be used, then
one can take larger values of θ, as shown by Table 2.1. Moreover, as we have argued,
there is no reason to use the degree 6 or 8 approximants because the degree 7 and 9
approximants have the same cost, respectively.

By considering Tables 2.1 and 2.2 it is easy to see the following:
• When ‖A‖1 > 1, Algorithm 2.3 requires one or two fewer matrix multiplica-

tions than Ward’s implementation, two or three fewer than expm, and four
or five fewer than padm. For example, when ‖A‖1 ∈ (2, 2.1), the number of
matrix multiplications reduces from 8 for expm and 7 for Ward’s implementa-
tion to 5 for Algorithm 2.3 (which takes m = 9)—a saving of 37% and 29%,
respectively.

• When ‖A‖1 ≤ 1, Algorithm 2.3 requires no more matrix multiplications than
expm, padm, and Ward’s algorithm, and up to 3, 5, and 3 fewer, respectively.

Our analysis shows that all these algorithms have a backward error no larger
than u, ignoring roundoff. However, it is well known that rounding errors can sig-
nificantly affect the scaling and squaring method, because the squaring phase can
suffer from severe numerical cancellation. The fundamental problem can be seen in
the result [11, sec. 3.5]

‖A2 − fl(A2)‖ ≤ γn‖A‖2,

which shows that the errors in the computed squared matrix are small compared with
the square of the norm of the original matrix but not necessarily small compared with
the matrix being computed. By using standard error analysis techniques it is possible
to derive a forward error bound for the scaling and squaring method, as has been
done by Ward [24]. However, with our current knowledge of the eA problem it is not
easy to determine whether a large value for the bound signals potential instability of
the method or an ill-conditioned problem.

Since the matrix squarings in the scaling and squaring method are potentially
dangerous it seems desirable to minimize the number of them. Algorithm 2.3 uses

1188 NICHOLAS J. HIGHAM

0 10 20 30 40 50 60
10

–18

10
 –16

10
 –14

10
 –12

10
 –10

10
 – 8

10
– 6

Exp(3)
Exp(5)
Exp(7)
Exp(9)
Exp(13)
cond*u

Fig. 3.1. Normwise relative errors for Algorithm 2.3 (Exp(13)) and variants with mmax re-
stricted to 3, 5, 7, and 9.

one to three fewer squarings than the algorithms with which we have compared it,
and hence it has a potential advantage in accuracy.

We now present some numerical experiments, carried out in MATLAB 7.0 (R14),
that provide some insight into the accuracy of the scaling and squaring method and
of Algorithm 2.3. We took 66 8 × 8 test matrices: 53 obtained from the function
matrix in the Matrix Computation Toolbox [10] (which include test matrices from
MATLAB itself), together with 13 further test matrices of dimension 2–10 from [1,
Ex. 3], [3, Ex. 3.10], [14, Ex. 2 and p. 655], [18, p. 370], and [24, Test Cases 1–4]. We
evaluated the relative error in the 1-norm of the computed matrices from expm, from
Algorithm 2.3, and from a modified version of Algorithm 2.3 in which the maximal
degree of the Padé approximant is a parameter, mmax. The latter algorithm, denoted
by Exp(mmax), allows us to study the dependence of the error on mmax. We did not
use any preprocessing in this experiment, although we found that turning on prepro-
cessing in Algorithm 2.3 makes essentially no difference to the results. The “exact” eA

is obtained at 100-digit precision using MATLAB’s Symbolic Math Toolbox.
Figure 3.1 compares the errors for the different maximal Padé degrees. It shows

a clear trend that the smaller the mmax the larger the error. The solid line is the unit
roundoff multiplied by the (relative) condition number

cond(A) = lim
ε→0

max
‖E‖2≤ε‖A‖2

‖eA+E − eA‖2

ε‖eA‖2
,

which we estimate using the finite-difference power method of Kenney and Laub [13],
[9]. For a method to perform in a backward stable, and hence forward stable, man-
ner, its error should lie not far above this line on the graph. In all our figures the
results are sorted by decreasing condition number cond(A). We see that Algorithm 2.3

MATRIX EXPONENTIAL REVISITED 1189

0 10 20 30 40 50 60

10
–18

10
 –16

10
 –14

10
 –12

10
 –10

10
 – 8

10
 – 6

expm
padm
funm
Exp(13)
cond*u

Fig. 3.2. Normwise relative errors for expm, padm (Sidje), funm, and Algorithm 2.3 (Exp(13)).

(mmax = 13) performs in a numerically stable way on this experiment, even though
two of the test matrices were chosen to cause the scaling and squaring method to
“overscale”—a phenomenon investigated in [3] and [14]. Some instability is appar-
ent for the smaller mmax. The numerical results therefore concur with the theory in
suggesting that the fewer the number of squarings, the smaller the error.

Figure 3.2 compares Algorithm 2.3 with expm, Sidje’s function padm, and MAT-
LAB 7’s funm, which implements the Schur–Parlett method of Davies and Higham [1],
which is designed for general f . The figure shows that expm exhibits minor instability
on many of the test matrices.

Finally, Figure 3.3 plots a performance profile [4] for the experiment. Each of
the methods is represented by a curve on the plot. For a given α on the x-axis,
the y-coordinate of the corresponding point on the curve is the probability that the
method in question has an error within a factor α of the smallest error over all the
methods, where probabilities are defined over the set of test problems. For α = 1,
the Exp(13) curve is the highest: it intersects the y-axis at p = 0.52, which means
that this method has the smallest error in 52% of the examples—more often than
any other method. For α � 1.6, Exp(9) is more likely than Exp(13) to be within a
factor α of the smallest error. Since the curve for expm lies below all the other curves,
expm is the least accurate method on this set of test matrices, as measured by the
performance profile. Recall that the functions expm and padm both use m = 6 and
differ only in how they evaluate r6, as described at the start of this section.

In interpreting the results it is worth noting that the actual errors the methods
produce are sensitive to the details of the arithmetic. The version of Figure 3.3
produced by a prerelease version of MATLAB 7.0 was different, though qualitatively
similar. (For example, the Exp(13) and Exp(9) curves touched at α = 3, though they
did not cross.)

1190 NICHOLAS J. HIGHAM

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exp(13)

Exp(9)

padm

funm

expm

α

p

Fig. 3.3. Performance profile: α is plotted against the probability p that a method has error
within a factor α of the smallest error over all methods.

This experiment shows that in terms of accuracy in floating point arithmetic there
is no clear reason to favor Exp(13) over Exp(9) or vice versa. Our choice of Exp(13)
in Algorithm 2.3 on the grounds of its lower cost is therefore justified.

4. Indirect Padé approximation. Najfeld and Havel [18, sec. 2] suggest an
interesting variation of the standard scaling and squaring method that they claim is
more efficient. Instead of approximating the exponential directly, they use a Padé
approximation to the even function

τ(x) = x coth(x) = x(e2x + 1)(e2x − 1)−1

= 1 +
x2

3 +
x2

5 +
x2

7 + · · ·

,(4.1)

in terms of which the exponential can be written

e2x =
τ(x) + x

τ(x) − x
.(4.2)

The Padé approximants to τ can be obtained by truncating the continued fraction
expansion (4.1). For example, using r̃2m to denote the diagonal [2m/2m] Padé ap-
proximant to τ ,

r̃8(x) =
1

765765x
8 + 4

9945x
6 + 7

255x
4 + 8

17x
2 + 1

1
34459425x

8 + 2
69615x

6 + 1
255x

4 + 7
51x

2 + 1
.

MATRIX EXPONENTIAL REVISITED 1191

The numerators and denominators of r̃2m comprise only even powers of x, and so they
can be evaluated at a matrix argument A in m matrix multiplications by explicitly
forming the required even powers.

The error in r2m has the form

τ(x) − r̃2m(x) =

∞∑
k=1

dkx
4m+2k =

∞∑
k=1

dk(x
2)2m+k.(4.3)

(The error is one order in x higher than the definition of Padé approximant requires,
due to the fact that τ is even.) Hence the error in the matrix approximation satisfies

‖τ(A) − r̃2m(A)‖ ≤
∞∑
k=1

dk‖A2‖2m+k =: ω2m(‖A2‖).(4.4)

Let θ2m be the largest θ such that ω2m(θ) ≤ u. The algorithm of Najfeld and Havel

scales Ã ← A/2s+1 with s ≥ 0 chosen so that ‖Ã2‖ = ‖A2‖/22s+2 ≤ θ2m. Padé ap-

proximation is applied to the scaled matrix, Ã. The final stage consists of s squarings,
just as in the standard scaling and squaring method. Note that there are s squarings
rather than s + 1, because the underlying approximation (4.2) is to e2x and not ex.
Computation of the θ2m and analysis of computational cost in [18] leads Najfeld and
Havel to conclude that the choice m = 8 of Padé approximant degree leads to the
most efficient algorithm.

Detailed study of this algorithm shows that it is competitive in cost with Algo-
rithm 2.3. The following result reveals a close connection with Algorithm 2.3.

Theorem 4.1. The [2m/2m] Padé approximant r̃2m(x) to x coth(x) is related
to the [2m + 1/2m + 1] Padé approximant r2m+1(x) to ex by

r2m+1(x) =
r̃2m(x/2) + x/2

r̃2m(x/2) − x/2
.

Proof. By (4.3),

e2m(x) := τ(x) − r̃2m(x) = O(x4m+2).

Then

g(x) :=
r̃2m(x) + x

r̃2m(x) − x
=

τ(x) + x− e2m(x)

τ(x) − x− e2m(x)

=
τ(x) + x

τ(x) − x

[
1 − e2m(x)/(τ(x) + x)

1 − e2m(x)/(τ(x) − x)

]

= e2x

[
1 − e2m(x)

τ(x) + x
+

e2m(x)

τ(x) − x
+ O(e2m(x)2)

]

= e2x

[
1 +

2xe2m(x)

(τ(x) + x)(τ(x) − x)
+ O(e2m(x)2)

]
= e2x(1 + xO(e2m(x)) = e2x + O(x4m+3).

Now g(x) is a rational function with numerator and denominator both of degree at
most 2m+ 1, and g(x/2) = ex +O(x4m+3). By the uniqueness of Padé approximants
to the exponential, g(x/2) ≡ r2m+1(x).

1192 NICHOLAS J. HIGHAM

Hence the algorithm of Najfeld and Havel, which takes m = 8, is implicitly using
the same Padé approximant to ex as Algorithm 2.3 when the latter takes m = 9.
The difference is essentially in how A is scaled prior to forming the approximant
and in the precise formulae from which the approximant is computed. While the
derivation of Najfeld and Havel’s algorithm ensures that the error ‖τ(A)− r̃2m(A)‖ is
sufficiently small for the scaled A, what this implies about the error e2A − (r̃2m(A) +
A)(r̃2m(A)−A)−1 is unclear, particularly since the matrix r̃2m(A)−A that is inverted
can be arbitrarily ill conditioned. Moreover, it is unclear how to derive an analogue
of Theorem 2.1 that expresses the truncation errors in the Padé approximant to τ as
backward errors in the original data.

We conclude that the algorithm suggested by Najfeld and Havel is essentially a
variation of the standard scaling and squaring method with direct Padé approximation
but with weaker guarantees concerning its behavior both in exact arithmetic (since
a backward error result is lacking) and in floating point arithmetic (since a possibly
ill-conditioned matrix must be inverted). Without stronger supporting analysis the
method cannot therefore be recommended.

5. Conclusions. The scaling and squaring method has long been the most pop-
ular method for computing the matrix exponential. By analyzing it afresh we have
found that existing implementations of Sidje [19] and Ward [24], and in the function
expm in MATLAB, are not optimal. While they do guarantee a backward error of or-
der the unit roundoff in the absence of roundoff (that is, solely considering truncation
errors in the Padé approximation), they use more matrix multiplications than neces-
sary. By developing an essentially optimal backward error bound for the scaling and
squaring method in exact arithmetic that depends on A only through ‖A‖, we have
identified the most efficient choice of degree m of Padé approximation and initial scal-
ing for IEEE double precision arithmetic: m = 13, as opposed to m = 6 for expm and
Sidje’s algorithm and m = 8 for Ward’s algorithm, with scaling to ensure ‖A‖ ≤ 5.4.
A welcome side effect has been to reduce the amount of scaling, and hence the number
of squarings in the final stage. This reduction, together with a careful evaluation of
the Padé approximation, makes the new algorithm typically more accurate than the
old ones (see Figures 3.2 and 3.3).

With the aid of some new error analysis we have shown that all but one part of
Algorithm 2.3 is numerically stable. The effect of rounding errors on the final squaring
phase remains an open question, but in our experiments the overall algorithm has
performed in a numerically stable way throughout.

Acknowledgments. I am grateful to Philip Davies for insightful comments on
section 4 and Roy Mathias for suggesting evaluation schemes of the form (2.11).

REFERENCES

[1] P. I. Davies and N. J. Higham, A Schur–Parlett algorithm for computing matrix functions,
SIAM J. Matrix Anal. Appl., 25 (2003), pp. 464–485.

[2] I. S. Dhillon and B. N. Parlett, Orthogonal eigenvectors and relative gaps, SIAM J. Matrix
Anal. Appl., 25 (2004), pp. 858–899.

[3] L. Dieci and A. Papini, Padé approximation for the exponential of a block triangular matrix,
Linear Algebra Appl., 308 (2000), pp. 183–202.

[4] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Math. Program., 91 (2002), pp. 201–213.

[5] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems,
3rd ed., Addison-Wesley, Reading, MA, 1998.

[6] W. Gautschi, Numerical Analysis: An Introduction, Birkhäuser Boston, Boston, MA, 1997.

MATRIX EXPONENTIAL REVISITED 1193

[7] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[8] T. F. Havel, I. Najfeld, and J. Yang, Matrix decompositions of two-dimensional nuclear
magnetic resonance spectra, Proc. Natl. Acad. Sci. USA, 91 (1994), pp. 7962–7966.

[9] N. J. Higham, Functions of a Matrix: Theory and Computation; book in preparation.
[10] N. J. Higham, The Matrix Computation Toolbox, http://www.ma.man.ac.uk/∼higham/

mctoolbox.
[11] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,

2002.
[12] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,

Cambridge, UK, 1991.
[13] C. S. Kenney and A. J. Laub, Condition estimates for matrix functions, SIAM J. Matrix

Anal. Appl., 10 (1989), pp. 191–209.
[14] C. S. Kenney and A. J. Laub, A Schur–Fréchet algorithm for computing the logarithm and

exponential of a matrix, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 640–663.
[15] J. D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz con-

stants, SIAM J. Numer. Anal., 4 (1967), pp. 372–380.
[16] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a

matrix, SIAM Rev., 20 (1978), pp. 801–836.
[17] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a

matrix, twenty-five years later, SIAM Rev., 45 (2003), pp. 3–49.
[18] I. Najfeld and T. F. Havel, Derivatives of the matrix exponential and their computation,

Adv. in Appl. Math., 16 (1995), pp. 321–375.
[19] R. B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans.

Math. Software, 24 (1998), pp. 130–156.
[20] R. B. Sidje and W. J. Stewart, A numerical study of large sparse matrix exponentials arising

in Markov chains, Comput. Statist. Data Anal., 29 (1999), pp. 345–368.
[21] M. Sofroniou and G. Spaletta, Efficient matrix polynomial computation and application

to the matrix exponential, talk given at the workshop on “Dynamical Systems on Matrix
Manifolds: Numerical Methods and Applications,” Bari, Italy, 2004.

[22] C. F. Van Loan, On the limitation and application of Padé approximation to the matrix
exponential, in Padé and Rational Approximation: Theory and Applications, E. B. Saff
and R. S. Varga, eds., Academic Press, New York, 1977, pp. 439–448.

[23] R. S. Varga, Matrix Iterative Analysis, 2nd ed., Springer-Verlag, Berlin, 2000.
[24] R. C. Ward, Numerical computation of the matrix exponential with accuracy estimate, SIAM

J. Numer. Anal., 14 (1977), pp. 600–610.

